Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Tuning the photophysical properties of 4'-subsituted terpyridines - experimental and theoretical

study

ELECTRONIC SUPLEMENTARY INFORMATION

Anna Maroń^a, Agata Szlapa^b, Tomasz Klemens^a, Slawomir Kula^b, Barbara Machura^a*, Stanisław Krompiec^b, Jan Grzegorz Małecki^a, Anna Świtlicka-Olszewska^a, Karol Erfurt^c, Anna Chrobok^c

^aDepartment of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland ^bDepartment of Inorganic, Organometallic Chemistry and Catalysis, Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland ^cDepartment of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland

Abstract: Several 2,2':6',2"-terpyridines substituted in 4'-position were synthetized and their photophysical properties were investigated by absorption and photoluminescence spectroscopy in dilute solutions and solid state. The studies confirmed that the absorption and emission wavelengths, fluorescence quantum yields and lifetimes of $1-R^{1-16}$ are strongly structure-related, demonstrating a decisive role of the nature of the substituent in determining photophysical properties of 4'-functionalized terpyridines. Additionally, the density functional theory (DFT) calculations were performed for $1-R^{1-16}$ to get an insight into their electronic structure and spectroscopic properties.

Keywords: 2,2':6',2"-terpyridine derivatives, absorption and fluorescence spectra, effect of solvent polarity, intramolecular charge transfer, DFT calculations.

* Corresponding author, email: <u>bmachura@poczta.onet.pl</u>

Tables:

Table S1. Experimental and calculated bond lengths [Å] and angles [°] for 2.2':6'.2"-terpyridine derivatives **Table S2**. Short intra- and intermolecular contacts detected in structures **1-R³**, **1-R⁷**, **1-R⁸** and **1-R¹⁴**.

Table S3. Calculated Onsager cavity radius (a)

Table S4. Electrochemical properties and optical band gaps of 1-R¹⁻¹⁶ derivatives

Table S5. The energies and characters of the selected calculated transitions assigned to the lowest experimental absorption bands of the compounds $1-R^{1-16}$ (in acetonitrile)

Figures:

Figure S1. View of the packing of $1-R^3$, $1-R^7$, $1-R^8$ and $1-R^{14}$ showing short intra- and intermolecular C—H•••O and C—H•••N contacts.

Figure S2. Hirshfeld surfaces, 2D fingerprint plots and percentage contributions to the Hirshfeld surface area for the various close intermolecular contacts for molecules of **1-R³**, **1-R⁷** and **1-R¹⁴** compounds.

Figure S3. Plot of difference between absorption and fluorescence wavenumber $\Delta \overline{v}_{st}$ vs. solvent polarity parameter Δf for 1-R⁴.

Figure S4. Plot of difference between absorption and fluorescence wavenumber $\Delta \overline{v}_{st}$ vs. solvent polarity parameter Δf for 1-R⁷.

Figure S5. Plot of difference between absorption and fluorescence wavenumber $\Delta \overline{v}_{st}$ vs. solvent polarity parameter Δf for 1-R⁹.

Figure S6. Plot of difference between absorption and fluorescence wavenumber $\Delta \overline{v}_{st}$ vs. solvent polarity parameter Δf for 1-R¹⁰.

Figure S7. Plot of difference between absorption and fluorescence wavenumber $\Delta \overline{v}_{st}$ vs. solvent polarity parameter Δf for 1-R¹¹.

Figure S8. Plot of difference between absorption and fluorescence wavenumber $\Delta \overline{v}_{st}$ vs. solvent polarity parameter Δf for 1-R¹⁴.

Figure S9. Frontier molecular orbitals of 1-R¹⁻¹⁶ calculated at DFT/B3LYP level using the polarizable continuum model (MeCN).

Figure S10. Partial density of states diagrams for 1-R¹⁻¹⁶.

Figure S11. Electronic absorption spectra of compounds 1-R³⁻⁶, 1-R⁸⁻⁹, 1-R¹¹, 1-R¹³⁻¹⁴.

Figure S12. Excitation and emission spectra of compounds 1-R¹⁻¹⁶

Figure S13. Relative orientation of the experimental (blue) and optimised (red) molecules of 1-R³, 1-R⁷, 1-R⁸ and 1-R¹⁴.

Figure S14. Experimental and calculated with CIS(D) and TD-DFT method absorption spectra

