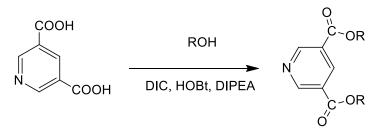
Supporting information to accompany:

Towards quantitative structure-activity correlation in transfection promoted by pyridinium cationic lipids

P. Parvizi-Bahktar, J. Mendez-Campos, L. Raju, N.A. Khalique, E. Jubeli, H. Larsen, D. Nicholson, M.D. Pungente and T.M. Fyles


Contents

General procedures for synthesis	2
Ester coupling:	
Methylation reaction:	6
Alternate Synthesis of (18:1)(brC20:0)	9
Lipid fractionation by ESI-MS	10
Biological Methods	
Gel retardation assays	
DNase I degradation assays	
Transfection and cell viability bar charts	
Table S1: Particle sizing data	
Table S2: SAXD data	35
Table S3: Transfection and cell viability data	
Table S4: calculated molecular parameters	
Table S5: TI _{PVM} for experimental mixtures	
Proton and Carbon NMR spectra	43

General procedures for synthesis

Most chemicals and solvents were used as received from known suppliers, except THF and DMF which were dried and distilled before use. Compounds were purified by column chromatography using silica gel 60.NMR spectra were collected on a Bruker AC300 (300 MHz) or Bruker Avance (500 MHz) instrument. Proton (¹H) chemical shift are reported in part per million (ppm, δ scale), referenced with residual proton shift of CDCl₃ (7.26). The ¹H NMR results are reported as shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiple, br = broad), integration and J value (Hz). ¹³C NMR are reported in part per million and are referenced to carbon resonance of CDCl₃ (77.23). ESI-Mass spectra were recorded on a Waters MicroMass Q-TOF instrument running in positive ion mode. Elemental analysis was done at Canadian Microanalytical Service Ltd. Compounds diC12:0, diC14:0, diC16:0, diC18:0, and diC18:1 and their precursor pyridines are known (Pijper, D.; Bulten, E.; Smisterova, J.; Wagenaar, A.; Hoekstra, D.; Engberts, J.; Hulst, R. Novel biodegradable pyridinium amphiphiles for gene delivery *Eur. J. Org. Chem.* **2003**, *2003*, 4406. doi: 10.1002/ejoc.200300361); spectroscopic characterization data are provided for completeness.

Ester coupling:

To a solution of 1 equivalent of 3,5-pyridinedicarboxylic acid in relation to 2.4 equivalent of the alcohol in THF were added 2.4 equivalents of *N*,*N*-diisopropyl carbodiimide (DIC), hydroxybenzotriazole (HOBt) and *N*,*N*-diisopropylethyl amine (DIPEA). The reaction was sealed under an atmosphere of N₂, and stirred for 24 h at rt. Once complete, the reaction was filtered to remove DIU, and diluted with dichloromethane (DCM). The organic phase was extracted with phosphate buffer (pH = 3) (twice), water (twice) 10% NaCl (twice) and rinsed with sat. NaCl (once), dried with anhydrous sodium sulfate, and concentrated under vacuum. The crude product was purified by column chromatography on silica gel, using a gradient of ether in hexanes as eluent.

Synthesis of diC9:0 pyridine

Ester coupling conditions: 1 equivalent of 3,5-pyridinedicarboxylic acid (0.835 g, 5 mmol), 2.4 equivalents of DIC (1.514 g, 12 mmol), 2.4 equivalents of HOBt (1.620 g, 12 mmol), 2.4 equivalents of 1-nonaol (1.731 g, 12 mmol) and 2.4 equivalents of DIPEA (1.550 g, 12 mmol) were stirred in THF at rt for 24 h. Standard work-up and purification by silica gel chromatography, using 15% ether/hexanes as eluent, yields **2-10** as a white solid, 1.777 g (84%). NMR (CDCl₃) ¹H δ : 9.35 (d, J=3 Hz, 2H), 8.85 (t, J=6 Hz, 1H), 4.38 (t, J=15 Hz, 4H) , 1.82 (m, 4H), 1.25 (m, 28 H), 0.88 (m, 6H). ¹³C δ : 164.4, 154.0, 137.8, 126.2, 65.9, 31.7, 29.5, 28.0, 25.9, 22.5, 14.1. MS (+ve ESI): calc'd for C₂₅H₄₂NO₄⁺ = 420.311 amu, obtained = 420.315 amu.

