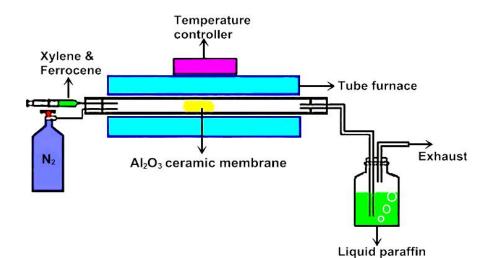
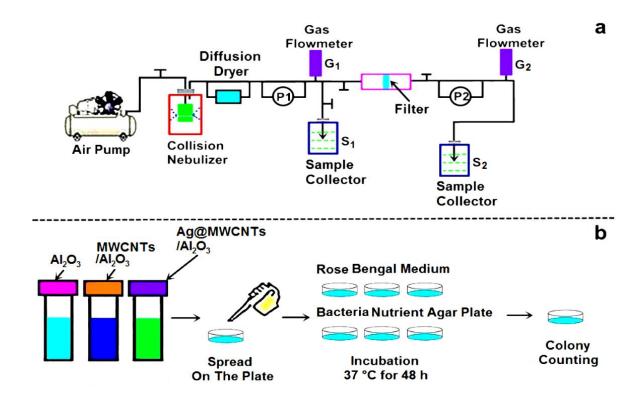
# Supporting Information for

## Multifunctional hybrid porous filters with hierarchical structures for simultaneous removal of indoor

### VOCs, dusts and microorganisms


Yang Zhao,<sup>a</sup> Ze-Xian Low,<sup>b</sup> Shasha Feng,<sup>a</sup> Zhaoxiang Zhong,<sup>\*,a</sup> Yong Wang,<sup>a</sup> Zhong Yao,<sup>a</sup>

<sup>a</sup>State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
E-mail: njutzzx@163.com (Z. Z.)
<sup>b</sup>Dr. Z. Low
<sup>b</sup>Centre for Advanced Separations Engineering and Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom


# **Table of Content**

- 1. Chemical Vapour Deposition of MWCNTs onto Al<sub>2</sub>O<sub>3</sub> filters
- 2. Dynamic filtration experiment and bacterial culture preparation
- 3. Aerosol filtration experiment
- 4. SEM analysis of Al<sub>2</sub>O<sub>3</sub>, MWCNTs/Al<sub>2</sub>O<sub>3</sub> and Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> filters
- 5. X-ray diffraction spectroscopy of Al<sub>2</sub>O<sub>3</sub>, MWCNTs/Al<sub>2</sub>O<sub>3</sub> and Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> filters
- 6. Mixed acid treatments of MWCNTs
- 7. Specific surface area of Al<sub>2</sub>O<sub>3</sub>, MWCNTs/Al<sub>2</sub>O<sub>3</sub> and Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> filters
- 8. Mechanical stability test
- 9. Digital image of microbial culture
- 10. Formaldehyde degradation performance comparison
- 11. SiO<sub>2</sub> particle retention characterization
- 12. Effect of loading of AgNPs
- 13. Effect of filter thickness

## 1. Chemical Vapour Deposition of MWCNTs onto Al<sub>2</sub>O<sub>3</sub> filters



**Figure S1.** Schematic representation of chemical vapour deposition (CVD) of MWCNTs on Al<sub>2</sub>O<sub>3</sub> ceramic membrane. N<sub>2</sub> was used as the carrier and protective gas. Xylene and ferrocene were used for carbon source and catalyst for MWCNTs growth. Liquid paraffin was used for the removal of residue xylene and ferrocene in the exhaust.



### 2. Dynamic filtration experiment and bacterial culture preparation

**Figure S2.** Schematic representation of the dynamic experimental procedure of the retainment of the aerosol microorganisms (a) and the antimicrobic test for the microorganisms retained on the filters after filtration (b). *Escherichia coli* (*E. coli*, ATCC 25922), Bacillus subtilis (*B. subtilis*, ATCC 6051) and Aspergillus niger (*A. niger*, ATCC 16404) were selected as the model Gram-negative bacteria, Gram-positive bacteria and fungi to test the antimicrobial properties of the filters.

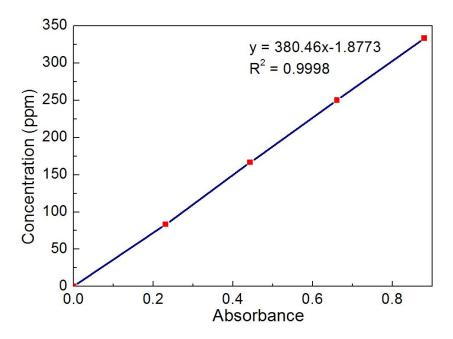
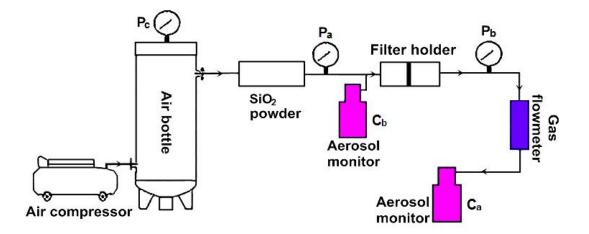




Figure S3. Standard calibration curve of formaldehyde concentration.

## 3. Aerosol filtration experiment



**Figure S4.** Schematic representation for the removal of aerosol particles test.  $P_c$  is the pressure of the air bottle, while  $P_a$  is the pressure before the filter holder, and  $P_b$  is the pressure after the filter holder.  $C_b$  and  $C_a$  refer to the concentration of SiO<sub>2</sub> particles before and after the filtration, respectively.