		Bonds [Å]			Angles [°]				
				aala	1-R ³				aala
$\begin{array}{c} \exp \\ \hline \\ N(1)-C(1) \\ N(1)-C(5) \\ N(2)-C(6) \\ N(2)-C(10) \\ N(3)-C(11) \\ N(3)-C(15) \\ C(1)-C(2) \\ C(1)-C(2) \\ C(1)-C(3) \\ C(3)-C(4) \\ C(3)-C(4) \\ C(3)-C(16) \\ C(4)-C(5) \\ C(5)-C(11) \\ C(6)-C(7) \\ C(7)-C(8) \\ C(8)-C(9) \\ C(9)-C(10) \\ C(11)-C(12) \\ C(12)-C(13) \\ C(12)-C(13) \\ C(13)-C(14) \\ C(14)-C(15) \\ C(16)-C(25) \\ C(16)-C(25) \\ C(16)-C(21) \\ C(20)-C(21) \\ C(20)-C(21) \\ C(20)-C(22) \\ C(21)-C(22) \\ C(22)-C(23) \\ C(23)-C(24) \\ C(24)-C(25) \\ \end{array}$	1.340(2) 1.345(2) 1.345(2) 1.342(3) 1.342(3) 1.342(3) 1.343(3) 1.388(2) 1.493(3) 1.393(3) 1.388(2) 1.490(2) 1.381(3) 1.490(2) 1.381(3) 1.492(2) 1.383(3) 1.378(3) 1.376(3) 1.377(5) 1.425(3) 1.373(2) 1.398(3) 1.357(2) 1.421(2) 1.405(3) 1.418(2) 1.366(3) 1.398(3) 1.354(3) 1.354(3) 1.422(2)	$\begin{array}{c} N(4)-C(27)\\ N(4)-C(31)\\ N(5)-C(32)\\ N(5)-C(36)\\ N(6)-C(37)\\ N(6)-C(41)\\ C(27)-C(28)\\ C(27)-C(28)\\ C(29)-C(32)\\ C(28)-C(29)\\ C(29)-C(30)\\ C(29)-C(30)\\ C(29)-C(31)\\ C(31)-C(37)\\ C(32)-C(33)\\ C(33)-C(34)\\ C(34)-C(35)\\ C(35)-C(36)\\ C(37)-C(38)\\ C(36)-C(36)\\ C(37)-C(38)\\ C(38)-C(39)\\ C(39)-C(40)\\ C(40)-C(41)\\ C(42)-C(51)\\ C(42)-C(51)\\ C(42)-C(43)\\ C(43)-C(44)\\ C(44)-C(45)\\ C(45)-C(46)\\ C(45)-C(46)\\ C(45)-C(46)\\ C(45)-C(2)\\ C(52)-O(2)\\ C(46)-C(47)\\ C(46)-C(51)\\ C(46)-C(51)\\ C(47)-C(48)\\ C(48)-C(49)\\ C(49)-C(50)\\ C(50)-C(51)\\ \end{array}$	$\begin{array}{c} 1.339(2)\\ 1.347(2)\\ 1.339(3)\\ 1.345(3)\\ 1.345(3)\\ 1.345(3)\\ 1.345(3)\\ 1.392(2)\\ 1.388(3)\\ 1.496(3)\\ 1.390(3)\\ 1.392(2)\\ 1.489(2)\\ 1.381(2)\\ 1.493(2)\\ 1.379(3)\\ 1.390(3)\\ 1.364(4)\\ 1.378(3)\\ 1.378(3)\\ 1.374(4)\\ 1.432(2)\\ 1.363(3)\\ 1.374(4)\\ 1.432(2)\\ 1.363(3)\\ 1.374(4)\\ 1.45(2)\\ 1.410(2)\\ 1.410(2)\\ $	calc 1.353 1.354 1.358 1.358 1.347 1.358 1.347 1.402 1.484 1.405 1.406 1.484 1.406 1.489 1.402 1.484 1.406 1.489 1.400 1.396 1.400 1.398 1.400 1.398 1.400 1.398 1.400 1.398 1.400 1.398 1.401 1.387 1.414 1.381 1.421 1.438 1.381 1.421 1.438 1.381 1.415 1.382 1.425	exp C(1)-N(1)-C(5) C(10)-N(2)-C(6) C(15)-N(3)-C(11) N(1)-C(1)-C(2) N(1)-C(5)-C(4) N(1)-C(5)-C(11) N(2)-C(6)-C(7) N(2)-C(6)-C(7) N(3)-C(11)-C(5) N(3)-C(11)-C(12) N(3)-C(15)-C(14)	122.74(17) 116.50(15) 116.8(2) 122.74(17) 116.50(15) 122.64(15) 116.03(16) 122.72(18) 124.1(2) 115.78(18) 122.49(18) 124.9(3)	$\begin{array}{c} C(27)-N(4)-C(31)\\ C(32)-N(5)-C(36)\\ C(41)-N(6)-C(37)\\ N(4)-C(27)-C(28)\\ N(4)-C(27)-C(32)\\ N(4)-C(31)-C(30)\\ N(4)-C(31)-C(37)\\ N(5)-C(32)-C(27)\\ N(5)-C(32)-C(23)\\ N(5)-C(35)-C(35)\\ N(6)-C(37)-C(31)\\ N(6)-C(37)-C(38)\\ N(6)-C(41)-C(40)\\ \end{array}$	117.57(15) 116.8(2) 116.69(18) 122.94(16) 116.31(15) 122.66(15) 116.19(15) 116.08(17) 122.83(18) 124.1(2) 115.78(16) 122.49(16) 124.7(2)	calc 118.74 118.74 118.76 122.10 117.11 122.21 117.06 116.82 121.72 122.99 116.81 121.72 122.98
