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Computational Details  

The first-principle calculations are based on density functional theory (DFT) as implemented in the 

Vienna Ab Initio Simulation Package (VASP). We employ the Perdew-Burke-Ernzerhof (PBE) exchange-

correlational functional to solve the Kohn-Sham equations within periodic boundary conditions. The 

electron-nucleus interactions are described using PAW pseudopotentials.1,2 The Monkhorst-Pack k-point 

is set to 4 × 4 × 4 for bulk optimization and 4 × 4 × 1 in calculations of slab systems. The partial 

occupancies of the bands are determined using the first-order scheme of the Methfessel-Paxton method 

with a 0.05 eV width. We used a planewave cutoff of 400 eV, which was verified to be large enough as 

using a smaller cutoff of 300 eV changes energy differences by less than 3%. The electronic self-

consistent loop is terminated when energy changes are less than 1×10-5 eV and the ionic relaxations are 

considered converged when the magnitude of the largest force on any atom is less than 0.01 eV/Å.  Using 

this computational setup, we find that the optimized hexagonal β-Mo2C unit cell has dimensions 6.061 × 

6.054 × 4.713 Å3, which is in good agreement with previous DFT/RPBE results3 6.051 × 6.048 × 4.732 

Å3, as well as with experimental results4 6.0248 × 6.0248 × 4.7352 Å3.  

 To determine the equilibrium β-Mo2C NPs morphology according to Wulff construction scheme, 

we investigated polar and non-polar polar low Miller index surfaces, which are obtained from bulk using 

a (1 × 1) surface supercell with 6 atomic layers for non-polar terminations, 18 atomics layers for (100), 

and 12 for (001) surface. The fictitious interactions between images along the non-periodic direction are 
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mitigated using 10 Å vacuum. We have verified that our results are not sensitive to slab thickness as 

summarized in Table S2. Further, we show in Table S3 that our hydrogen adsorption Gibbs free energies 

on (001), (100) and (011) surfaces are in good agreement with previous DFT calculations5.  

The binding energy of (011) surface using two different functionals 

We carry out additional calculations for the hydrogen binding energy using RPBE on the (011) 

surface. Our PBE and RPBE results are shown in the Table 1. As can be seen, the difference 

between the PBE and RPBE absolute binding energies is small, less than 0.11 eV.   

Hydrogen Coverage (H) PBE (eV) RPBE (eV) 
1 -0.58 -0.47 
2 -0.61 -0.50 
3 -0.49 -0.38 
4 -0.43 -0.32 
5 -0.35 -0.24 
6 -0.30 -0.19 
7 -0.28 -0.17 
8 -0.25 -0.14 

Table S1 
 

 



 

Table S2. The side view of ten β-Mo2C surfaces. The Molybdenum atoms and the Carbon atoms are in gray and 
black The number of layer shows on the picture is used in actual DFT calculation. 

 

Table S3. Surface free energies (J/m2) calculated from 2 layer slabs and 3 layer slabs. Results show the 
convergence in energies for DFT calculations. 

 (011) (101) (110) (021) (100)-C (100)-Mo (001)-C (001)-Mo (111) (010) 

2-Layer 3.138 3.116 3.363  3.376 3.396 3.382 3.496   

3-Layer 3.140 3.116 3.375 3.255 3.367 3.390 3.377 3.489 3.255 3.023 

 

Table S4. The comparison of hydrogen adsorption energy (-eV) for four surfaces at hydrogen coverages. The first 
raw is the reported energies in reference5, and the second column is the energies calculated in our work. 

 1H 2H 3H 4H 5H 6H 7H 8H 9H 10H 11H 12H 13H 14H 
(011) 0.650 0.612 0.522 0.470 0.383 0.339         

0.608 0.628 0.506 0.453 0.373 0.317         
(100)-Mo 0.995 0.998 0.873 0.816 0.677 0.594         

0.963 0.949 0.870 0.828 0.703 0.613         
(001)-Mo 1.120 1.119 1.011 0.979 0.800          

1.100 1.113 1.008 0.984 0.765          
(021) 1.020 0.967 0.930 0.919 0.868 0.815 0.741 0.680 0.626 0.595 0.551 0.512 0.482 0.455 

0.989 0.984 0.933 0.949 0.949 0.837 0.762 0.712 0.655 0.637 0.592 0.551 0.521 0.500 
 



Methodology Details 

The Helmholtz free energy is defined as, 

𝐹 𝑇,𝑉 = 𝐸!"# + 𝐸!"# − 𝑇𝑆!"#                     (𝑆1) 

where the phonon energy 𝐸!"# and entropy 𝑆!"# are defined as,  
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Here νi is the phonon frequency, and  𝑘! is Boltzmann constant.  

 

The Gibbs free energy of H2 in the gas phase is defined as 

𝐺!! = 𝐸!! + 𝜇!! 𝑇, 𝑝
! + 𝑘!𝑇𝑙𝑛

𝑝!!
𝑝!

                    (𝑆4) 

𝜇!! = 𝐻 𝑇, 𝑝! − 𝐻 0, 𝑝! − 𝑇 𝑆 𝑇, 𝑝! − 𝑆 0, 𝑝!                     (𝑆5) 

We have implied the basic relation in thermodynamics, 𝐺 = 𝐻 − 𝑇𝑆, to express 𝜇!! with enthalpy H and 

entropy S as a reference to zero temperature at 1 atm. 𝐻 𝑇, 𝑝!  and 𝑆 𝑇, 𝑝!  for all temperatures are 

obtained from NIST-JANAF thermochemical tables6.  