## 4. SEM analysis of Al<sub>2</sub>O<sub>3</sub>, MWCNTs/Al<sub>2</sub>O<sub>3</sub> and Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> filters

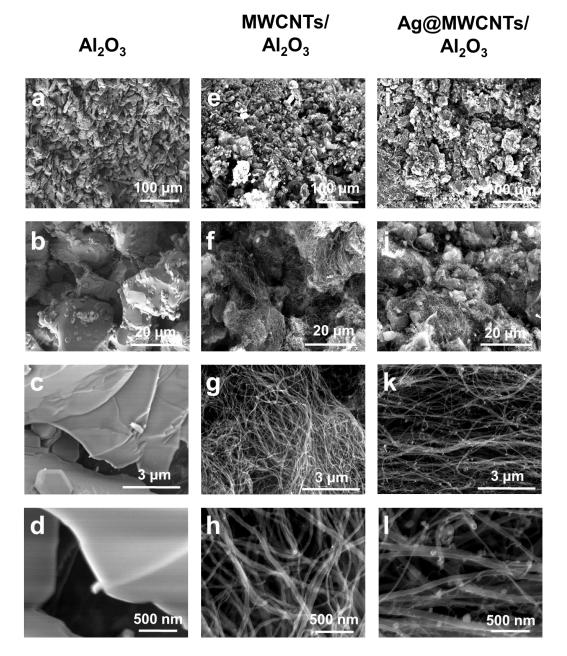



Figure S5. Surface morphology of (a-d) Al<sub>2</sub>O<sub>3</sub>, (e-h) MWCNTs/Al<sub>2</sub>O<sub>3</sub>, and (i-l) Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> at

different magnification.

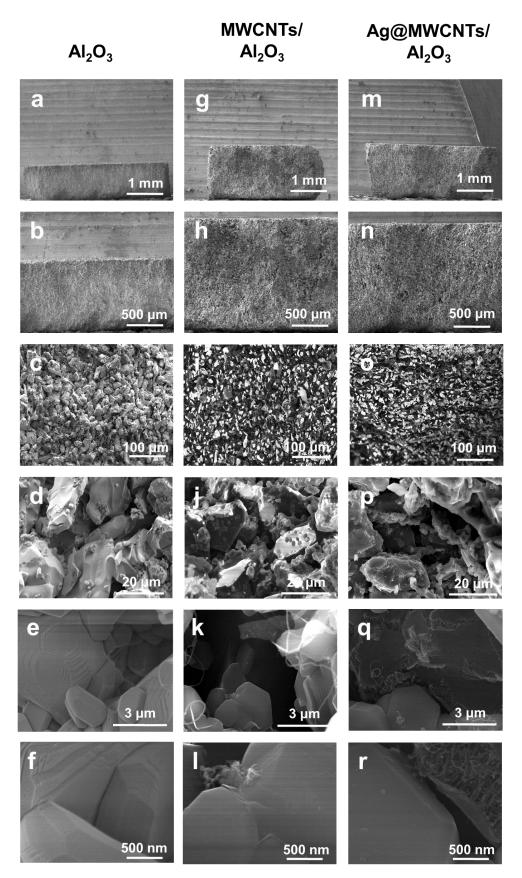
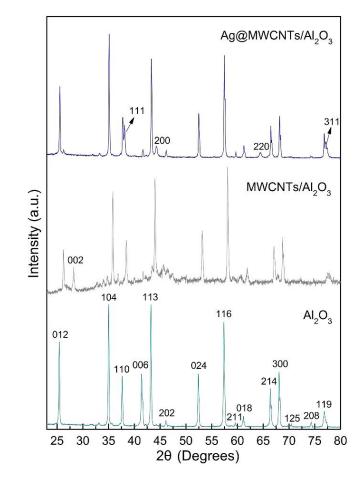




Figure S6. Cross sectional morphology of (a-f) Al<sub>2</sub>O<sub>3</sub>, (g-l) MWCNTs/Al<sub>2</sub>O<sub>3</sub>, and (m-r)

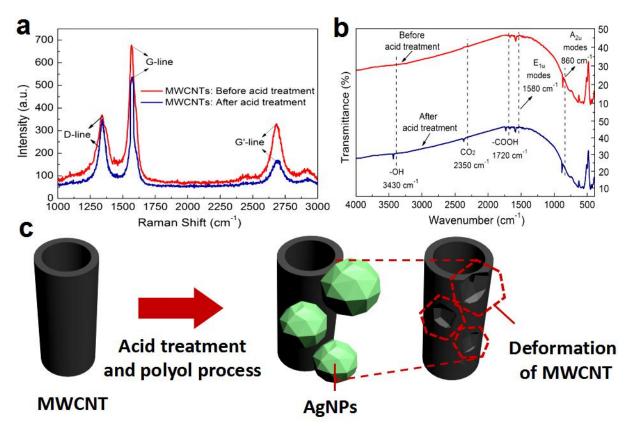
Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> at different magnification.

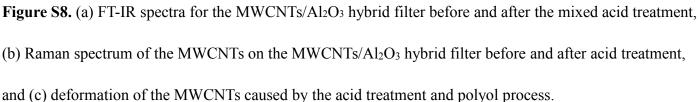
#### 5. X-ray diffraction spectroscopy of Al<sub>2</sub>O<sub>3</sub>, MWCNTs/Al<sub>2</sub>O<sub>3</sub> and



#### Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> filters

Figure S7. XRD pattern of the Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub>, MWCNTs/Al<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>O<sub>3</sub> filter.