$\begin{array}{l} N(1)-C(1)\\ N(1)-C(5)\\ N(2)-C(6)\\ N(2)-C(10)\\ N(3)-C(11)\\ N(3)-C(15)\\ N(4)-C(22)\\ N(4)-C(22)\\ N(4)-C(22)\\ N(4)-C(23)\\ C(1)-C(2)\\ C(1)-C(6)\\ C(2)-C(3)\\ C(3)-C(16)\\ C(3)-C(16)\\ C(3)-C(16)\\ C(3)-C(16)\\ C(3)-C(16)\\ C(4)-C(5)\\ C(5)-C(11)\\ C(5)-C(11)\\ C(6)-C(7)\\ C(7)-C(8)\\ C(8)-C(9)\\ C(9)-C(10)\\ C(11)-C(12)\\ C(12)-C(13)\\ C(13)-C(14)\\ C(14)-C(15)\\ C(16)-C(21)\\ C(16)-C(21)\\ C(16)-C(17)\\ C(17)-C(18)\\ C(18)-C(19)\\ C(19)-C(20)\\ C(20)-C(21)\\ \end{array}$		$\begin{array}{c} 1.3423(17)\\ 1.3427(18)\\ 1.3401(18)\\ 1.3362(19)\\ 1.3328(19)\\ 1.3328(19)\\ 1.333(2)\\ 1.3748(17)\\ 1.4334(19)\\ 1.4358(19)\\ 1.4358(19)\\ 1.3836(18)\\ 1.4876(19)\\ 1.3926(18)\\ 1.3894(18)\\ 1.4876(19)\\ 1.3926(18)\\ 1.3894(18)\\ 1.4772(17)\\ 1.3889(18)\\ 1.4917(18)\\ 1.3795(18)\\ 1.3795(18)\\ 1.3795(18)\\ 1.378(2)\\ 1.361(3)\\ 1.377(19)\\ 1.376(2)\\ 1.359(3)\\ 1.366(3)\\ 1.3897(18)\\ 1.3908(19)\\ 1.3762(19)\\ 1.3763(18)\\ 1.3763(18)\\ 1.3763(18)\\ 1.3763(18)\\ 1.3763(18)\\ 1.3763(18)\\ 1.3763(18)\\ 1.3763(18)\\ 1.3763(18)\\ 1.3763(18)\\ 1.3763(18)\\ 1.3763(18)\\ 1.3763(18)\\ 1.3763(18)\\ 1.3908(19)\\ 1.3763(18)\\ $		$\begin{array}{c} 1.355\\ 1.355\\ 1.359\\ 1.349\\ 1.359\\ 1.349\\ 1.359\\ 1.349\\ 1.383\\ 1.466\\ 1.400\\ 1.486\\ 1.400\\ 1.486\\ 1.409\\ 1.478\\ 1.400\\ 1.486\\ 1.404\\ 1.397\\ 1.400\\ 1.399\\ 1.404\\ 1.399\\ 1.404\\ 1.398\\ 1.400\\ 1.399\\ 1.401\\ 1.391\\ 1.421\\ 1.421\\ 1.391\\ 1.421\\ 1.391\\ 1.421\\ 1.391\\ 1.421\\ 1.391\\ 1.391\\ 1.421\\ 1.391\\ 1.421\\ 1.391\\ 1.$	I-R C(1)-N(1)-C(5) C(10)-N(2)-C(6) C(15)-N(3)-C(11) N(1)-C(1)-C(2) N(1)-C(5)-C(4) N(1)-C(5)-C(11) N(2)-C(6)-C(11) N(2)-C(6)-C(11) N(2)-C(6)-C(11) N(2)-C(10)-C(9) N(3)-C(11)-C(5) N(3)-C(11)-C(12) N(3)-C(15)-C(14)		117.19(11) 117.62(13) 117.32(15) 122.79(12) 117.33(11) 123.02(12) 116.31(11) 116.29(11) 121.82(13) 123.67(16) 116.35(12) 122.01(13) 124.11(18)		118.56 118.75 118.75 122.18 116.85 122.18 116.85 116.99 121.59 123.00 116.99 121.59 123.00
N(1)-C(1)		1.3415(16)		1.353	$\frac{I-\mathbf{K}^8}{C(1)-N(1)-C(5)}$		118.22(17)		118.9
$\begin{array}{c} N(1) - C(1) \# 1 \\ N(2) - C(4) \\ N(2) - C(8) \\ N(3) - C(11) \\ N(3) - C(11) \# 1 \\ C(1) - C(2) \\ C(1) - C(4) \\ C(2) - C(3) \end{array}$		1.3415(16) 1.3415(16) 1.3358(18) 1.3309(18) 1.3309(18) 1.388(2) 1.4875(19) 1.3895(17)		1.353 1.353 1.358 1.347 1.352 1.352 1.402 1.484 1.404	$\begin{array}{c} C(1) - R(1) - C(3) \\ C(4) - R(2) - C(8) \\ C(11) - R(3) - C(11) \\ N(1) - C(1) - C(2) \\ N(1) - C(1) - C(4) \\ N(2) - C(4) - C(1) \\ N(2) - C(4) - C(5) \\ N(2) - C(8) - C(7) \\ N(3) - C(11) - C(10) \end{array}$		$\begin{array}{c} 117.37(14) \\ 115.55(19) \\ 122.49(13) \\ 116.21(13) \\ 116.45(13) \\ 122.19(13) \\ 124.00(16) \\ 124.29(15) \end{array}$		118.8 117.3 122.1 117.2 116.7 121.8 124.7 123.9

