Electronic Supplementary Information

Atomistic understanding of lateral growth of graphene from edge of h-BN

domain: towards sharp in-plane junction

Nannan Han,^a Hongsheng Liu,^a Junfeng Zhang,^b Junfeng Gao^{*},^c Jijun Zhao^{*a,d}

^a Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology),

Ministry of Education, Dalian 116024, China

^b School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China

^c Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore

^d Beijing Computational Science Research Center, Beijing 100089, China

Fig. S1 Atomic models of the BN nanoribbon on Cu(111) substrate for all calculations: (a) B-edge and (b) N-edge as the nucleation sites of graphene.

Fig. S2 Several considered configurations of C_i clusters at B-edge with i=1~8. The corresponding DFT total energies (in unit of eV) are listed below. For each C_i , the red number represents the most stable structure. For clarity, only part of the structure within the supercell is shown.

Fig. S3 Several considered configurations of C_i clusters at N-edge with i=1~8. The corresponding DFT total energies (in unit of eV) are listed below. For each C_i , the red number represents the most stable structure.

Fig. S4 Several considered configurations of C_i clusters at BC/NC-edges with $i=1\sim8$. The corresponding DFT total energies (in unit of eV) are listed below. For each C_i , the red number represents the most stable structure.

Fig. S5 Charge density differences between the carbon monomer at (a) N-edge and (b) B-edge on Cu(111) substrates, respectively. The blue (yellow) parts represent the deficiency (aggregation) of electrons. The isosurface is $0.01 |e|/Å^3$.

Fig. S6 Atomic configurations of C_i clusters with $i = 1^{-15}$ on Cu(111) terrace. The critical size of

transition from 1D chains to 2D islands is at i = 12.

Fig. S7 (a) Derivation of the formula of effective nucleation area ratio (A_N/A_{Cu}) , i.e., Eq.(8) of the main text. (b) Effective nucleation area ratio as a function of coverage of BN domains (σ).

	i	1	2	3	4	5	6	7	8
ΔE _i (eV)	B-edge	0.922	0.638	0.480	-0.079	0.231	-0.03	0.114	0.026
	BC-edge	2.252	-0.378	0.947	-0.668	0.391	-0.401	0.283	-0.204
	N-edge	2.501	-0.474	1.232	-0.414	0.605	-0.019	0.486	0.183
	NC-edge	2.332	-0.671	1.210	-0.732	0.270	-0.175	0.101	-0.066
ε _i (eV)	B-edge	0.922	1.560	2.041	1.962	2.193	2.163	2.277	2.303
	BC-edge	2.252	1.874	2.821	2.154	2.545	2.144	2.427	2.223
	N-edge	2.401	1.923	3.056	2.542	3.047	2.928	3.314	3.397
	NC-edge	2.332	1.661	2.871	2.140	2.410	2.235	2.336	2.270
	Cu-terrace	2.683	2.407	3.854	4.176	5.107	5.804	6.574	7.238

Table S1. The populating and formation energies of C_i clusters with $i = 0^{8}$ at different edges of h-

BN domain and on Cu terrace.