Supplementary Information

Strong Enhancement of Electrical Conductivity in Two-dimensional Micrometer-sized RuO₂ Nanosheets for Flexible Transparent Electrodes

Somi Yoo,‡^a Jeongmin Kim,‡^a Hongjae Moon,^a Se Yun Kim,^b Dong-su Ko,^c Weon Ho Shin,^b Sungwoo Hwang,^b Doh Won Jung,^b Soohwan Sul,^c Chan Kwak,^b Jong Wook Roh^{*b}, and Wooyoung Lee^{*a}

^a Department of Materials Science and Engineering Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul 03722, Republic of Korea

^b Inorganic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Suwon-si, Gyeonggi-do, 16678, Republic of Korea

^c Platform Technology Lab, Samsung Advanced Institute of Technology, Samsung Electronics,

130 Samsung-ro, Suwon-si, Gyeonggi-do, 16678, Republic of Korea

Number of layers	Pristine RuO ₂ NS	Only NaBH ₄	Enhancement of	
		reduced RuO ₂ NS	conductivity	
1 layer	822.9 /Ω·cm	884.1 /Ω·cm	7.4%	
2 layer	2097.8 /Ω·cm	2167.7 /Ω·cm	3.3%	

Table S1. Variations of electrical conductivities according to reducing process.

 Table S2. Electrical and optical properties of the LB-deposited films depending on the Agdoping.

Sample No.	Condition of LB-deposition and Ag doping	Layer No.	Sheet resistance (Ω/sq)	Optical transmittance (%)
Sample 1	LB-deposition × 4	4	3231	93.4
Sample 2	(LB-deposition + Ag doping) \times 4	4	1124	92.2
Sample 3	LB-deposition × 2 +Ag doping	2	Not measurable	95.6
Sample 4	(LB-deposition \times 2 +Ag doping) \times 2	4	1509	92.8
Sample 5	LB-deposition × 4 +Ag doping	4	2342	92.9
Sample 6	LB-deposition × 6 +Ag doping	6	1772	86.1

Fig. S1 Light transmittances of RuO₂ NSs. Optical microscope images of (a) monolayer and (b) two-layer RuO₂ NS (c), (d) Line profiles showing the total transmitted white light intensities along the yellow dotted lines in (a) and (b), respectively. It should be noted that the transmittances of RuO₂ NSs decreased linearly by about 2% with increasing number of layers.

Fig. S2 SEM image of the surface of Ag-doped RuO₂ NSs films with various deposition condition:
(a) Just 2 times LB deposition + Ag doping (Sample 3). (b) 2 times LB deposition + Ag doping
(2 times repeated, Sample 4). (c) 4 times LB deposition + Ag doping (Sample 5). (d) 6 times LB
deposition + Ag doping (Sample 6)

Fig. S3 Low magnification SEM image of the surface of Ag-doped RuO₂ NSs films after 200,000 cycle 1R folding test. The coating of Ag-doped RuO₂ NSs in folding area was slightly degraded but the connections of Ag-doped RuO₂ NSs were remained.