Table S1. Experimental and calculated bond lengths [Å] and angles [°] for 2.2':6'.2"-terpyridine derivatives.

C(3)–C(2)#1	1.3895(17)	1.404			
C(3)–C(9)	1.490(3)	1.485			
C(4)–C(5)	1.387(2)	1.404			
C(5)–C(6)	1.378(2)	1.396			
C(6)–C(7)	1.367(2)	1.400			
C(7)–C(8)	1.368(2)	1.399			
C(9)–C(10)#1	1.3843(17)	1.407			
C(9)–C(10)	1.3843(17)	1.407			
C(10)–C(11)	1.371(2)	1.396			
			1-R ¹⁴		
N(1)–C(1)	1.350(3)	1.355	C(1)-N(1)-C(5)	119.2(2)	118.87
N(1)–C(5)	1.351(3)	1.355	C(10)-N(2)-C(6)	116.6(3)	118.72
N(2)–C(6)	1.356(3)	1.359	C(15)-N(3)-C(11)	115.8(3)	118.71
N(2)–C(10)	1.337(4)	1.349	N(1)-C(1)-C(2)	121.3(2)	122.17
N(3)–C(11)	1.333(3)	1.359	N(1)-C(1)-C(6)	116.6(3)	117.01
N(3)–C(15)	1.304(4)	1.349	N(1)-C(5)-C(4)	120.9(2)	122.17
C(1)–C(2)	1.350(4)	1.399	N(1)-C(5)-C(11)	117.4(2)	117.00
C(1)–C(6)	1.481(4)	1.485	N(2)-C(6)-C(1)	116.9(2)	116.85
C(2)–C(3)	1.377(4)	1.407	N(2)-C(6)-C(7)	122.2(2)	121.71
C(3)–C(4)	1.392(4)	1.406	N(2)-C(10)-C(9)	122.8(3)	122.94
C(3)–C(16)	1.449(4)	1.452	N(3)-C(11)-C(5)	117.2(2)	116.87
C(4)–C(5)	1.364(4)	1.400	N(3)-C(11)-C(12)	121.5(3)	121.69
C(5)–C(11)	1.481(4)	1.485	N(3)-C(15)-C(14)	123.8(3)	122.97
C(6)–C(7)	1.372(4)	1.404			
C(7)–C(8)	1.340(4)	1.397			
C(8)–C(9)	1.337(4)	1.400			
C(9)–C(10)	1.357(4)	1.399			
C(11)–C(12)	1.351(4)	1.404			
C(12)–C(13)	1.296(4)	1.397			
C(13)–C(14)	1.290(5)	1.400			
C(14)–C(15)	1.318(5)	1.399			
C(16)–O(1)	1.359(5)	1.405			
C(16)–C(17)	1.321(12)	1.375			
C(17)–C(18)	1.485(19)	1.436			
C(18)–C(19)	1.23(2)	1.366			

D—H•••A	D—H	Н•••А	D•••A	D —Н•••А				
			[Å]	[°]				
		1–R ³						
C(2)–H(2)•••N(2)	0.93	2.47	2.790(2)	100.00				
$C(4)-H(4) \bullet \bullet \bullet N(3)$	0.93	2.47	2.791(3)	100.40				
$C(7)-H(7) \cdot \cdot \cdot N(1)$	0.93	2.50	2.809(3)	99.6				
C(21)–H(21)•••O(1)	0.93	2.42	2.736(3)	100.00				
C(28)–H(28)•••N(5)	0.93	2.48	2.798(3)	99.9				
C(30)–H(30)•••N(6)	0.93	2.47	2.794(2)	100.20				
C(38)–H(38)•••N(4)	0.93	2.51	2.814(2)	99.6				
		1–R ⁷						
C(2)–H(2)•••N(2)	0.93	2.46	2.7829(18)	100.40				
$1-R^{14}$								
C(2)–H(2)•••N(2)	0.93	2.49	2.815(4)	100.70				
$C(4)-H(4)\cdots O(1)$	0.93	2.51	2.827(6)	99.9				
$C(4)-H(4)\cdots N(3)$	0.93	2.50	2.809(4)	99.8				
C(7)–H(7)•••N(1)	0.93	2.48	2.794(4)	99.6				
C(12)–H(12)•••N(1)	0.93	2.50	2.806(4)	99.7				

	a [Å]		a [Å]
1–R ¹	6.14	1–R ⁹	5.24
1–R ²	5.86	$1 - R^{10}$	5.45
1– R ³	5.57	1–R ¹¹	5.24
1–R ⁴	5.65	$1 - R^{12}$	5.83
1–R ⁵	5.51	$1 - R^{13}$	5.72
1–R ⁶	5.50	1–R ¹⁴	5.65
1–R ⁷	5.91	$1 - R^{15}$	5.50
1–R ⁸	5.41	1–R ¹⁶	5.37

 Table S3. Calculated Onsager cavity radius (a).