Synthesis of diC11:0 pyridine

Ester coupling conditions: 1 equivalent of 3,5-pyridinedicarboxylic acid (0.835 g, 5 mmol), 2.4 equivalents of DIC (1.564 g, 12 mmol), 2.4 equivalents of HOBt (1.840 g, 12 mmol), 2.4 equivalents of 1-undecanol (2.068 g, 12 mmol) and 2.4 equivalents of DIPEA (1.854 g, 12 mmol) were stirred in THF at rt for 24 h. Standard work-up and purification by silica gel chromatography, using 15% ether/hexanes as eluent, yields 2-12 as a white solid, 1.235 g (51%). NMR (CDCl₃) ¹H δ : 9.35 (d, J=3 Hz, 2H), 8.85 (t, J=6 Hz, 1H), 4.38 (t, J=15 Hz, 4H), 1.79 (m, 4H), 1.26 (m, 36H), 0.87 (br t, 6H). ¹³C δ : 164.3, 154.50, 138.4, 126.6, 66.1, 31.8, 29.3, 28.5, 25.9, 22.6, 14.0. MS (+ve ESI): calc'd for C₂₉H₅₀NO₄⁺ = 476.373 amu, obtained = 476.377 amu.

Synthesis of diC12:0 pyridine

Ester coupling conditions: 1 equivalent of 3,5-pyridinedicarboxylic acid (0.835 g, 5 mmol), 2.4 equivalents of DIC (1.564 g, 12 mmol), 2.4 equivalents of HOBt (1.840 g, 12 mmol), 2.4 equivalents of 1-dodecanol (2.238 g, 12 mmol) and 2.4 equivalents of DIPEA (1.854 g, 12 mmol) were stirred in THF at rt for 24 h. Standard work-up and purification by silica gel chromatography, using 15% ether/hexanes as eluent, yields **2-14** as a white solid, 1.01 g (40%). NMR (CDCl₃) ¹H δ : 9.36 (d, J=3 Hz, 2H), 8.85 (t, J=6 Hz, 1H), 4.39 (t, J=15 Hz, 4H), 1.80 (m, 4H), 1.27 (m, 36H), 0.88 (br t, 6H). ¹³C δ : 164.5, 154.0, 137.9, 126.5, 65.9, 31.8, 29.3, 28.6, 25.9, 22.6, 14.0. MS (+ve ESI; low res): calc'd for C₃₁H₅₄NO₄⁺ = 504.405 amu, obtained = 504.409 amu.

Synthesis of diC14:0 pyridine

Ester coupling conditions: 1 equivalent of 3,5-pyridinedicarboxylic acid (0.835 g, 5 mmol), 2.4 equivalents of DIC (1.564 g, 12 mmol), 2.4 equivalents of HOBt (1.840 g, 12 mmol), 2.4 equivalents of 1-tetradecanol (2.5750 g, 12 mmol) and 2.4 equivalents of DIPEA (1.854 g, 12 mmol) were stirred in THF at rt for 24 h. Standard work-up and purification by silica gel chromatography, using 15% ether/hexanes as eluent, yields **2-16** as a white solid, 0.732 g (26%). NMR (CDCl₃) ¹H δ : 9.36 (br s, 2H), 8.87 (t, J=3 Hz, 1H) , 4.39 (t, J=15 Hz, 4H) , 1.79 (m, 4H), 1.26 (m, 48H), 0.89 (br t, 6H). ¹³C δ : 164.5, 154.0, 137.9, 126.3, 65.9, 31.8, 29.4, 28.6, 25.9, 22.6, 14.0. MS (+ve ESI; low res): calc'd for C₃₅H₆₂NO₄⁺ = 560.4 amu, obtained = 560.4amu.

Synthesis of diC18:0 pyridine

Ester coupling conditions: 1 equivalent of 3,5-pyridinedicarboxylic acid (0.835 g, 5 mmol), 2.4 equivalents of DIC (1.564 g, 12 mmol), 2.4 equivalents of HOBt (1.840 g, 12 mmol), 2.4 equivalents of 1-octadecanol (3.245 g, 12 mmol) and 2.4 equivalents of DIPEA (1.854 g, 12 mmol) were stirred in THF at rt for 24 h. Standard work-up and purification by silica gel chromatography, using 15% ether/hexanes as eluent, yields **2-18** as a white solid, 1.09 g (32%). NMR (CDCl₃) ¹H δ : 9.34 (br s, 2H), 8.83 (t, J=3 Hz, 1H), 4.36 (t, J=12 Hz, 4H), 1.78 (m, 4H), 1.23 (m, 64H), 0.89(br t, 6H). ¹³C δ : 164.5, 154.0, 137.9, 126.3, 65.9, 31.9, 29.4, 28.6, 25.9, 22.6, 14.0. MS (+ve ESI; low res): calc'd for C₄₃H₇₈NO₄⁺ = 672.5 amu, obtained = 672.4 amu.