XRD measurement was performed to investigate the crystallographic structures of the filter samples as showed in **Figure S7**. For the XRD measurement of Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> hybrid filter, four peaks located at 38.12°, 44.3°, 64.4° and 77.5° were assigned to the diffraction line of the (111), (200), (220), (311) crystalline planes of the metallic silver, respectively (JCPDS 04-0783). The characteristic peaks of the Al<sub>2</sub>O<sub>3</sub> filter correspond to the corundum Al<sub>2</sub>O<sub>3</sub> (JCPDS 46-1212), indicating that the dominating content of the matrix of the MWCNTs/Al<sub>2</sub>O<sub>3</sub> hybrid filter and the Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> hybrid filter was corundum Al<sub>2</sub>O<sub>3</sub>. The presence of the (002) peak at 26.5° indicates that the MWCNTs grown on the Al<sub>2</sub>O<sub>3</sub> matrix were not well-aligned and the MWCNTs were intertwined with each other forming a "network-like" hierarchical structure.<sup>1</sup>


#### 6. Mixed acid treatments of MWCNTs

Before the loading of AgNPs, the MWCNTs grown on Al<sub>2</sub>O<sub>3</sub> membrane were treated by the mixed acid solution of HCl, HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub> to improve the surface activity of the MWCNTs through the rupture of carbon-to-carbon bond and introduction of oxygenated functional groups.<sup>1-2</sup> The infrared spectra of the MWCNTs/Al<sub>2</sub>O<sub>3</sub> hybrid filter before and after the mixed acid treatment are represented in **Figure S8a**. The incidence of 3430 cm<sup>-1</sup> band is attributed to the presence of hydroxyl (-OH) groups connected to the surface of the MWCNTs, and the new peak at 1720 cm<sup>-1</sup> is caused by the formation of carboxyl (-COOH). The -COOH groups increase the hydrophilicity of the MWCNTs which improves the homogeneous attachment of the AgNPs during the polyol process. A<sub>2u</sub> modes and E<sub>1u</sub> modes are the main active modes of MWCNTs peaked at 860 and 1580 cm<sup>-1</sup>, respectively, which appear in all CNTs and are independent of the diameters.<sup>1</sup> Consequently, the functional groups introduced on the surface of the MWCNTs causes the filter sample to absorb carbon dioxide from the air, leading to the influence of background and peaked at 2350 cm<sup>-1</sup> in the FT-IR spectra image.

The Raman spectrum of the CNTs scraped from the MWCNTs/Al<sub>2</sub>O<sub>3</sub> hybrid filter before and after acid treatment is represented in **Figure S8b**. Three characteristic peaks around 1340 cm<sup>-1</sup> D-band, 1550 cm<sup>-1</sup> G-band, and 2650 cm<sup>-1</sup> G'-band of MWCNTs confirmed the growth of MWCNTs.<sup>33</sup> D-band represents the structural imperfections and impurities of MWCNTs and assigned to Raman mode of the amorphous carbon, while G-band contributes to the tangential radial mode of graphite. G'-band is assigned to the first overtone of the D-band.<sup>3</sup> For the line after acid treatment in **Figure S8b**, the quotient for the Raman intensity of D-band and G-band (I<sub>D</sub> /I<sub>G</sub>) is 0.68, which is higher than the line before acid treatment 0.54, indicating that the mixed acid causes the opening of the caps which break the MWCNTs, creating more deficiencies.<sup>4</sup> **Figure S8c** illustrates that the acid treatment and compression effect caused by the AgNPs on MWCNTs though the polyol process may be responsible for the deformation of the MWCNTs, and in line with the

TEM results presented in the main text.





### 7. Specific surface area of Al<sub>2</sub>O<sub>3</sub>, MWCNTs/Al<sub>2</sub>O<sub>3</sub> and Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> filters

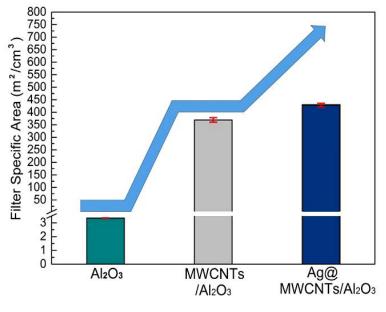



Figure S9. the specific area of the filters.

Filter specific area (m<sup>2</sup>/cm<sup>3</sup>) was determined based on the volume of the filters rather the mass of the filters to determine the improvement to the surface area packed into the same volume of a final filtration system. It can be observed that as much as ~126.14 times improvement of specific area was achieved by incorporating Ag@MWCNTs in a Al<sub>2</sub>O<sub>3</sub> filter.