	Table S4. Electro	ochemical properties	and optical band	gaps of the com	pounds $1-R^{1-16}$
--	-------------------	----------------------	------------------	-----------------	---------------------

Compound	CV b	F - F		0.1.		E _g opt [eV] a
-	E _{red} [V]	E _{ox} [V]	E _{HOMO} [eV]	E _{LUMO} [eV]	Eg [eV]	
1–R ¹	-2.29	0.78	-5.88	-2.81	3.06	2.93
1–R ²	-2.27	1.18	-6.28	-2.83	3.45	3.41
1–R ³	-2.16	0.90	-6.00	-2.94	3.06	3.06
1–R ⁴	-2.28	1.19	-6.29	-2.82	3.48	3.48
1-R ⁵	-2.21 -2.46	1.25	-6.35	-2.89	3.46	3.48
1-R ⁶	-2.11	1.08	-6.18	-2.99	3.18	2.90
1– R ⁷	-2.26	0.36 0.60	-5.46	-2.84	2.61	2.64
1-R ⁸	-2.07 -2.39	1.00	-6.10	-3.03	3.07	3.48
1-R ⁹	-2.20	1.20	-6.30	-2.90	3.40	3.50
1-R ¹⁰	-2.36	0.73	-5.83	-2.74	3.09	2.93
1-R ¹¹	-2.18	1.15	-6.25	-2.92	3.26	3.44
1-R ¹²	-2.16 -2.47	0.76 1.08	-5.86	-2.95	2.91	2.85
1–R ¹³	-2.02 -2.40	1.16	-6.26	-3.08	3.18	3.33
1-R ¹⁴	-2.20	0.94	-6.04	-2.90	3.14	3.46
1-R ¹⁵	-2.14 -2.38	0.81	-5.91	-2.96	2.95	3.09
1-R ¹⁶	-2.21	1.16	-6.26	-2.89	3.37	3.26

a. $E_g^{opt} = 1241/\lambda_{em}$ b. Measured in CH₂Cl₂ solution, GC as working electrode, HOMO= -5.1- E_{ox} ; LUMO= -5.1- E_{red} ; scan rate 100 [mV/s]

