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Figure S1. XPS spectrum of NiTe,
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Figure S2. XPS spectrum of NiSe,
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Figure S3. XPS spectrum of NiS,
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Figure S4. CV curves and current density at 0.18 V plotted against scan rate of (a)

NiTe, (b) NiSe; and (c) NiS, in 0.5M H,SO,
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Figure S5. CV curves and current density at 0.18 V plotted against scan rate of (a)

NiTe; (b) NiSe, and (c) NiS, in 1M KOH
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Figure S6. LSV curves before (solid line) and after (dash line) long-term test
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Figure S7. PXRD patterns of NiTe,, NiSe,, and NiS, before (thin line below) and
after (thick line) long-term test
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Figure S8. XPS spectrum of NiTe, after long-term test
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Figure S9. XPS spectrum of NiS e, after long-term test
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Figure S10. XPS spectrum of NiTe, after long-term test



Figure S11. SEM and EDS mapping of NiTe, after long-term test
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Figure S12. SEM and EDS mapping of NiSe, after long-term test
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Figure S13. SEM and EDS mapping of NiS, after long-term test
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Figure S14. Hydrogen adsorption energy of NiTe, with different hydrogen coverage
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Table S1. Comparison between different nickel chalcogenides for HERs

Catalyst Substrate Electrolyte | m [mV]@ Tafel slope Ref.
PH j [mA cm?] [mV/dec]
NiS Glass carbon 14 454@10 124
NiS, clectrode 14 474@10 128 1
Ni;S, 14 335w10 97
. Graphite
NiS, substrate 0 230@1 48 2
. Graphite 0 240@10 41
NiS, 3
substrate 14 310@100 80
NiS 0 252@10 88
NizS, Glass carbon 0 270@10 117 4
NiS electrode 14 375@10 -
Ni;S, 14 400@_2.5 -
NiSe, Nickel foam 0 143@10 49 5
NiSe, Carbon cloth 0 117@10 32 6
NiSe, Gﬁii;i?eon 0 190@10 44 7
NiSe, Ti foil 14 70@10 82 8
NiSe, Carbon cloth 0 135@10 37.3 9
Ni,Se; Nickel foam 14 425@100 118 10
CoTe, Gl;isctcri?eon 0 246@10 45.9 11
CoTe, | Carbon fiber 0 309@10 63.2 12
paper
NiS, 213@10 73
NiSe, 0 156@10 54
I\;;ITS‘? Nickel foil é;g%ig 17011 This work
NiSe, 14 230@10 96
NiTe, 32610 98
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