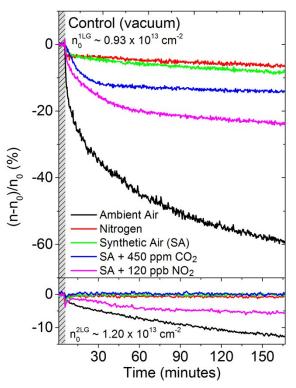
Supplementary information

Tuning epitaxial graphene sensitivity to water by hydrogen intercalation

C. Melios^{1, 2}, M. Winters³, W. Strupiński⁴, V. Panchal¹, C. E. Giusca¹,

K.D.G.I. Jayawardena², N. Rorsman³, S.R.P. Silva², and O. Kazakova^{1*}

¹National Physical Laboratory, Teddington, TW11 0LW, UK


²Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, UK

³Chalmers University of Technology, Dept. of Microtechnology and Nanoscience, Göteborg, 412-96. Sweden

⁴Institute of Electronic Materials Technology, Warsaw, 01-919, Poland

The effect of atmospheric contaminants on the carrier concentration of epitaxial graphene on SiC(0001)

To investigate the effects of the atmospheric contaminants (*i.e.* N₂, O₂, NO₂, and CO₂) magneto-transport measurements were performed on an epitaxial graphene on SiC(0001) sample. The concentrations of CO₂ and NO₂ were chosen to simulate those naturally occurring in ambient air. The effect of O₂ was simulated using synthetic air (SA), which contains 21% O₂, balanced with nitrogen. Prior to each measurement, the sample was annealed at 150°C in vacuum (P=1×10⁻⁶ mbar) for two hours and then allowing time for the sample to cool down to room temperature. The measurements in figure S1 show a minor p-doping of 1LG due to O₂ in SA, however a significantly larger p-doping effect is observed due to CO₂ and NO₂ exposures, *i.e.* ~13% and ~23% decrease in (*n-n*₀)/*n*₀, respectively. In the case of 2LG, both NO₂ and CO₂ result in p-doping of graphene (with ~6% and <1% change in carrier concentration, respectively). These measurements demonstrate the thickness dependent atmospheric doping on epitaxial graphene.

Figure S1: Carrier concentration of epitaxial graphene on SiC(0001) (top 1LG and bottom 2LG) under exposure to different atmospheric contaminants: (black) ambient, (red) nitrogen, (green) synthetic air (SA), (blue) SA + 450 ppm CO₂ and (pink) SA + 120 ppb NO₂.