Synthesis of diC20:0 pyridine

Ester coupling conditions: 1 equivalent of 3,5-pyridinedicarboxylic acid (0.334 g, 1.2 mmol), 2.4 equivalents of DIC (0.363 g, 2.88 mmol), 2.4 equivalents of HOBt (0.735 g, 2.88 mmol), 2.4 equivalents of 1-eicosanol (0.373 g, 2.88 mmol) and 2.4 equivalents of DIPEA (1.854 g, 2.88 mmol) were stirred in THF at rt for 24 h. Standard work-up and purification by silica gel chromatography, using 15% ether/hexanes as eluent, yields **2-20** as a white solid, 0.308 g (35%). NMR (CDCl₃) ¹H δ : 9.36 (d, J=3 Hz, 2H), 8.85 (t, J=6 Hz, 1H), 4.38 (t, J=12 Hz, 4H), 1.80 (m, 4H), 1.26 (m, 72 H), 0.88 (br t, 6H). ¹³C δ : 164.5, 154.0, 137.9, 126.3, 65.9, 31.9, 29.4, 28.6, 25.9, 22.6, 14.0. MS (+ve ESI): calc'd for C₄₇H₈₆NO₄⁺ = 728.655 amu, obtained = 728.359 amu.

Synthesis of diisoC9:0 pyridine

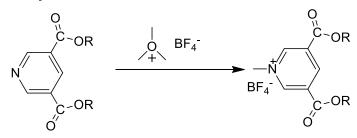
Ester coupling conditions: 1 equivalent of 3,5-pyridinedicarboxylic acid (0.835 g, 5 mmol), 2.4 equivalents of DIC (1.564 g, 12 mmol), 2.4 equivalents of HOBt (1.840 g, 12 mmol), 2.4 equivalents of 3,5,5-trimethylhexan-1-ol (1.731 g, 12 mmol) and 2.4 equivalents of DIPEA (1.854 g, 12 mmol) were stirred in THF at rt for 24 h. Standard work-up and purification by silica gel chromatography, using 15% ether/hexanes as eluent, yields **2-22** as a colorless oil, 1.233 g (58%). NMR (CDCl₃) ¹H δ : 9.34 (d, J=3 Hz, 2H), 8.83 (t, J=3 Hz, 1H), 4.41 (t, J=15 Hz, 4H), 1.83 (m, 6H), 0.90-1.63 (m, 30H). ¹³C δ : 164.4, 154.0, 137.8, 126.2, 64.3, 50.9, 37.7, 31.0, 29.3, 27.2, 26.2, 22.5. MS (+ve ESI): calc'd for C₂₅H₄₂NO₄⁺ = 420.311 amu, obtained = 420.286 amu.

Synthesis of dibrC20:0 pyridine

Ester coupling conditions: 1 equivalent of 3,5-pyridinedicarboxylic acid (0.835 g, 5 mmol), 2.4 equivalents of DIC (1.564 g, 12 mmol), 2.4 equivalents of HOBt (1.840 g, 12 mmol), 2.4 equivalents of nonadecan-9-ol (3.583 g, 12 mmol) and 2.4 equivalents of DIPEA (1.854 g, 12 mmol) were stirred in THF at rt for 24 h. Standard work-up and purification by silica gel chromatography, using 15% ether/hexanes as eluent, yields **2-24** as a colorless oil, 2.144 (67%). NMR (CDCl₃) ¹H δ : 9.35 (d, J=3 Hz, 2H), 8.84 (t, J=3 Hz, 1H), 4.28 (d, J=6 Hz, 4H), 1.80 (m, 2H), 1.27 (m, 64H), 0.87 (br t, 12H). ¹³C δ : 164.5, 154.0, 137.8, 126.3, 68.5, 37.4, 31.8, 31.3, 29.5, 26.7, 22.6, 14.0. MS (+ve ESI): calc'd for C₄₇H₈₆NO₄⁺ = 728.655 amu, obtained = 728.660 amu.

Synthesis of diC18:1 pyridine

Ester coupling conditions: 1 equivalent of 3,5-pyridinedicarboxylic acid (0.835 g, 5 mmol), 2.4 equivalents of DIC (1.564 g, 12 mmol), 2.4 equivalents of HOBt (1.840g, 12 mmol), 2.4 equivalents of oleyl alcohol (3.220 g, 12 mmol) and 2.4 equivalents of DIPEA (1.854 g, 12 mmol) were stirred in THF at rt for 24 h. Standard work-up and purification by silica gel chromatography, using 15% ether/hexanes as eluent, yields **2-26** as a colorless oil, 0.537g (16%). NMR (CDCl₃) ¹H δ : 9.35 (d, J=3 Hz, 2H), 8.85 (t, J=6 Hz, 1H, 6), 5.36 (m, 4H), 4.38 (t, J=12 Hz, 4H), 2.00 (m, 8H), 1.79 (m, 4H), 1.27 (m, 48H), 0.90 (br t, 6H). ¹³C δ : 164.5, 154.0, 137.9, 129.9, 129.7, 126.3, 65.9, 32.5, 31.8, 29.3, 28.6, 27.1, 25.9, 22.6, 14.0. MS (+ve ESI; low res): calc'd for C₄₇H₇₄NO₄⁺ = 668.5 amu, obtained = 668.4 amu.


