Electronic supplementary information

Activating Efficient Room Temperature Phosphorescence of Carbon Dots by Synergism of Orderly Non-Noble Metals and Dual Structural Confinements

Liqian Bai, Ning Xue, Xinrui Wang, Wenying Shi,* Chao Lu

Figure S1. STEM mapping of CDs-LDHs supported on carbon film.

Figure S2. EDS pattern of CDs-LDHs supported on carbon film.

Figure S3. Fluorescence emission spectra of CDs @ hae aqueous solution and CDs-LDH powder.

lifetime	τ / ns (450 nm)	percentage / %			
$ au_1$	0.9700	25.80			
$ au_2$	3.540	52.07			
$ au_3$	10.76	22.13			
Average $<\tau > /$ ns	4.478				
χ^2	1.076				

Table S1. The parameters of fluorescence lifetime of CDs-LDHs at 300 ℃.

Figure S4. The time-resolved phosphorescence spectrum of CDs-LDHs at 300 °C.

lifetime	τ / ms (525nm)	percentage / %			
$ au_1$	3.626	9.900			
$ au_2$	22.00	22.24			
τ3	108.3	33.64			
τ4	463.0	34.22			
Average< τ > / ms	386.8				
χ^2	1.955	5			

Table S2. The parameters of phosphorescence lifetime for CDs-LDHs at 300 ℃.

Figure S5. UV-vis absorption spectra of CDs@hae, CDs-LDHs and MgAl-LDHs-NO₃.

Figure S6. Phosphorescence spectra of CDs-LDH powder and CDs@LDHs@PVA film.

Figure S7. A schematic representation of CDs-ZnAl-LDHs.

Figure S8. (A) Phosphorescence spectra of CDs-LDHs and CDs-Zn at 250 °C.

Figure S9. Polarized fluorescence profiles in the VV, VH modes and anisotropic value (*r*) for (A) CDs-MgAl-LDHs and (B) CDs-ZnAl-LDHs deposited on quartz substrate.

Figure S10. The time-resolved fluorescence spectrum of CDs-ZnAl-LDHs at 250 °C.

Figure S11. The time-resolved phosphorescence spectrum of CDs-ZnAl-LDHs at 250 °C.

Figure S12. The time-resolved fluorescence spectrum of CDs-MgAl-LDHs at 250 °C.

Figure S13. The time-resolved phosphorescence spectrum of CDs-MgAl-LDHs at 250 °C.

sample	lifetime	τ_1 / ns	τ_2/ns	τ_3 / ns		<\(\tau > / ns)	χ^2
CDs-MgAl-LDHs	fluorescence	0.9326	3.655	11.37		2.751	1.215
	lifetime						
	percentage / %	62.54	27.11	10.35			
CDs-ZnAl-LDHs	fluorescence	0.3516	2.447	7.683		2.061	1.192
	lifetime						
	percentage / %	55.68	29.40	14.92			
sample	lifetime	τ_1 / ms	τ_2 / ms	τ_3 / ms	τ_4 / ms	<\(\tau>) ms	χ^2
CDs-MgAl-LDHs	phosphorescence	1.842	14.51	78.44	374.0	319.4	1.892
	lifetime						
	percentage / %	8.590	20.65	34.29	36.47		
CDs-ZnAl-LDHs	phosphorescence	0.9763	5.170	39.66	286.5	265.6	1.895
	lifetime						
	percentage / %	17.74	17.23	24.23	40.80		

Table S3. Luminescence lifetime data of CDs-LDHs at 250 ℃.

Figure S14. Fluorescence spectra of CDs-ZnAl-LDHs and CDs-MgAl-LDHs at 250 °C.

Figure S15. (A) TEM image of CDs@hae at 200 °C. (B) High magnifications of (A).

Figure S16. (A) TEM image of CDs@hae at 250 °C. (B) High magnifications of (A).

Figure S17. (A) TEM image of CDs@hae at 300 °C. (B) High magnifications of (A).

Figure S18. Fluorescence emission spectra of pure CDs@hae solution at different temperatures.

Figure S19. A schematic representation for (A) SDS-CDs-LDHs (SDS : CDs = 1 : 1) and (B) SDS-CDs-LDHs (SDS : CDs = 2 : 1).

Figure S20. XRD patterns of SDS-CDs-LDHs (SDS : CDs = 1 : 1), SDS-CDs-LDHs (SDS : CDs = 2 : 1), EDTA-LDHs and LDHs-NO₃ at 250 °C.

Figure S21. TG curves of (a) SDS, (b) SDS-EDTA-LDHs (SDS : EDTA = 2 : 1), (c) SDS-EDTA-LDHs (SDS : EDTA = 1 : 1) and (d) MgAl-LDHs-NO₃. TG experiments were carried out in an air flow.

Figure S22. Fluorescence spectra of CDs-LDHs, SDS-CDs-LDHs (SDS : CDs = 1 : 1), and SDS-CDs-LDHs (SDS : CDs = 2 : 1).

Figure S23. Phosphorescence spectra of CDs-LDHs, SDS-CDs-LDHs (SDS : CDs = 1 : 1), and SDS-CDs-LDHs (SDS : CDs = 2 : 1).

Figure S24. Mechanism diagram for optical oxygen quenching.