		2			Calculated transitions		
		λ _{abs}	λ[nm]	f	The most important orbital excitations	Character	
1_ P ¹	CIS(D)		184 A	$\int 0.0177$	$H \rightarrow I (10\%) H \rightarrow I + 2 (81\%)$		
1-1		385.4	201.7	0.0177	$H \rightarrow L (1970), H \rightarrow L+2 (1970)$	$n_{\rm R} \rightarrow n_{\rm terpy}$	
	TD	205.4	290.2	0.1004	$\Pi \rightarrow L (7070), \Pi \rightarrow L + 2 (1870)$	$\eta_R \rightarrow \eta_R$	
		385.4	389.3	0.1542	$H \rightarrow L (8/\%)$	$\pi_R \rightarrow \pi_R^*$	
1			369.3	0.0300	$H \rightarrow L^{+2} (87\%)$	$\pi_{\rm R} \rightarrow \pi_{\rm terpy}$	
I-R ²	CIS(D)		374.0	0.3403	$H \rightarrow L (88\%)$	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$	
		a 00 1	339.3	0.1276	$H \rightarrow 2 \rightarrow L (/8\%)$	$\pi_{\text{terpy}} \rightarrow \pi_{\text{terpy}}^{*}$	
		288.1	315.9	0.2246	$H \rightarrow L+2 (58\%), H \rightarrow L+3 (33\%)$	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$	
			310.5	0.1494	$H = 0 \rightarrow L + 1 (29\%), H = 2 \rightarrow L + 1 (46\%)$	$\pi_{\text{terpy}} \rightarrow \pi_{\text{terpy}}^*$	
			307.8	0.0557	$H = 0 \rightarrow L + 1 (70\%), H = 2 \rightarrow L + 1 (17\%)$	$\pi_{\text{terpy}} \rightarrow \pi_{\text{terpy}}$	
	TD	• • • • •	311.9	0.8069	$H \rightarrow L (97\%)$	$\pi_R \rightarrow \pi^*_{terpy}$	
		288.1	294.5	0.2528	$H \to L (55\%), H \to L + I (41\%)$	$\pi_{\text{terpy}} \rightarrow \pi_{\text{terpy}}^{*}, \pi_{\text{R}} \rightarrow \pi_{\text{terpy}}^{*}$	
			278.5	0.3465	$ H-1 \rightarrow L+1 (89\%)$	$\pi_{\text{terpy}} \rightarrow \pi_{\text{terpy}}^{*}$	
1–R ³	CIS(D)		438.6	0.1203	$H \to L (63\%), H \to L+1 (27\%)$	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$	
		325.9	333.7	0.1198	$H-2 \rightarrow L (52\%)$	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$	
		525.7	324.0	0.1458	$H \rightarrow L+2 (28\%) H-4 \rightarrow L+1 (25\%), H-4 \rightarrow L (19\%)$	$\pi_{R} \rightarrow \pi^{*}_{R}, \pi_{terpy} \rightarrow \pi^{*}_{terpy}$	
			320.2	0.1512	$H-4 \rightarrow L (29\%), H-4 \rightarrow L+1 (16\%), H \rightarrow L+2 (24\%)$	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy},} \pi_R \rightarrow \pi^*_{R,}$	
	TD	325.9	350.3	0.2308	H→L (90%)	$\pi_R \rightarrow \pi^*_{terpy}$	
		289.0	298.4	0.1038	H−2→L (35%), H−1→L (19%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$	
1–R ⁴	CIS(D)		346.7	0.0544	$H \rightarrow 3 \rightarrow L + 1 (39\%), H \rightarrow L (55\%)$	$\pi_{tarny} \rightarrow \pi^*_{tarny} \pi_{\rm D} \rightarrow \pi^*_{tarny}$	
		329.6	320.0	0.1175	H−3→L+1 (52%), H−1→L (26%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}, \pi_R \rightarrow \pi^*_{\text{terpy}}$	
			319.3	0.2125	H−3→L (73%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$	
	TD	329.6	306.1	0.1778	H→L (83%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$	
			278.4	0.5440	H→L+1 (79%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$	
		289.0	272.8	0.2344	H−1→L (83%)	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$	
			271.4	0.3275	H-1->L+1 (80%)	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$	
1-R ⁵	CIS(D)		327.5	0.2512	H−3→L (80%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$	
		331.8	325.4	0.1241	H–3→L+1 (43%), H–1→L (37%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}, \pi_R \rightarrow \pi^*_{\text{terpy}}$	
			308.9	0.1895	H−1→L+1 (69%)	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$	
	TD	331.8	306.6	0.1699	$H \rightarrow L (81\%)$	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$	
			200 (280.1	0.7924	H−1→L (52%), H→L+1 (40%)	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$
		288.0	274.5	0.2801	H−1→L+1 (80%)	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$	
1-R ⁶	CIS(D)		344.7	0.0738	H–3→L+1 (32%), H–1→L (62%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$	
		343.4	316.3	0.0944	H–3→L+1 (40%), H–3→L (14%), H–1→L (13%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$	
			315.4	0.1250	H–4→L (11%), H–3→L (44%), H–3→L+1 (14%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$	
	TD	343.4	305.9	0.1992	H→L (85%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$	
			277.4	0.2426	$H-3\rightarrow L$ (28%), $H\rightarrow L+1$ (54%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$	
		207 (276.7	0.1376	H–3→L (40%), H→L+1 (39%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$	
		287.0	267.8	0.2686	H−1→L (82%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$	
			266.8	0.3817	H-1->L+1 (76%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$	
1–R ⁷	CIS(D)	422.2	494.7	0.2217	H→L+1 (91%)	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$	
		432.3	418.8	0.0653	H→L+2 (94%)	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$	
		251.0	330.7	0.1204	H−2→L+1 (74%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$	
		551.9	325.9	0.7213	H→L+4 (70%)	$\pi_R \rightarrow \pi^*_{terpy}$	
	TD	432.3	400.7	0.0004	H→L (99%)	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$	
		351.9	385.1	0.4182	H→L+1 (99%)	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$	

Table S5. The energies and characters of the selected calculated transitions assigned to the lowest
experimental absorption bands of the compounds $1-R^{1-16}$ (in acetonitrile)

1–R ⁸	CIS(D)		352.3	0.0972	H−3→L (67%), H−1→L (18%)	$\pi_{terpy} \rightarrow \pi^*_{terpy}, \pi_R \rightarrow \pi^*_{terpy}$
		314.7	311.0	0.0697	H–6→L (16%), H–5→L (29%), H–3→L+1 (31%), H–1→L+1 (14%)	$\pi_{terpy} \rightarrow \pi^*_{terpy}, \pi_R \rightarrow \pi^*_{terpy}$