Synthesis of diC11:1 pyridine

Ester coupling conditions: 1 equivalent of 3,5-pyridinedicarboxylic acid (0.835 g, 5 mmol), 2.4 equivalents of DIC (1.564 g, 12 mmol), 2.4 equivalents of HOBt (1.840 g, 12 mmol), 2.4 equivalents of 10-undecen-1-ol (2.043 g, 12 mmol) and 2.4 equivalents of DIPEA (1.854 g, 12 mmol) were stirred in THF at rt for 24 h. Standard work-up and purification by silica gel chromatography, using 15% ether/hexanes as eluent, yields **2-28** as a colorless oil, 1.069 g (45%). NMR (CDCl₃) ¹H δ : 9.36 (d, J=3 Hz, 2H), 8.85 (t, J=6 Hz, 1H), 5.76 (m, 2H), 4.97 (m, 4H), 4.38 (t, J=15 Hz, 4H), 2.03 (m, 4H), 1.82 (m, 4H), 1.31 (m, 28 H). ¹³C δ : 164.5, 154.0, 139.1, 137.9, 128.3, 114.1, 65.9, 33.7, 29.4, 29.3, 29.2, 29.0, 28.8, 28.5, 25.9. MS (+ve ESI): calc'd for C₂₉H₄₆NO₄⁺ = 472.342 amu, obtained = 472.346 amu.

Synthesis of (C16:0)(C11:1) pyridine

Ester coupling conditions: 1 equivalent of 3,5-pyridinedicarboxylic acid (0.835 g, 5 mmol), 2.4 equivalents of DIC (1.564 g, 12 mmol), 2.4 equivalents of HOBt (1.840 g, 12 mmol), undecen-1-ol (1.022 g, 6 mmol), 1.2 equivalents of 1-hexadecanol (1.4593 g, 6 mmol) and 2.4 equivalents of DIPEA (1.854 g, 12 mmol) were stirred in THF at rt for 24 h. Standard work-up and purification by silica gel chromatography, using 15% ether/hexanes as eluent, yields 1.0395 g of white solid which was later determined via ESI mass spectroscopy of methylated analogues to contain 22% of *2-4*, 28% of *2-28* and 50% of *4-1*. NMR (CDCl₃) ¹H δ : 9.35 (d, J=3 Hz, 2H), 8.84 (t, J=6 Hz, 1H), 5.79 (m, 1H), 4.95 (m, 2H), 4.37 (t, J=15 Hz, 4H), 2.00 (m, 2H), 1.79 (m, 4H), 1.27 (m, 38H), 0.87 (br t, 3H). ¹³C δ : 164.5, 149.2, 154.0, 139.1, 137.9, 126.3, 114.1, 65.9, 33.7, 31.8, 29.3, 28.8, 25.9, 22.9, 14.0. MS (+ve ESI; low res): calc'd for (2-4) C₃₉H₇₀NO₄⁺ = 616.5 amu, obtained = 616.7 amu. calc'd for (2.28) C₂₉H₄₆NO₄⁺ = 472.3 amu, obtained = 472.5 amu, calc'd for (4-1) C₃₄H₅₈NO₄⁺ = 544.8 amu, obtained = 544.8 amu.

Methylation reaction:

To a solution of 1 equivalent of pyridine in DCM, 1 equivalent of trimethyloxoniumtetrafluoroborate was added and stirred at room temperature overnight. Then it was concentrated in vacuum to give the tetrafluoroborate salt of compound in quantative yield.

Synthesis of diC9:0

Methylation conditions: To a solution of *diC9:0 pyridine* (100 mg, 0.238 mmol) in DCM, trimethyloxoniumtetrafluoroborate (0.0352 g, 0.238 mmol) was added and the mixture was stirred at room temperature overnight. Concentration in vacuum gave white solid in quantitative yield. NMR (CDCl₃) ¹H δ : 9.37 (m, 3H), 4.62 (s, J=15 Hz, 3H), 4.43 (t, 4H) 1.80 (m, 4H), 1.27 (br s, 28H), 0.87 (br t, 6H). ¹³C δ : 160.5, 149.3, 144.3, 131.1, 67.4, 49.9, 33.8, 29.4, 28.4, 25.7, 22.6, 14.0. MS (+ve ESI): calc'd for C₂₆H₄₄NO₄⁺ = 434.326 amu, obtained = 434.330 amu.

Synthesis of diC11:0

Methylation conditions: To a solution of *diC11:0 pyridine* (100 mg, 0.210 mmol) in DCM, trimethyloxoniumtetrafluoroborate (0.0311 g, 0.210 mmol) was added and the mixture was stirred at room temperature overnight. Concentration in vacuum gave white solid in quantitative yield. NMR (CDCl₃) ¹H δ : 9.37 (m, 3H), 4.68 (s, 3H), 4.51 (t, J=15 Hz, 4H) 1.80 (m, 4H), 1.27 (br s, 36H), 0.87(br t, 6H). ¹³C δ : 160.8, 149.5, 147.7, 144.6, 131.3, 67.7, 50.2, 29.5, 28.5, 25.9, 22.6, 14.0. MS (+ve ESI): calc'd for C₃₀H₅₂NO₄⁺ = 490.389 amu, obtained = 490.393 amu.