 

The surface free energy and defined as,  

𝛾!"#$ 𝑇, 𝑝 =
1
2𝐴

𝐺!"#$ − 𝑁!"𝜇!" − 𝑁!𝜇!                     (𝑆6) 



where 𝑁! (i=Mo, C) is number of atoms in the system and 𝜇i is chemical potential, A is the surface area. 

The slabs are in equilibrium with the bulk which constrains the chemical potentials as 𝐺!"#$ = 2𝜇!" +

 𝜇!. This simplifies Equation (S6) to, 

𝛾!"#$ 𝑇, 𝑝 =
1
2𝐴

𝐺!"#$ −
𝑁!"𝐺!"#$

2
+
𝑁!" − 2𝑁!

2
𝜇!                     (𝑆7) 

In the presence of hydrogen, the surface energy can be written as,  

𝛾!"#$
!! 𝑇, 𝑝 =

1
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𝐺!"#$ − 𝑁!"𝜇!" − 𝑁!𝜇! − 𝑁!!𝜇!!                     (𝑆9) 

where we use 𝜇!! = 𝐺!!, and can be simplified as  
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The bonding properties 

The bond properties between adsorbed hydrogen and surface atoms are inspected by binding distances 

which are inversely proportional to binding energy of hydrogen on surfaces; namely, stronger bonding is 

associated with shorter bonding distances. In Table S4, the C-H bond, which is formed at C related sites, 

is shorter than the Mo-H bond formed at Mo related sites (the bond enthalpies for C-H and Mo-H are 

338.4 and 202 kJ/mol, respectively). Accompanied with the charge analysis shown in the same Table S4, 

there are more charge transfers between Mo-H bonds than C-H bonds, which shows the metallic M-H and 

covalent C-H bond properties.   

 

 

 

  



Table S5. The Hydrogen adsorption energies with zero-point energy correction (in eV), binding distance (in Å) and 
charge of H (in e) on high symmetry sites, which are indicated by the three numbers from left to right.	

(011) (101) (110) (021) (111)-Mo 
C1 -0.51/1.12/0.90 B1 -0.95/1.89/1.41 B1 -0.99/1.90/1.41 OB1/OB2 -0.94/1.95/1.46 B1 -0.95/1.92/1.41 
C2 -0.51/1.12/0.90 B2 -0.63/1.93/1.36 B2 -0.99/1.90/1.41 H9/H10 -0.86/1.93/1.44 B3 -0.87/1.89/1.43 

OB3 -0.21/1.91/1.30 E3 -0.49/1.94/1.37 B3 -0.66/1.93/1.40 B3/B4 -0.78/1.88/1.41 E2 -0.85/1.95/1.41 
OB4 -0.21/1.91/1.30 C4 -0.48/1.12/0.90 B4 -0.66/1.93/1.40 B5/B6 -0.76/1.94/1.41 E7 -0.74/1.90/1.42 

  OB5 -0.24/1.84/1.32 C5 -0.41/1.13/0.95 H7/H8 -0.58/2.07/1.41 E8 -0.66/1.95/1.40 
    C6 -0.41/1.13/0.95   B4 -0.59/1.95/1.40 

 
(100)-C (100)-Mo (001)-C (001)-Mo (010)-Mo 

C1 -0.89/1.10/0.84 H1 -0.93/1.97/1.44 C1 -0.51/1.10/0.87 H1 -1.06/1.96/1.46 OB1 -0.94/1.95/1.43 
C2 -0.89/1.10/0.84 H2 -0.93/1.97/1.44 C4 -0.51/1.10/0.87 H2 -1.06/1.96/1.46 OB2 -0.94/1.95/1.43 
H3 -0.16/1.85/1.25 H3 -0.89/1.94/1.44 H2 -0.38/1.99/1.34 H3 -0.97/2.02/1.43 E3 -0.52/1.86/1.33 
H4 -0.16/1.85/1.25 H4 -0.89/1.94/1.44 H3 -0.38/1.99/1.34 H4 -1.01/2.02/1.44 E4 -0.52/1.86/1.33 

  H5 -0.79/1.97/1.39       
  H6 -0.79/1.97/1.39       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



The Exchange Current Densities Analysis 
 
 

Table S6. Exchange current densities of β-Mo2C NPs 
collected from experiments 

J0 (A/cm-2) Electrolyte Synthesis 
Method 

1.729 e-57 0.1 M HClO4 Solution route 

2.683 e-6 / 1.0378 e-5 0.5M H2SO4 / 
1M KOH 

Urea glass 
route 

1.3 e-6 / 3.8 e-69 1M H2SO4 / 1M 
KOH 

Commercial 
NPs 

3.3 e-510 0.5M H2SO4 Solution route 

7.94e-711 0.5M H2SO4 carburization 
with CH4 

7.38e-712 1 M KOH commercial 

1.95e-6/3.43e-513 

(commercial./synthesized 
though solution route) 

0.5M H2SO4 Solution route 

4.0e-514 0.05MH2SO4 mpg-C3N4 a 

4.22e-615 0.5M H2SO4 Solution route 

3.79e-616 0.5M H2SO4 Solution route 

3.80e-617 0.5M H2SO4 Solution route 

7.9e-718 0.5M H2SO4 MoO4 H2O 

	
	
	
	
	
 



   

   

   

 

Table S7. The density of states of the ten β-Mo2C surfaces. 

 



	 	
Table S8. The Hydrogen composition phase diagram of (100)-Mo and (001)-Mo surface 
	

Table S9.	

	 hydrogen	gas	environment	

log(j)	

Vacuum	

Log(j)	

NP-6	 -4.91	 -4.63	

NP-7	 -4.83	 -4.54	

NP-8	 -4.79	 -4.50	

NP-9	 -4.77	 -4.47	

NP-10	 -8.09	 -7.72	

NP-11	 -8.30	 -7.78	
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