			298.8	0.0348	H−2→L+2 (52%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$
	TD	314.7	312.4	0.1961	$H \rightarrow L (92\%)$	$\pi_{terpy} \rightarrow \pi^{*}_{terpy}$
1–R ⁹	CIS(D)		358.0	0.0986	H−1→L (65%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$
		227.4	313.3	0.0664	H–6→L (33%), H–1→L+1 (42%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$
		327.4	301.7	0.2189	H–4→L+1 (47%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$
			300.8	0.0863	H–6→L+1 (24%), H–1→L+2 (34%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$
	TD	327.4	317.1	0.1839	H→L (90%)	$\pi_{terpy} \rightarrow \pi^{*}_{terpy}$
1-R ¹⁰	CIS(D)	270 4	401.2	0.1598	H→L+1 (78%)	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpv}$
		3/8.4	354.9	0.0565	H→L+2 (91%)	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$
	TD	270.4	353.2	0.0021	$H \to L (59\%), H \to L+1 (37\%)$	$\pi_{\rm R} \rightarrow \pi^*_{\rm terny}$
		3/8.4	335.28	0.3172	$H \rightarrow L (39\%), H \rightarrow L+1 (60\%)$	$\pi_R \rightarrow \pi^*_{terpy}$
1-R ¹¹	CIS(D)		358.1	0.0310	H−2→L+1 (33%), H−1→L (33%), H−1→L+1 (15%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}, \pi_R \rightarrow \pi^*_{\text{terpy}}$
		343.4	330.6	0.0655	H−1→L (37%), H−2→L (20%), H−5→L (10%)	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}, \pi_{\rm terpy} \rightarrow \pi^*_{\rm terpy}$
			322.8	0.1509	H–2→L+1 (43%), H–2→L (19%), H–1→L (11%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}, \pi_R \rightarrow \pi^*_{\text{terpy}},$
	TD	343.4	314.8	0.1181	H−1→L+1 (21%), H→L (75%)	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}, \pi_{\rm terpy} \rightarrow \pi^*_{\rm terpy}$
1-R ¹²	CIS(D)		427.7	0.6143	H→L (74%)	$\pi_{R} \rightarrow \pi^{*}_{R/terpv}$
		2516	368.4	0.0791	H−2→L (86%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{R/terpy}}$
		354.0	360.5	0.3430	H→L+3 (49%), H→L+2 (39%),	$\pi_R \rightarrow \pi^*_{terpv}$
			337.1	0.5199	$H \rightarrow L+3 (42\%), H \rightarrow L+2 (22\%),$	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$
	TD	2516	378.9	0.9871	H→L (99%)	$\pi_{R} \rightarrow \pi^{*}_{R/terpy}$
		554.0	351.4	0.0017	H→L+1 (87%)	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$
1-R ¹³	CIS(D)		354.7	0.3611	H–2→L (44%), H–4→L (23%), H→L (11%)	$\pi_{\text{R/terpy}} \rightarrow \pi^*_{\text{terpy}},$
						$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$
			341.6	0.1075	H−2→L+1 (30%), H−4→L (29%),	$\pi_{\text{R/terpy}} \rightarrow \pi^*_{\text{terpy}},$
		315.0				$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$
			321.5	0.228	$H \rightarrow L+2 (54\%), H \rightarrow L+3 (30\%)$	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$
			314.4	0.0706	$H = 6 \rightarrow L (50\%), H = 4 \rightarrow L + 1 (18\%), H \rightarrow L + 3 (10\%)$	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}, \pi_{\text{R}} \rightarrow \pi^*_{\text{terpy}}$
			302.0	0.0592	$H-2 \rightarrow L+2 (39\%), H-6 \rightarrow L+1 (23\%)$	$\pi_{R/terpy} \rightarrow \pi^{+}_{terpy}$
	TD		326.9	0.1397	$H \to L (39\%), H \to L + 1 (41\%)$	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}, \pi_{\text{R}} \rightarrow \pi^*_{\text{terpy}}$
		315.0	311.8	0.1416	$H - 3 \rightarrow L (56\%), H - 2 \rightarrow L (27\%)$	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}},$
4. 1014	(TR(D))		0.47.4	0.0045		$\pi_{\rm R/terpy} \rightarrow \pi_{\rm terpy}$
I-R ¹⁴	CIS(D)		347.4	0.2045	$H \rightarrow L (70\%)$	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$
		342.7	331.9	0.1941	$H = 2 \rightarrow L (70\%)$	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$
			312.3	0.0573	$H \rightarrow L + 2 (/1\%)$	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$
			308.1	0.2242	$H-2 \rightarrow L+1 (66\%)$	$\pi_{\text{terpy}} \rightarrow \pi_{\text{terpy}}^*$
	TD	342.7	320.8	0.0366	$H \to L (41\%), H \to L + 1 (57\%)$	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}, \pi_R \rightarrow \pi^*_R$
		000 5	304.2	0.5190	$H \to L(9'/\%)$	$\pi_{R} \rightarrow \pi^{*}_{terpy}$
		292.5	291.9	0.3563	$H \to L (50\%), H \to L+1 (42\%)$	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}, \pi_R \rightarrow \pi^*_R$
			276.5	0.2544	$H^{-1} \rightarrow L^{+1} (93\%)$	$\pi_{\text{terpy}} \rightarrow \pi_R^*$