Synthesis of diC12:0

Methylation conditions: To a solution of *diC12:0 pyridine* (200 mg, 0.398 mmol) in DCM, trimethyloxoniumtetrafluoroborate (0.0587 g, 0.398 mmol) was added and the mixture was stirred at room temperature overnight. Concentration in vacuum gave white solid of in quantitative yield. NMR (CDCl₃) ¹H δ : 9.29 (m, 3H), 4.64 (s, 3H), 4.43 (t, J=12 Hz, 4H), 1.81 (m, 4H), 1.26 (br s, 36H), 0.88 (br t, 6H). ¹³C δ : 160.3, 149.2, 144.7, 131.4, 67.9, 50.1, 31.8, 29.6, 28.3, 25.7, 22.6, 14.0. MS (+ve ESI; low res): calc'd for C₃₂H₅₆NO₄⁺ = 518.4 amu, obtained = 518.6 amu.

Synthesis of diC14:0

Methylation conditions: To a solution of *diC14:0 pyridine* (200 mg, 0.358 mmol) in DCM, trimethyloxoniumtetrafluoroborate (0.0529 g, 0.358 mmol) was added and the mixture was stirred at room temperature overnight. Concentration in vacuum gave white solid in quantitative yield. NMR (CDCl₃) ¹H δ : 9.34 (m, 3H), 4.87 (s, 3H), 4.45 (t, J=15 Hz, 4H), 1.83 (m, 4H), 1.27 (br s, 48H), 0.89 (br t, 6H). ¹³C δ : 160.4, 149.2, 144.6, 131.3, 67.8, 50.0, 31.9, 29.6, 28.3, 25.7, 22.6, 14.0. MS (+ve ESI; low res): calc'd for C₃₆H₆₄NO₄⁺ = 574.4 amu, obtained = 574.4 amu.

Synthesis of diC18:0

Methylation conditions: To a solution of *diC18:0 pyridine* (100 mg, 0.149 mmol) in DCM, trimethyloxoniumtetrafluoroborate (0.0220 g, 0.149 mmol) was added and the mixture was stirred at room temperature overnight. Concentration in vacuum gave white solid in quantitative yield. NMR (CDCl₃) ¹H δ : 9.38 (m, 3H), 4.63 (s, 3H), 4.42 (t, 4H), 1.80 (m, 4H), 1.27 (br s, 64H), 0.88 (br t, 6H). ¹³C δ : 160.5, 149.3, 144.4, 131.2, 67.7, 49.9, 31.9, 29.3, 28.4, 25.7, 22.6, 14.0. MS (+ve ESI; low res): calc'd for C₄₄H₈₀NO₄⁺ = 686.6 amu, obtained = 686.5 amu.

Synthesis of diC20:0

Methylation conditions: To a solution of *diC20:0 pyridine* (100 mg, 0.134 mmol) in DCM, trimethyloxoniumtetrafluoroborate (0.0199 g, 0.134 mmol) was added and the mixture was stirred at room temperature overnight. Concentration in vacuum gave white solid in quantitative yield. NMR (CDCl₃) ¹H δ : 9.39 (m, 3H), 4.64 (s, 3H), 4.43 (t, J=15 Hz, 4H), 1.82 (m, 4H), 1.26 (br s, 72H), 0.88 (br t, 6H). ¹³C δ : 160.4, 149.2, 144.4, 131.3, 67.8, 49.8, 31.9, 29.3, 28.3, 25.7, 22.6, 14.0. MS (+ve ESI): calc'd for C₄₈H₈₈NO₄⁺ = 742.671 amu, obtained = 742.675amu.

Synthesis of diisoC9:0

Methylation conditions: To a solution of *diisoC9:0 pyridine* (100 mg, 0.238 mmol) in DCM, trimethyloxoniumtetrafluoroborate (0.0353 g, 0.238 mmol) was added and the mixture was stirred at room temperature overnight. Concentration in vacuum gave colorless oil in quantitative yield. NMR (CDCl₃) ¹H δ : 9.37 (m, 3H), 4.61 (s, 3H), 4.44 (t, J=12 Hz, 4H), 1.83 (m, 6H), 1.0-1.30 (m, 30H). ¹³C δ : 160.6, 149.3, 144.1, 131.1, 66.3, 50.9, 49.9, 37.3, 31.0, 29.3, 26.3, 22.4. M S (+ve ESI): calc'd for C₂₆H₄₄NO₄⁺ = 434.326 amu, obtained = 434.329 amu.