#### 8. Mechanical Stability Test

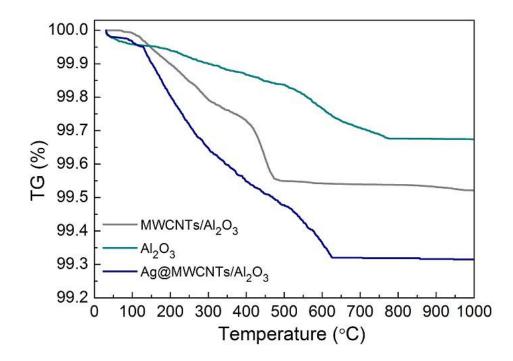
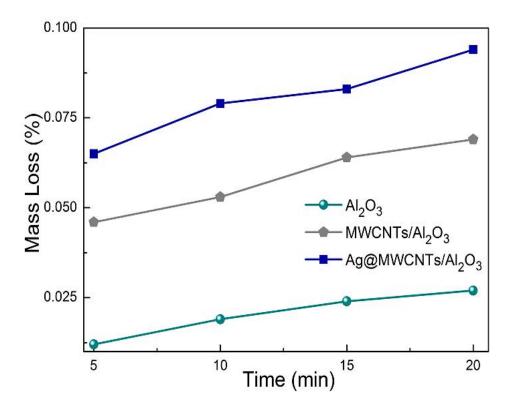
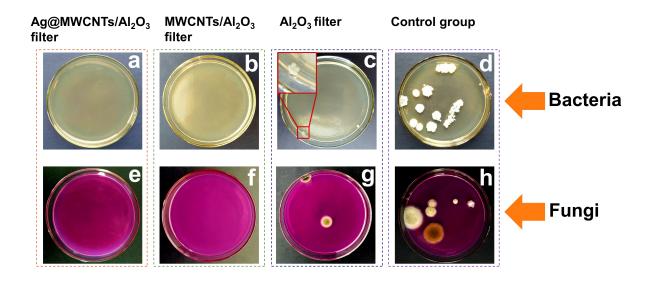



Figure S10. Thermogravimetric analysis of Al<sub>2</sub>O<sub>3</sub>, MWCNTs/Al<sub>2</sub>O<sub>3</sub> and Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> filters.

**Figure S10** shows the thermograms of the filters. The filters showed high thermal stability with a negligible mass loss of 0.7 %, 0.48 % and 0.32 % for the Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> hybrid filter, MWCNTs/Al<sub>2</sub>O<sub>3</sub> hybrid filter and Al<sub>2</sub>O<sub>3</sub> filter, respectively within 1000 °C due to the strong thermal stability materials of Al<sub>2</sub>O<sub>3</sub> matrix and metal silver. The initial mass loss of the filters around 100 – 150 °C can be ascribed to the evaporation of the water from the ambient moisture. Beyond 100 °C, continuous mass loss is observed in all samples due to removal of absorbed carbonaceous particles. Higher amount of mass loss is observed for MWCNTs/Al<sub>2</sub>O<sub>3</sub> hybrid filter and Ag@MWCNTs/ Al<sub>2</sub>O<sub>3</sub> hybrid filter due to the additional removal of the amorphous carbon in the MWCNTs. After incorporation of the AgNPs, the Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> hybrid filter showed decomposition at a lower temperature as the metal silver is an oxidative catalyst for accelerating the thermal decomposition of MWCNTs in air atmosphere.<sup>4-5</sup>





Figure S11. Mass loss of the filters as a function of ultrasonication time.

The mechanical stability test of the filters is shown in **Figure S11**. The mass of the filters decreased with the increasing ultrasonication time. Similar to the TG results, the Al<sub>2</sub>O<sub>3</sub> filter shows the highest mechanical stability with a mass loss of 0.03 %, followed by the MWCNTs/Al<sub>2</sub>O<sub>3</sub> hybrid filter (0.07 %) and the Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> hybrid filter (0.09 %) at the ultrasonication time of 20 min. The original stability of the filters (Al<sub>2</sub>O<sub>3</sub>) and the stable electrostatic attraction between the surface of MWCNTs and AgNPs could be mainly responsible for the mechanical stability of Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> hybrid filter, and these results indicated that the polyol process produced a highly thermal and mechanical stabilized Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> hybrid filter.

## 9. Digital image of microbial culture



**Figure S12.** Antimicrobic efficacy of aerosol microorganisms on the filters after the dynamic retention test. (a)-(c): *E.coli*, (d)-(f): *B.subtilis*, (g)-(i): *A.niger*, antimicrobic rate tested by the Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> (a, d, g), MWCNTs/Al<sub>2</sub>O<sub>3</sub> (b, e, h) and Al<sub>2</sub>O<sub>3</sub> filters (c, f, i) respectively.



**Figure S13.** Dynamic retention test of the filters for the practical atmospheric environment. (d) and (h) were the control group. (a)-(d) and (e)-(h) represented LB nutrient agar group and rose bengal medium group, respectively as tested by the Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> (a,e), MWCNTs/Al<sub>2</sub>O<sub>3</sub> (b,f) and Al<sub>2</sub>O<sub>3</sub> filter (c,g).