1-R ¹⁵	CIS(D)	350.5	327.7	0.1113	H−2→L+1 (73%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$
			310.4	0.1664	H−2→L (58%)	$\pi_{terpy} \rightarrow \pi^{*}_{terpy}$
	TD	250.5	337.4	0.0411	H→L (99%)	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$
		550.5	327.9	0.0343	$H \rightarrow L+1 (99\%)$	$\pi_R \rightarrow \pi^*_{terpy}$
1-R ¹⁶	CIS(D)		418.1	0.1915	H→L (68%), H→L+2 (23%)	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$
		212.0	371.0	0.0813	$H \rightarrow L+2 (52\%)$	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$
		515.0	344.5	0.0844	H−2→L (64%), H−4→L+1 (29%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$
			325.1	0.0708	H–4→L (57%), H–4→L+1 (13%)	$\pi_{terpy} \rightarrow \pi^{*}_{terpy}$
	TD	313.0	353.2	0.4717	H→L (96%)	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$
			303.1	0.2749	H−1→L (89%)	$\pi_{\text{terpy}} \rightarrow \pi^*_{\text{terpy}}$
			291.9	0.1808	H→L+2 (94%)	$\pi_{\rm R} \rightarrow \pi^*_{\rm terpy}$
			279.8	0.1788	H−1→L+1 (63%)	$\pi_{terpy} \rightarrow \pi^{*}_{terpy}$

Figure S1: View of the packing of 1–R³, 1–R⁷, 1–R⁸ and 1–R¹⁴ showing short intra– and intermolecular C—H•••O and C—H•••N contacts.

Figure S2. Hirshfeld surfaces, 2D fingerprint plots and percentage contributions to the Hirshfeld surface area for the various close intermolecular contacts for molecules of $1-R^3$, $1-R^7$ and $1-R^{14}$ compounds.

Figure S3. Plot of difference between absorption and fluorescence wavenumber $\Delta \overline{v}_{st}$ vs. solvent polarity parameter Δf for 1–R⁴.

Solvent	Δf
Methanol	0.309
Acetonitryle	0.304
Acetone	0.285
N.N-dimethylformamide	0.275
Dimethyl sulfoxide	0.264
Dichloromethane	0.218
Ethyl acetate	0.201
Diethyl ether	0.160
Dipropyl ether	0.120
Cyclohexane	0.0

Figure S4. Plot of difference between absorption and fluorescence wavenumber $\Delta \overline{v}_{st}$ vs. solvent polarity parameter Δf for 1–R⁷.

Solvent	Δf
Methanol	0.309
Acetonitryle	0.304
Acetone	0.285
N.N-dimethylformamide	0.275
Dimethyl sulfoxide	0.264
Dichloromethane	0.218
Ethyl acetate	0.201
Diethyl ether	0.160
Dipropyl ether	0.120
Cyclohexane	0.0

Figure S5. Plot of difference between absorption and fluorescence wavenumber $\Delta \overline{v}_{st}$ vs. solvent polarity parameter Δf for 1–R⁹.

Solvent	Δf
Methanol	0.309
Acetonitryle	0.304
Acetone	0.285
N.N-dimethylformamide	0.275
Dimethyl sulfoxide	0.264
Dichloromethane	0.218
Ethyl acetate	0.201
Diethyl ether	0.160
Dipropyl ether	0.120
Cyclohexane	0.0

Figure S6. Plot of difference between absorption and fluorescence wavenumber $\Delta \overline{v}_{st}$ vs. solvent polarity parameter Δf for 1–R¹⁰.

Solvent	Δf
Methanol	0.309
Acetonitryle	0.304
Acetone	0.285
N.N-dimethylformamide	0.275
Dimethyl sulfoxide	0.264
Dichloromethane	0.218
Ethyl acetate	0.201
Diethyl ether	0.160
Dipropyl ether	0.120
Cyclohexane	0.0

Figure S7. Plot of difference between absorption and fluorescence wavenumber $\Delta \overline{v}_{st}$ vs. solvent polarity parameter Δf for 1–R¹¹.

Solvent	Δf
Methanol	0.309
Acetonitryle	0.304
Acetone	0.285
N.N-dimethylformamide	0.275
Dimethyl sulfoxide	0.264
Dichloromethane	0.218
Ethyl acetate	0.201
Diethyl ether	0.160
Dipropyl ether	0.120
Cyclohexane	0.0

Figure S8. Plot of difference between absorption and fluorescence wavenumber $\Delta \overline{v}_{st}$ vs. solvent polarity parameter Δf for 1–R¹⁴.

Solvent	Δf
Methanol	0.309
Acetonitryle	0.304
Acetone	0.285
N.N-dimethylformamide	0.275
Dimethyl sulfoxide	0.264
Dichloromethane	0.218
Ethyl acetate	0.201
Diethyl ether	0.160
Dipropyl ether	0.120
Cyclohexane	0.0

Compound 1–R¹ HOMO (energy in eV) LUMO (-5.34 eV) (-1.80 eV) 1–R² (-6.07 eV) (-1.71 eV) 1–R³ (-5.61 eV) (-1.60 eV)

Figure S9. Frontier molecular orbitals of $1-R^{1-16}$ calculated at DFT/B3LYP level using the polarizable continuum model (MeCN).

Figure S10. Partial density of states diagrams for $1-R^{1-16}$

Figure S12. Excitation and emission spectra of compounds $1-R^{1-16}$.

Figure S13. Relative orientation of the experimental (blue) and optimised (red) molecules of 1-R³, 1-R⁷, 1-R⁸ and 1-R¹⁴.

