Electronic supplementary information:

Chemical Routes to Discharging Graphenides

Stephen A. Hodge, David J. Buckley, Hin Chun Yau, Neal T. Skipper, Christopher A. Howard, and Milo S. P. Shaffer

SI Movie 1: Charge quenching of graphite intercalation compound $\ensuremath{\mathsf{KC}}_8$ in air

Fig. S1: Hi-resolution XPS spectra of the C 1s, K 2p, O 1s, F 1s regions for air quenched graphenide (KC_8), and derivitisations using TFAA (hydroxyl groups), TFE (carboxyl groups) and TFH (carbonyl groups), respectively. The N 1s spectra is also shown in the case of TFH derivitisation.

Fig. S2: UV-vis absorption spectrum showing the formation of the fulleride radical ion C_{60} .⁻ following graphenide charge quenching with C_{60} .

Fig. S2: UV-vis absorption spectrum of trityl chloride (black) and the trityl ethyl ether side-product (red) in NMP/ethanol solution following graphenide charge quenching with trityl chloride.

Fig. S3: ¹H NMR (top) and corresponding COSY spectra (bottom) of the side-product following trityl chloride quenching of KC₈.

Fig. S4: ¹³C NMR (top) and corresponding 135-DEPT spectra (bottom) of the side-product following trityl chloride quenching of KC₈.