# 10. Formaldehyde degradation performance comparison

| Al                    | $Al_2O_3$         |                          | NTs/Al <sub>2</sub> O <sub>3</sub> | Ag@MWCNTs/Al <sub>2</sub> O <sub>3</sub> |                |  |
|-----------------------|-------------------|--------------------------|------------------------------------|------------------------------------------|----------------|--|
| Pore Diameter<br>(µm) | Percentage<br>(%) | Pore<br>Diameter<br>(µm) | Percentage<br>(%)                  | Pore Diameter<br>(µm)                    | Percentage (%) |  |
| 3.86                  | 0.017±0.001       | 3.78                     | 0.018±0.001                        | 3.571                                    | 0.132±0.007    |  |
| 3.8                   | 0.408±0.020       | 3.7                      | 0.563±0.028                        | 3.5                                      | 3.213±0.161    |  |
| 3.7                   | 0.591±0.030       | 3.6                      | 0.703±0.035                        | 3.4                                      | 4.526±0.226    |  |
| 3.6                   | 0.653±0.033       | 3.5                      | 1.033±0.052                        | 3.3                                      | 4.611±0.231    |  |
| 3.5                   | 1.045±0.052       | 3.4                      | 1.285±0.064                        | 3.2                                      | 6.028±0.301    |  |
| 3.4                   | 7.82±0.391        | 3.3                      | 1.781±0.089                        | 3.1                                      | 7.845±0.392    |  |
| 3.3                   | 64.47±3.224       | 3.2                      | 2.108±0.105                        | 3                                        | 8.165±0.408    |  |
| 3.2                   | 12.274±0.614      | 3.1                      | 2.022±0.101                        | 2.9                                      | 8.542±0.427    |  |
| 3.1                   | 9.58±0.479        | 3                        | 51.653±2.583                       | 2.8                                      | 9.804±0.490    |  |
| 3                     | 0±0.000           | 2.9                      | 33.884±1.694                       | 2.7                                      | 10.97±0.545    |  |
| 2.9                   | 1.55±0.078        | 2.8                      | $0.081 \pm 0.004$                  | 2.6                                      | 11.683±0.591   |  |
| 2.8                   | 0±0.000           | 2.7                      | $0.08 \pm 0.004$                   | 2.5                                      | 13.914±0.698   |  |
| 2.7                   | 0±0.000           | 2.6                      | $0.08 \pm 0.004$                   | 2.4                                      | 9.265±0.463    |  |
| 2.6                   | $0.002 \pm 0.000$ | 2.5                      | $0.08 \pm 0.004$                   | 2.3                                      | 1.149±0.057    |  |
| 2.5                   | 0.003±0.000       | 2.4                      | 0.167±0.008                        | 2.2                                      | 0.12±0.001     |  |
| 2.4                   | 0.003±0.000       | 2.3                      | 0.287±0.014                        | 2.1                                      | 0.018±0.001    |  |
| 2.3                   | 0.003±0.000       | 2.2                      | 0.287±0.014                        | 2                                        | 0.015±0.001    |  |
| 2.2                   | 0.168±0.008       | 2.1                      | 0.288±0.014                        | 1.9                                      | 0±0.000        |  |
| 2.1                   | 0.189±0.009       | 2                        | 0.298±0.015                        | 1.8                                      | 0±0.000        |  |
| 2                     | 0.184±0.009       | 1.9                      | 0.298±0.015                        | 1.7                                      | 0±0.000        |  |
| 1.9                   | 0.161±0.008       | 1.8                      | 0.431±0.022                        | 1.6                                      | 0±0.000        |  |
| 1.8                   | 0.166±0.008       | 1.7                      | 0.481±0.024                        | 1.5                                      | 0±0.000        |  |
| 1.7                   | 0.205±0.010       | 1.6                      | 0.628±0.031                        | 1.4                                      | 0±0.000        |  |

Table S1. Date of pore diameter of the filters.

| 1.6  | 0.265±0.013 | 1.5   | $0.958 \pm 0.048$ | — | — |
|------|-------------|-------|-------------------|---|---|
| 1.53 | 0.243±0.012 | 1.456 | 0.506±0.025       | _ | _ |

Table S2. Date of distribution and  $N_2$  flow-rate of the filters.

| A        | $l_2O_3$          | MWCN     | Ts/Al <sub>2</sub> O <sub>3</sub> | Ag@MW    | Ag@MWCNTs/Al <sub>2</sub> O <sub>3</sub> |  |  |  |  |
|----------|-------------------|----------|-----------------------------------|----------|------------------------------------------|--|--|--|--|
| Pressure | Flow-rate         | Pressure | Flow-rate                         | Pressure | Flow-rate                                |  |  |  |  |
| (kPa)    | $(m^{3}/m^{2}.h)$ | (kPa)    | $(m^{3}/m^{2}.h)$                 | (kPa)    | $(m^{3}/m^{2}.h)$                        |  |  |  |  |
| 0        | 0±0.0             | 0        | 0±0.0                             | _        | _                                        |  |  |  |  |
| 0.648    | 150±7.5           | 0.629    | 150±7.5                           | _        | _                                        |  |  |  |  |
| 1.278    | 300±15.0          | 1.24     | 300±15.0                          | 0.629    | 150±7.5                                  |  |  |  |  |
| 1.888    | 450±22.5          | 1.774    | 450±22.5                          | 1.24     | 300±15.0                                 |  |  |  |  |
| 2.46     | 600±30.0          | 2.308    | 600±30.0                          | 1.85     | 450±22.5                                 |  |  |  |  |
| 3.033    | 750±37.5          | 2.88     | 750±37.5                          | 2.365    | 600±30.0                                 |  |  |  |  |
| 3.662    | 900±45.0          | 3.529    | 900±45.0                          | 2.975    | 750±37.5                                 |  |  |  |  |
| 4.253    | 1050±52.5         | 4.063    | 1050±52.5                         | 3.605    | 900±45.0                                 |  |  |  |  |
| 4.826    | 1200±60.0         | 4.635    | 1200±60.0                         | 4.177    | 1050±52.5                                |  |  |  |  |
| 5.417    | 1350±67.5         | 5.188    | 1350±67.5                         | 4.749    | 1200±60.0                                |  |  |  |  |
| 5.97     | 1500±75.0         | 5.741    | 1500±75.0                         | 5.302    | 1350±67.5                                |  |  |  |  |
| 6.58     | 1650±82.5         | 6.294    | 1650±82.5                         | 5.875    | 1500±75.0                                |  |  |  |  |
| 7.133    | 1800±90.0         | 6.828    | 1800±90.0                         | 6.447    | 1650±82.5                                |  |  |  |  |
| 7.706    | 1950±97.5         | 7.381    | 1950±97.5                         | 6.981    | 1800±90.0                                |  |  |  |  |
| 8.316    | 2100±105.0        | 7.973    | 2100±105.0                        | 7.572    | 1950±97.5                                |  |  |  |  |
| 8.888    | 2250±112.5        | 8.545    | 2250±112.5                        | 8.202    | 2100±105.0                               |  |  |  |  |
| 9.422    | 2400±120.0        | 9.098    | 2400±120.0                        | 8.774    | 2250±112.5                               |  |  |  |  |
| 9.975    | 2550±127.5        | 9.651    | 2550±127.5                        | 9.308    | 2400±120.0                               |  |  |  |  |
| 10.567   | 2700±135.0        | 10.185   | 2700±135.0                        | 9.899    | 2550±127.5                               |  |  |  |  |
|          |                   |          |                                   |          |                                          |  |  |  |  |