Synthesis of dibrC20:0

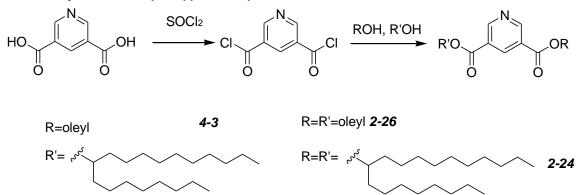
Methylation conditions: To a solution of *dibrC20:0 pyridine* (200 mg, 0.247 mmol) in DCM, trimethyloxoniumtetrafluoroborate (0.0406 g, 0.247 mmol) was added and the mixture was stirred at room temperature overnight. Concentration in vacuum gave colorless oil in quantitative yield. NMR (CDCl₃) ¹H δ : 9.37 (m, 3H), 4.68 (s, 3H), 4.36 (d, J=6 Hz, 4H), 1.84 (m, 2H), 1.26 (br s, 64H), 0.87 (br t, 12H). ¹³C δ : 160.5, 149.3, 144.2, 147.4, 131.2, 129.9, 70.0, 50.3, 37.3, 31.8, 31.2, 29.5, 26.6, 22.4, 14.0. MS (+ve ESI): calc'd for C₄₈H₈₈NO₄⁺ = 742.671 amu, obtained = 742.675 amu.

Synthesis of diC18:1

Methylation conditions: To a solution of *diC18:1 pyridine* (124 mg, 0.185 mmol) in DCM, trimethyloxoniumtetrafluoroborate (0.0274 g, 0.185 mmol) was added and the mixture was stirred at room temperature overnight. Concentration in vacuum gave colorless oil in quantitative yield. NMR (CDCl₃) ¹H δ : 9.42 (m, 3H), 5.34 (m, 4H), 4.62 (s, 3H), 4.42 (t, J=12 Hz, 4H), 2.00 (m, 8H), 1.80 (m, 4H), 1.30 (br s, 48H), 0.87 (br t, 6H). ¹³C δ : 160.5, 149.3, 144.4, 131.2, 129.9, 129.7, 126.3, 67.4, 49.9, 32.5, 31.8, 29.2, 28.4, 27.2, 26.7, 25.7, 22.6, 14.0. MS (+ve ESI; low res): calc'd for C₄₄H₇₆NO₄⁺ = 682.5 amu, obtained = 682.4 amu.

Synthesis of diC11:1

Methylation conditions: To a solution of *diC11:1 pyridine* (217 mg, 0.460 mmol) in DCM, trimethyloxoniumtetrafluoroborate (0.0680 g, 0.460 mmol) was added and the mixture was stirred at room temperature overnight. Concentration in vacuum gave colorless oil in quantitative yield. NMR (CDCl₃) ¹H δ : 9.39 (m, 3H), 5.80 (m, 2H), 4.94 (m, 4H), 4.65 (s, 3H), 4.41 (t, J=12 Hz, 4H) , 2.03 (m, 4H), 1.81 (m, 4H), 1.30 (m, 28H). ¹³C δ : 160.7, 149.5, 144.7, 139.4, 131.5, 114.3, 67.6, 50.2, 34.0, 29.3, 28.5, 28.5, 25.9. MS (+ve ESI): calc'd for C₃₀H₄₈NO₄⁺ = 486.358 amu, obtained = 486.362amu.


Synthesis of (C16:0)(C11:1)

Methylation conditions: To a solution of (*C16:0*)(*C11:1*) *pyridine* (200 mg, 0.367 mmol) in DCM, trimethyloxoniumtetrafluoroborate (0.0543 g, 0.367 mmol) was added and the mixture was stirred at room temperature overnight. Concentration in vacuum gave colorless oil in quantitative yield which was later determined via ESI mass spectroscopy method of methylated analogues to contain 22% of *2-5*, 28% of *2-29* and 50% of *4-2*. NMR (CDCl₃) ¹H δ : 9.39 (m, 3H), 5.80 (m, 2H), 4.94 (m, 4H), 4.66 (s, 3H), 4.42 (t, J=15 Hz, 4H), 2.00 (m, 4H), 1.79 (m, 4H), 1.27 (m, 38H), 0.88 (br t, 1.5H). ¹³C δ : 164.4, 149.2, 139.1, 131.4, 114.1, 67.8, 50.0, 33.7, 31.9, 29.3, 28.8, 25.7, 22.6, 14.0. MS (+ve ESI; low res): calc'd for (*2-5*) C₄₀H₇₂NO₄⁺ = 630.55 amu, obtained = 630.47 amu. calc'd for (*2.29*) C₃₀H₄₈NO₄⁺ = 486.3 amu, obtained = 486.3 amu, calc'd for (*4-2*) C₃₅H₆₀NO₄⁺ = 558.4 amu, obtained = 558.4 amu.

