Supporting information

Preparation of Hyperstar Polymers with Encapsulated Au₂₅(SR)₁₈ Clusters as Recyclable Catalysts for Nitrophenol Reduction

Daqiao Hu, ^{a,b} Shan Jin, ^b Yi Shi, ^a Xiaofeng Wang, ^a Robert W. Graff, ^a Wenqi

Liu, ^a Manzhou Zhu ^{b*} and Haifeng Gao ^{a*}

a. Department of Chemistry and Biochemistry, University of Notre Dame, Notre

Dame, Indiana 46556-5670, United States

b. School of Chemistry and Chemical Engineering & Center for Atomic Engineering

of Advanced Materials, Anhui University, Hefei 230039, China.

E-mail: hgao@nd.edu, zmz@ahu.edu.cn

Figure S1. ¹H NMR spectrum of inimer BIEM. NMR condition: 25 °C, CDCl₃ as solvent.

Figure S2. ¹H NMR spectrum of monomer MAOELP. NMR condition: 25 °C, CDCl₃ as solvent.

Figure S3. ¹H NMR spectrum of HB-(MAOELP₁-*r*-BIEM₅). NMR condition: 25 °C, CDCl₃ as solvent.

Scheme S1. Illustration of the mechanism for copolymerization of inimer BIEM with monomer MAOELP.

Figure S4. Inverse-gated decoupled spectra of the hyperbranched copolymer HB-(MAOELP₁-*r*-BIEM₅), HB-(MAOELP₁-*r*-BIEM₁₀) and HB-(MAOELP₁-*r*-BIEM₁₅) synthesized via copolymerization of BIEM and MAOELP in microemulsion.

Detailed calculation of the degree of branching (DB) of hyperbranched

copolymers.

Since the conversion of methacrylate group in BIEM and MAOELP was > 99%, determined by ¹H NMR, a full conversion of methacrylate groups (conv._A = 1, conv._M = 1) was applied to simplify the calculation. Based on the spectra in Figure S3:

1. Hyperbranched polymer HB-(MAOELP₁-*r*-BIEM₅)

 $N_b = N_{A^*} + N_{M^*} = 0.14$

 $N_{B*}=N_a+N_A-N_{M*}=1.0$

 $f_{B*} = N_{B*} / (N_{B*} + N_b) = 1/1.14 = 0.88$

 $r = k_{A*}/k_{B*} = (\text{con } v_{\cdot A} + f_{B*} - 1)/(-\ln f_{B*} + f_{B*} - 1) = 112$

DB' = 0.21

Actual DB = $0.21 \times (5/6) = 0.18$

2. Hyperbranched polymer HB-(MAOELP₁-*r*-BIEM₁₀)

$$N_b = N_{A^*} + N_{M^*} = 0.17$$

$$N_{B*}=N_{a}+N_{A}-N_{M*}=1.0$$

 $f_{B*} = N_{B*} / (N_{B*} + N_b) = 1/1.17 = 0.85$

 $r = k_{A*}/k_{B*} = (\text{con } v_{\cdot A} + f_{B*} - 1)/(-\ln f_{B*} + f_{B*} - 1) = 0.85/0.0125 = 68$

DB' = 0.25

Actual DB = $0.25 \times (10/11) = 0.23$

3. Hyperbranched polymer HB-(MAOELP₁-*r*-BIEM₁₅)

 $N_b = N_{A^*} + N_{M^*} = 0.29$

 $N_{B*}=N_{a}+N_{A}-N_{M*}=1.0$

 $f_{B*}=N_{B*}/(N_{B*}+N_b)=1/1.29\approx 0.78$

$$r = k_{A*}/k_{B*} = (\text{con } v_{A} + f_{B*} - 1)/(-\ln f_{B*} + f_{B*} - 1) = 0.78/0.0125 = 28$$

DB' = 0.34

Actual DB = $0.34 \times (15/16) = 0.32$

Table S1. DBs of different hyperbranched copolymers			
DB			
0.18			
0.23			
0.32			

Figure S5. UV-Vis absorption spectra of $Au_{25}(SR)_{18}$ in CH_2Cl_2 at various concentrations with calibration curves as inset.

Figure S6. (A) UV-Vis absorption spectrum and (B) TEM image of $HS-Au_{25}(SR)_{18}$ nanocomposites after storage in 3 months.

Catalytic reduction reaction of 4-nitrophenol

The ratio of absorbance A_t of 4-nitrophenolate at time t to its value A_0 at t=0 (A_t/A_0) could be directly interpreted as the ratio of the respective concentrations C_t/C_0 . Therefore, the reaction conversion at time t can be calculated according to equation (1):

Conversion (%) = $(1 - C_t/C_0) \times 100 = (1 - A_t/A_0) \times 100 (1)$

The concentration of sodium borohydride was set to be 50 times higher than that of 4nitrophenol and therefore was assumed as a constant during the reaction. Accordingly, the catalytic rate was evaluated through pseudo-first-order kinetics with respect to 4nitrophenol, being independent of NaBH₄ concentration. The calculation equation was as follows:

 $dC_t/dt = -k_{app}t$ or $\ln(C_t/C_0) = \ln(A_t/A_0) = -k_{app}t \rightarrow$

 $\ln(A_0/A_t) = k_{app}t \tag{2}$

Figure S7. Digital pictures during 4-nitrophenol reduction reaction.

Table S2. Catalytic results of 4-nitrophenol reduction reaction			
Catalyst	$K_{\rm app}({\rm min}^{-1})$	Conv. 4-	Yield 4-
		nitrophenol (%)	aminophenol (%)
$Au_{25}(SR)_{18}$	0.140±0.013	100	98
1 st cycle HS-Au ₂₅ (SR) ₁₈	0.129±0.007	100	96
2^{nd} cycle HS-Au ₂₅ (SR) ₁₈	0.124±0.017	100	95
3 rd cycle HS-Au ₂₅ (SR) ₁₈	0.119±0.009	100	96
4 th cycle HS-Au ₂₅ (SR) ₁₈	0.118 ± 0.004	100	95
5^{th} cycle HS-Au ₂₅ (SR) ₁₈	0.108±0.004	100	95

Figure S8. ¹H NMR spectrum of 4-nitrophenol. NMR condition: 25°C, DMSO-*d*₆ as

solvent.

Figure S9. ¹H NMR spectrum of 4-aminophenol. NMR condition: 25° C, DMSO- d_6 as

solvent.