| 11.101  | 2850±142.5   | 10.719  | 2850±142.5   | 10.433  | 2700±135.0   |
|---------|--------------|---------|--------------|---------|--------------|
| 11.635  | 3000±150.0   | 11.234  | 3000±150.0   | 10.948  | 2850±142.5   |
| 45.623  | 14640±732.0  | 42.821  | 14850±742.5  | 11.501  | 3000±150.0   |
| 82.467  | 28380±1419.0 | 77.419  | 28230±1411.5 | 49.171  | 14997±749.9  |
| 106.34  | 38763±1938.2 | 100.5   | 38820±1941.0 | 82.872  | 27534±1376.7 |
| 124.035 | 48990±2449.5 | 124.121 | 51930±2596.5 | 107.384 | 37788±1889.4 |
| _       | _            | _       | _            | 130.997 | 50958±2547.9 |

 Table S3. Influent and effluent concentrations of formaldehyde.

|             | Ag                      | g@MWCNTs/A                          | Al <sub>2</sub> O <sub>3</sub>      | MWCNTs/Al <sub>2</sub> O <sub>3</sub> |                                     |                                     |  |  |
|-------------|-------------------------|-------------------------------------|-------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|--|--|
| Time<br>(h) | Degradation<br>Rate (%) | Influent<br>concentrations<br>(ppm) | Enfluent<br>concentrations<br>(ppm) | Degradation<br>Rate (%)               | Influent<br>concentrations<br>(ppm) | Enfluent<br>concentrations<br>(ppm) |  |  |
| 0.017       | 81.687                  | 184.763                             | 33.836                              | 51.751                                | 192.561                             | 92.909                              |  |  |
| 0.083       | 81.754                  | 217.264                             | 39.642                              | 51.781                                | 203.317                             | 98.037                              |  |  |
| 0.167       | 81.803                  | 179.002                             | 32.573                              | 51.803                                | 186.354                             | 89.817                              |  |  |
| 0.5         | 81.838                  | 113.257                             | 20.570                              | 51.928                                | 135.678                             | 65.223                              |  |  |
| 1           | 81.927                  | 84.357                              | 15.246                              | 52.146                                | 94.221                              | 45.089                              |  |  |
| 2           | 82.011                  | 126.354                             | 22.730                              | 52.297                                | 143.326                             | 68.371                              |  |  |
| 3           | 82.098                  | 146.357                             | 26.201                              | 52.381                                | 131.287                             | 62.518                              |  |  |
| 4           | 82.152                  | 163.012                             | 29.094                              | 52.451                                | 155.374                             | 73.879                              |  |  |
| 5           | 82.211                  | 130.564                             | 23.226                              | 52.567                                | 149.258                             | 70.798                              |  |  |
| 6           | 82.217                  | 121.685                             | 21.639                              | 52.613                                | 137.201                             | 65.015                              |  |  |
| 7           | 82.226                  | 144.135                             | 25.619                              | 52.577                                | 168.973                             | 80.132                              |  |  |
| 8           | 82.234                  | 150.389                             | 26.718                              | 51.192                                | 143.576                             | 70.077                              |  |  |
| 9           | 82.231                  | 146.027                             | 25.948                              | 48.228                                | 158.324                             | 81.968                              |  |  |
| 10          | 82.198                  | 127.118                             | 22.630                              | 45.342                                | 140.352                             | 76.714                              |  |  |
| 12          | 82.137                  | 168.427                             | 30.086                              | 39.334                                | 137.321                             | 83.307                              |  |  |

| 14 | 81.996 | 186.534 | 33.584 | 32.892 | 169.578 | 113.800 |
|----|--------|---------|--------|--------|---------|---------|
| 16 | 81.853 | 140.386 | 25.476 | 27.081 | 152.876 | 111.476 |
| 18 | 81.689 | 160.218 | 29.338 | 20.236 | 188.362 | 150.245 |
| 20 | 81.513 | 155.22  | 28.696 | 14.172 | 146.877 | 126.062 |
| 22 | 81.299 | 139.764 | 26.137 | 7.369  | 147.461 | 136.595 |
| 24 | 81.019 | 156.389 | 29.684 | 2.65   | 159.378 | 155.154 |
| 28 | 80.318 | 172.843 | 34.019 | 0.061  | 130.894 | 130.814 |
| 32 | 79.807 | 169.345 | 34.196 | 0.227  | 132.887 | 132.585 |
| 36 | 79.454 | 123.897 | 25.456 | 0.003  | 124.387 | 124.383 |
| 40 | 79.315 | 143.567 | 29.697 | 0      | 119.857 | 119.857 |
| 44 | 79.281 | 130.845 | 27.110 | 0      | 136.879 | 136.879 |
| 48 | 79.279 | 121.361 | 25.147 | 0      | 128.547 | 128.547 |
|    |        |         |        |        |         |         |

