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This supplementary information includes the current anneal results, the Coulomb 

diamond, the comparison with a wider sample and larger dynamic range obtained from 

the wider sample.  
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Figure S1: Current-voltage response after in-situ current annealing at low 

temperature.1 The sample was annealed by fixing a large current flow for 3 minutes. 

The resistance at 0.5 V bias decreased from 10 MΩ (before anneal) to 83 kΩ (anneal 

at 200 μA).  



 

Figure S2: Coulomb diamond of the device used in the main-text. The charging energy 

is estimated to be approximately 1 meV, which is comparable to the etched quantum 

dots reported by our group.2-4  

 

 



 

Figure S3: Comparison between a 5 layer, ~1-μm-wide resonator and the 50-nm-wide 

resonator (used in the main-text). (a) Typical mixing current measurement setup for 

graphene mechanical resonator.5 One microwave source was used to apply microwave 

with frequency ω + δω  to the source port and another source was used to apply 

microwave with frequency ω to the bottom gate; the resonator operated as a mixer and 

the mixing down signal with frequency δω can be detected by a lock-in amplifier at 

the drain port. (b) Measurement setup used in the main-text. The setup is simpler 

compared to panel (a). A bias voltage was applied to the source port and a multi-meter 

was used to detect the transport current. (c) Typical mixing current response as a 

function of driving frequency for the 1-μm-wide resonator. We cannot obtain any 

resonance signal if we measure this sample by dc method used in panel (b). (d) Typical 

mixing current response as a function of driving frequency for the 50-nm-wide 

resonator. The quantum dot operates as a very sensitive detector and can easily reach a 

high signal to noise ratio.  

 

 

  



 

 

Figure S4: Resonance results of the ~1 - μm -wide resonator. (a) Mixing current 

response as a function of the driving frequency and the gate voltage. (b) Mixing current 

as a function of the driving power and frequency, which shows Duffing nonlinearity at 

very large power. (c) Detailed measurement of the dashed boxed part in panel (b). We 

find a dynamical range at least 40 dB, before the existence of nonlinearity. The effective 

mass is estimated to be 𝑚𝑒𝑓𝑓~3.7 × 10−21 𝑔. The spring constant is obtained to be 

𝑘~0.11 N/m. With a quality factor of ~10000, we obtain a force sensitivity to be 

𝐹𝑚𝑖𝑛~9.8 × 10−19 N/(Hz)1/2, and this value is about 3 times larger than that of the 50-

nm-wide resonator (for force detection, the smaller 𝐹𝑚𝑖𝑛  is, the better). The mass 

resolution is estimated to be 𝛿𝑚~3.7 × 10−21 𝑔.  

 

 

 

Table S1: Comparison of the parameters between 1-μm- and 50-nm-wide resonators 

width Q 𝑓0 (M

Hz) 

𝑚𝑒𝑓𝑓 (

𝑘𝑔) 

𝑘(N/m) DR(dB) 𝛿𝑚(𝑧𝑔) 𝐹𝑚𝑖𝑛[ N

/(Hz)1/2] 

50 

nm 

~3

× 104 

~100 1.85

× 10−19 

0.05 20 0.55 1.9 × 10−19 

1 

μm 

~1

× 104 

~20 3.7

× 10−18  

0.11 40 3.7 9.8 × 10−19 
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