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Fig. S1 Electrochemical scanning tunnelling microscopy (EC-STM) images: (a) Reconstructed bare

Au(111) surface in 0.1 M H,SO,. (b) Multi-layered graphene on the reconstructed Au(111) surface in



0.1 M H,SO,. (c) Single-layered graphene on the reconstructed Au(111) surface in 0.1 M H,SO,
containing 0.05 mM 2H-TPyP molecules. (d) Zoomed-in image of Fig. 2d. (e) The graphene-covered
and bare Au(111) surfaces after a pulse application of 0.65 Vsce. Scanning conditions: a tunnelling

current (I)) of 0.1 nA, tip bias (Vpias) 0f 0.1 V, and sample potential of 0.0 Vsce.

Fig. S2 Electrochemical scanning tunnelling microscopy (EC-STM) images: (a) Single-layered
graphene on the reconstructed Au(111) surface in 0.1 M H,SO, (a) without and (b)-(d) without 0.05 mM
2H-TPyP molecules. Scanning conditions with a tunnelling current (I;) of 0.1 nA, tip bias (Vpis) of 0.1
V at sample potentials of (a), (b), (c), (e) 0.2 Vsce and (d) 0.55 Vsce. The images from (c) to (d) and (e)

were obtained in a sequence.
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Fig. S3 Characterization of porphyrin adsorption and its metalation on graphene: (a)-(c) Changes in the
UV-Vis spectra of graphene (G) as a function of surface modification with porphyrins (2H-TAPP, 2H-
TPyP) and its metalation with Ni, Zn, and Pt by (a) thermal annealing and (b) (c) voltage application.
(d) (e) XPS spectra of (d) C 1s for graphene (G), 2H-TPyP on graphene (2H-TPyP/G), Pt-TPyP on
graphene (Pt-TPyP/G) and (e) Pt 4f for Pt-TPyP/G. (f) UPS spectra of 2H-TPyP/G and M-TPyP/G, M=

Ni, Zn, and Pt.
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Fig. S4 Changes in Raman spectra: G and 2D peaks of graphene were evaluated with regard to
adsorption of (a) 2H-TPyP and its metalation (M-TPyP, M = Ni, Zn, and Pt), (b) 2H-TAPP and its
metalation (M-TAPP, M = Ni, Zn, and Pt), and (c¢) 2H-TPP and its metalation (M-TPP, M = Ni, Zn, and
Pt). Metalation was accomplished by thermal annealing. Statistical analysis was conducted using 15
data points (standard deviation of 95%). (d) Raman spectra of pristine graphene, 2H-TPyP-adsorbed

graphene, and Pt-metalized TPyP/graphene.
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Fig. S5 Schematics of the graphene electrode used for electrochemical measurements: Metalation of
porphyrin was accomplished by application of voltage between the two gold contacts. The top
PDMS/PET substrate covered the bottom graphene electrode to enable determination of the electrode
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Fig. S6 Polarization curves of porphyrin-adsorbed HOPG for the hydrogen evolution reaction in 0.5 M
H,SO,4. HOPG substrate was fleshly prepared by tearing off the several top layers before immersion into
porphyrin solution. Porphyrin-immobilized HOPG substrate was thoroughly washed with DI water

several times and then dried for >24 h in a vacuum oven at 80 °C.
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Fig. S7 Stability test for the Pt-TAPP/graphene electrode.
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Fig. S8 Changes in transfer characteristics of graphene field effect transistors (FETs) in response to

porphyrin adsorption and metalation on graphene: Effect of thermal annealing (at 250 °C) on (a) 2H-



TPyP/G and (b) 2H-TPP/G.
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Fig. S9 Changes in transfer characteristics of graphene field effect transistors (FETs) in response to
porphyrin adsorption and metalation on graphene: (a) (b) Effect of metal adsorption on graphene
(without porphyrin) after immersion in (a) Ni** solution and (b) Pt** solution. (c) FE-SEM images of

pristine graphene, 2H-TPyP-adsorbed graphene, and Pt-metalized TPyP/graphene.
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Fig. S10 Transfer characteristics of graphene FETs according to metalation: Changes in electronic

properties of M-TPyP/G (M = (a) Ni, (b) Zn, and (c) Pt) treated by thermal annealing after metalation

with voltage application.
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Fig. S11 Optical images of 2H-TPyP solution containing reduced graphene oxide (rGO) corresponding

to adsorption of 2H-TPyP onto rGO.
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Table S1. Binding energies (eV) in N 1s and metal XPS spectra of porphyrin and metalloporphyrin on

graphene.
N 1s (eV) Metal

Pyrrolic N | Iminic N Energy (eV) | Level

2H-TPP 4009+01 [3989+0.1
Ni-TPP 3999+ 0.1 8551+ 0.2 |2ps;
Zn-TPP 399.8 + 0.1 10226 + 0.1 | 2ps
Pt-TPP 3994 £ 0.1 725+ 01 4f5/
756+ 01 4fs

2H-TAPP  |4011+0.2 [3985+0.2
Ni-TAPP 3993101 8569+ 02 |2p;,
Zn-TAPP 399.7+ 0.1 10224 £ 03 | 2ps);
Pt-TAPP 399.8 £ 0.2 722+02 4f;
756+ 0.1 4fs ),

2H-TPyP  |400.7 £ 0.3 [398.6 £0.2
Ni-TPyP 399.6 £ 0.2 8573+ 0.2 |2ps3;
Zn-TPyP 3994 + 0.1 10233+ 03 | 2ps,
Pt-TPyP 399.6 + 0.3 723+01 4f;,
756+ 0.1 4fs
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Table S2. Peak shifts of G and 2D in the Raman spectra of graphene in response to porphyrin

adsorption and its metalation.

2D (cm1?) G (cm?1)
Pristine G 26919+ 25 15931+ 2.6
2H-TPP/G 26922+ 36 15952 + 3.3
Ni-TPP/G 26911+11 15969+ 1.7
Zn-TPP/G 26938+ 29 15983+ 2.9
Pt-TPP/G 26911+1.2 1596.0 £ 2.5
2H-TAPP/G 26938+ 1.1 15959+ 1.1
Ni-TAPP/G 26936+ 1.5 15976+ 1.7
Zn-TAPP/G 26912+ 10 15973+ 13
Pt-TAPP/G 2691.2+13 1596.7 + 2.4
2H-TPyP/G 26936 + 3.9 15954 + 34
Ni-TPyP/G 26945+ 1.2 15972+ 3.2
Zn-TPyP/G 26940 + 3.0 1598.7 + 3.7
Pt-TPyP/G 26930+ 19 15975+ 4.0
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