 Table S4. Comparison of formaldehyde degradation of the Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> hybrid filter and other

| Sample Formaldehyde Degradation (%)          |       |       |       |       |           |     | Ref |     |              |
|----------------------------------------------|-------|-------|-------|-------|-----------|-----|-----|-----|--------------|
| Temperature (°C)                             | 15    | 25    | 35    | 45    | 55        | 100 | 140 | 180 | Kei          |
| Ag@MWCNTs<br>/Al <sub>2</sub> O <sub>3</sub> | 77.44 | 82.23 | 89.27 | 95.59 | 99.99     | _   | _   | _   | This<br>work |
| Ag/Al <sub>2</sub> O <sub>3</sub>            | _     | _     | < 10  | < 10  | < 20      | _   | _   | _   | 6            |
| Ag/TiO <sub>2</sub>                          | _     | _     | < 10  | < 15  | < 40      | _   | _   | _   | 6            |
| Ag/CeO <sub>2</sub>                          | _     | _     | < 10  | < 10  | < 20      | _   | _   | _   | 6            |
| Ag/MnO <sub>x</sub> /CeO <sub>2</sub>        | _     | < 30  | < 30  | < 40  | $\leq$ 40 | _   | _   | _   | 7            |

| Ag/SiO <sub>2</sub>                                 | _    | _    | _    | _         | _    | < 10 | ≤ 50 | < 95 | 8  |
|-----------------------------------------------------|------|------|------|-----------|------|------|------|------|----|
| Ag/MnO <sub>x</sub> /SiO <sub>2</sub>               | _    | _    | _    | _         | _    | < 5  | < 40 | 100  | 8  |
| Au/CeO <sub>2</sub>                                 | < 10 | < 15 | < 25 | < 30      | < 40 | _    | _    | _    | 9  |
| Pt/TiNT                                             | _    | _    | < 60 | $\leq 80$ | < 95 | _    | _    | _    | 10 |
| Au/CeO <sub>2</sub> -Co <sub>3</sub> O <sub>4</sub> | _    | 61   | < 95 | 100       | _    | _    | _    | _    | 11 |
| Pt/TiO <sub>2</sub>                                 | _    | 100  | 100  | 100       | 100  | 100  | _    | _    | 12 |
| Rh/TiO <sub>2</sub>                                 | _    | < 20 | < 25 | 30        | < 50 | 100  | _    | _    | 12 |
| Au/TiO <sub>2</sub>                                 | _    | < 5  | < 10 | ≤ 10      | < 15 | < 70 | _    | _    | 12 |
| Pd/TiO <sub>2</sub>                                 | _    | < 5  | < 10 | ≤10       | < 20 | < 90 | -    | _    | 12 |

 Table S5. Amount of MWCNTs and AgNPs in sample as determined by gravimetric method.

| Sample                                                                       | Total<br>Weight (g) | Amount of<br>MWCNTs in the<br>sample (wt%) | Amount of AgNPs in the sample (wt%) |
|------------------------------------------------------------------------------|---------------------|--------------------------------------------|-------------------------------------|
| Al <sub>2</sub> O <sub>3</sub>                                               | 5.1572              | _                                          | _                                   |
| Al <sub>2</sub> O <sub>3</sub> after acid treatment                          | 5.1390              | -                                          | -                                   |
| MWCNTs/Al <sub>2</sub> O <sub>3</sub>                                        | 5.1845              | 0.530                                      | -                                   |
| MWCNTs/Al <sub>2</sub> O <sub>3</sub> after acid treatment                   | 5.1439              | 0.508                                      | -                                   |
| Ag@MWCNTs/Al <sub>2</sub> O <sub>3</sub> ; polyol reaction time<br>of 20 min | 5.1481              | -                                          | 0.082                               |
| Ag@MWCNTs/Al₂O₃; polyol reaction time<br>of 40 min                           | 5.1532              | _                                          | 0.181                               |
| Ag@MWCNTs/Al₂O₃; polyol reaction time<br>of 60 min                           | 5.1665              | _                                          | 0.437                               |

### 11. SiO<sub>2</sub> particle retention characterization

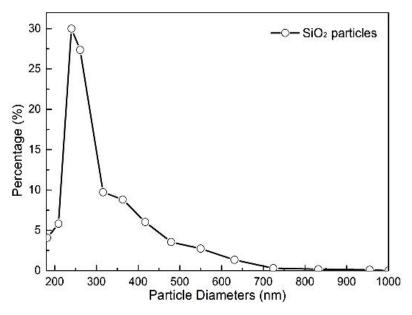
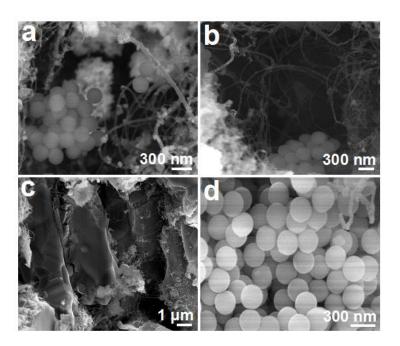




Figure S14. Particle size distribution of SiO<sub>2</sub> particles used in filtration test.



**Figure S15.** FESEM images of the Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> hybrid filter after gas filtration. Accumulation of the SiO<sub>2</sub> particles on the Ag@MWCNTs network around the pores of the Al<sub>2</sub>O<sub>3</sub> filter (a,b), in the inner pore channels of the filter (c), and on the surface of the Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> hybrid filter (d).