Synthesis of (C18:1)(brC20:0)

Methylation conditions: To a solution of (*C18:1*)(*brC20:0*) *pyridine* (200 mg, 0.286 mmol) in DCM, trimethyloxoniumtetrafluoroborate (0.0424 g, 0.286 mmol) was added and the mixture was stirred at room temperature overnight. Concentration in vacuum gave colorless oil in quantitative yield which was determined via ESI mass spectroscopy method to contain 28% of *2-25*, 16% of *2-27* and 56% of *4-4*. NMR (CDCl₃) ¹H δ : 9.35 (m, 3H), 5.35 (m, 2H), 4.68 (s, 3H), 4.42 (m, 4H), 3.49 (m, 0H, exp. 2H), 2.00 (m, 8H), 1.27 (m, 67H), 0.88 (br t, 10 H). ¹³C δ : 160.5, 149.2, 144.1, 131.2, 129.9, 129.7, 126.3, 70.4, 58.5, 50.1, 37.2, 31.0, 29.3, 27.2, 26.7, 22.6, 14.0. MS (+ve ESI; low res): calc'd for (*2-25*) C₄₈H₈₈NO₄⁺ = 742.6 amu, obtained = 742.6 amu, calc'd for (*2.27*) C₄₄H₇₆NO₄⁺ = 682.5 amu, obtained = 682.4 amu, calc'd for (*4-4*) C₄₆H₈₂NO₄⁺ = 712.6 amu, obtained = 712.3 amu.

Alternate Synthesis of (18:1)(brC20:0)

To 1 equivalent of 3,5-pyridinedicarboxylic acid (0.835 g, 5 mmol) (Scheme above), thionyl chloride (8.4 g, 70 mmol) was added. The solution was reflux for 24 h under N₂ to yield pyridine-3,5-dicarboyl dichloride. The residual thionyl chloride was removed under reduced pressure and then the remaining product was dissolved in DCM (20 mL). 1.2 equivalent of nonadecan-9-ol (1.791 g, 6 mmol) and 1.2 equivalents of oleyl alcohol (1.610 g, 6 mmol) were added and the reaction solution was refluxed for 3 h. The solvent was removed under reduced pressure and then the residue was dissolved in ether (50 mL) and washed with 4M NaOH, dried over sodium sulphate and the crude product was purified by silica gel chromatography, using 15% ether/hexanes as eluent, yields 3.099 g of colorless oil which was determined via ESI mass spectroscopy method of the methylated product to contain 28% of *2-24*, 16% of *2-26* and 56% of *4-3*. NMR (CDCl₃) ¹H δ : 9.34 (d, 2H, 3), 8.83 (t, J=3 Hz, 1H), 5.34 (m, 4H), 4.36 (t, J=18 Hz, 4H), 2.00 (m, 8H), 1.82 (m, 4H), 1.25 (m, 52H), 0.86 (br t, 9H). ¹³C: δ 164.5, 154.0, 139.3, 137.9, 126.3, 114.1, 65.9, 33.7, 31.8, 29.6, 28.8, 28.6, 25.9, 22.6, 14.0. MS (+ve ESI): calc'd for (*2-24*) C₄₇H₈₆NO₄⁺ = 728.65 amu, obtained = 728.53 amu, calc'd for (*2.26*) C₄₇H₇₄NO₄⁺ = 668.55 amu, obtained = 668.42 amu, calc'd for (*4-3*) C₄₅H₈₀NO₄⁺ = 698.6 amu, obtained = 698.7 amu.

Lipid fractionation by ESI-MS

This experiment investigates the potential fractionation of EPC/dibrC20:0 binary mixtures during lipid hydration relative to EPC/diC16:0 binary mixtures. A solution of DOPE/EPC/pyridinum lipid in a 2/1.5/1.5 mole ratio and total lipid concentration of 2mM in CHCl₃ was prepared as well as a reference solution of tetrabutyl ammonium tribromide (CHCl₃ 2mM). An aliquot of the lipid mixture and the reference (10 µL each) was diluted to 1 mL in MeOH. ESI-MS (ESI+) gave spectra that showed strong ions for the parent cationic lipids (EPC, m/z 706.5; diC16:0, m/z 630.5; dibrC20:0, m/z 742.5) and the standard (m/z 242.1). The ion intensity of each peak in the mixture was measured relative to the ion intensity of the tetrabutylammonium reference to give a relative response factor for each species. The stock solution was evaporated to form a thin layer of lipids and the layer was hydrated to a final concentration of 2 mM in lipid using water as occurs in the first stage of liposome formation. After sonication of this solution, a 10µL aliquot plus a known amount of reference was analysed as previously. Fractionation was observed as a change in the apparent response factor of the different species. The data is tabulated below using the convention that the amount of pyridinium lipid detected in the chloroform stock solution = 100.

Compound	%EPC	%diC16:0
diC16:0 stock CHCl3	64	100
diC16:0 water dispersion	49	14
	%EPC	%dibrC20:0
dibrC20:0 stock CHCl3	%EPC 67	%dibrC20:0 100

Biological Methods

Cationic lipids included the synthetic pyridinum lipids and commercial lipid 1,2-dimyristoyl-sn-glycero-3-ethylphophocholine (EPC). The co-lipids used for the formulation of liposomes and lipoplexes were 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and cholesterol. As neutral lipids, the concentrations of DOPE and cholesterol were not included in the final calculation of charge ratios when forming lipoplexes between cationic lipids and DNA.