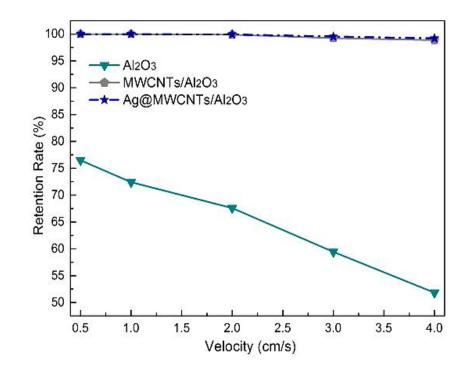



Figure S16. The relationship between the gas velocity and SiO<sub>2</sub> retention rate of the filters (Thickness of all

filters: 1 mm).

### 12. Effect of loading of AgNPs

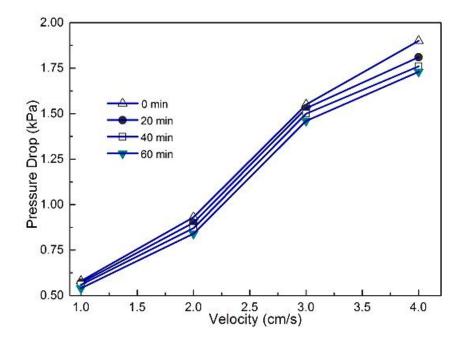



Figure S17. Pressure drop varying with gas velocity for different polyol process time of the Ag@MWCNTs/ Al<sub>2</sub>O<sub>3</sub> hybrid filters.

The relationship between the gas velocity and pressure drop for different polyol process time varied from 20 min to 60 min of the Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> hybrid filters is shown in **Figure S17**. Higher loading of AgNPs in Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> hybrid filter causes the decrease of pressure drop of the filters since the "slip effect" could occur to reduce the drag force and the air flow near the Ag@MWCNTs could be in the FMF regime.<sup>13</sup> The Ag@MWCNTs/Al<sub>2</sub>O<sub>3</sub> hybrid filter with the polyol process time of 60 min shows the lowest pressure drop at varying gas flow rate between 1.0 and 4.0 cm/s compared to the other two filters, implying that introducing the nanomaterials such as AgNPs and MWCNTs to filters could decrease the pressure drop during filtration.

## 13. Effect of filter thickness

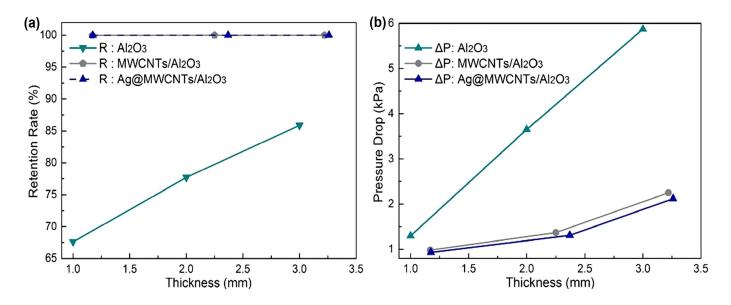



Figure S18. Retention rate (a) and pressure drop (b) of the filters varying with the filter thickness (gas

velocity controlled at 2 cm/s).

#### References

1 T. Belin and F. Epron, Mater. Sci. Eng., B, 2005, 119, 105-118.

2 C. H. Li, K. F. Yao and J. Liang, Carbon, 2003, 4, 858-860.

- 3 Y. Zhao, Z. X. Zhong, Z. X. Low and Z. Yao, RSC Adv., 2015, 5, 91951-91959.
- 4 M. M. Titirici, R. J. White, N. Brun, V. L. Budarin, J. H. Clark, S. S. Dang, F. D. Monte and M. J. MacLachlan, *Chem. Rev.*, 2015, 44, 250-290.
- 5 F. Alimohammadi, M. P. Gashti, A. Shamei and A. Kiumarsi, *Superlattices Microstruct.*, 2012, **52**, 50-62.
- 6 J. H. Zhang, Y. B. Li, Y. Zhang, M. Chen, L. Wang, C. B. Zhang and H. He, Sci. Rep., 2015, 5, 12950.
- 7 C. Shi, B. B. Chen, X. S. Li, M. Crocker, Y. Wang and Z. Ai-min, *Chem. Eng. J.*, 2012, **200-202**, 729-737.
- 8 T. Kharlamova, G. Mamontov, M. Salaev, V. Zaikovskii, G. Popova, V. Sobolev, A. Knyazev and O.Vodyankina, *Appl. Catal. A-Gen.*, 2013, **467**, 519-529.
- 9 J. Zhang, Y. Jin, C. Y. Li, Y. N. Shen, L. Han, ; Z. X. Hu, X. W. Di and Z. L. Liu, *Appl. Catal. B-Environ.*, 2009, **91**, 11-20.
- 10 H. Y. Chen, M. N. Tang, Z. B. Rui and H. B. Ji, Ind. Eng. Chem. Res., 2015, 54, 8900-8907.
- 11 B. C. Liu, Y. Liu, C.Y. Li, W. T. Hu, P. Jing, Q. Wang and J. Zhang, *Appl. Catal. B-Environ.*, 2012, **127**, 47-58.
- 12 C. B. Zhang, H. He and K. I. Tanaka, Appl. Catal. B-Environ., 2006, 65, 37-43.

13 P. Li, C. Y. Wang, Y. Y. Zhang and F. Wei, Small, 2014, 10, 4543-4561.