Preparation of lipid ethanolic stock solutions

Stock solutions of pyridinium lipids, commercial cationic lipid EPC and co-lipids DOPE and cholesterol were made by dissolving a known amount of each lipid in dichloromethane in a round-bottom flask. The solutions were placed on a rotary evaporator for 1 h to obtain a film. The film was dissolved in a known amount of anhydrous EtOH in order to achieve a 1 mM stock, and subsequently stored at -80 °C.

Liposome formulations

An overall 3:2 molar ratio of total cationic lipid (synthetic lipid combined 1:1 with EPC, or control lipid EPC alone) to co-lipid, DOPE or cholesterol, in ethanolic solutions were prepared separately and evaporated under reduced pressure to generate thin films. The lipid films were hydrated with a known amount of sterile water to give 2 mM final hydrated stock solutions, which were stored overnight at 4 °C. Before use, the hydrated stocks were warmed to 37 °C and sonicated for 30 min.

Preparation of Lipoplexes (lipid/pDNA complexes)

Lipoplexes of concentrations 0.081 mM, 0.243 mM, 0.486 mM, 0.81 mM and 1.62 mM, corresponding to the N/P (+/-) molar charge ratios of 0.5:1, 1.5:1, 3:1, 5.0:1 and 10.0:1, respectively, were prepared from the 2 mM liposome stocks. OPTI-MEM buffer (57.6 μ L) and *p*DNA (14.4 μ L; 250 ng/ μ L) in Elution solution, were first combined, followed by the addition of an equal volume of corresponding liposome (72 μ L) to this and mixed. These lipoplex formulations were incubated at rt for 30 min. 48 μ L of lipoplex formulation was used for the gel assays and to each of the remaining lipoplex formulations, 204 μ L of OPTI-MEM was added prior to use for transfection experiments. The Lipofectamine 2000/DNA control was prepared as per manufacturer's protocol.

Liposome and lipoplex sizing

The hydrodynamic diameter, $d_{\rm H}$, of liposomes and lipoplexes was measured by dynamic light scattering (DLS) at 25 °C with a detection angle of 90°. All data are the mean ± standard deviation (SD) of three measurements.

Gel retardation assays of lipoplexes

To 20 μ L of the lipoplexes, 2 μ L of the gel loading dye (6X) was added and mixed by pipetting. Eighteen microliters of each sample was then loaded onto a 1% agarose gel impregnated with ethidium bromide and run at 105 V for 1 h in 1x TBE buffer. The migration of *p*DNA complexed with the cationic lipids was impeded in the electric field. The *p*DNA bands were observed using a Geliance transilluminator.

DNase I degradation assays of lipoplexes

Twenty microliters of the lipoplexes was incubated with DNase I (1 μ L) at 37 °C for 1 h. After incubation, 5% SDS (4 μ L) was added and incubated for a further 30 min, followed by 2 μ L of gel loading dye (6x). Eighteen microliters of each sample was then loaded onto a 1% agarose gel impregnated with ethidium bromide and run at 105 V for 1 h in 1x TBE buffer. The *p*DNA bands were observed using a Geliance transilluminator.

Cell culture

CHO-K1 cells were grown in RPMI media supplemented with 10% fetal calf serum and 100 U/mL of penicillin/streptomycin and 0.25 µg/mL amphotericin B. Cells were seeded 48 h before transfection onto opaque and transparent 96-well plate at a density of 10^4 cells per well and incubated at 37 °C in presence of 5% CO₂ atmosphere. Cells were grown to 80% confluence before being washed with 1x PBS and incubated with 45 µL of each lipid-*p*DNA complex in triplicate for 4 h at 37 °C in the presence of 5% CO₂ atmosphere. Complexes were then removed and the cells washed with 1x PBS before adding 100 µL of complete RPMI media. Cells were left to incubate for an additional 44 h. Following the incubation, transfection and cytotoxicity assays were performed according to the below mentioned protocols.

β -galactosidase assay

Forty-eight hours after the application of lipoplexes, β -galactosidase activity was determined using a Beta-Glo[®] Assay System (Promega). Treated cells in the opaque 96-well plate were washed with 1x PBS, then 50 µL of DMEM (phenol red-free media) was added to each well. This was followed by the addition of 50 µL of Beta- GloTM working solution, prepared according to the manufacturer's directions (Promega), to each well and thorough mixing by pipetting. After 1 h incubation at rt, luminescence was then read on a Victor Envision high throughput plate reader. β -Galactosidase activity was expressed as relative light units produced by the luminescence of luciferin, which was normalized for protein content.

Total protein (BCA) assay

Total protein content was measured using Pierce[®] BCA Protein Assay (Pierce Biotechnology, Rockford, IL). Forty-eight hours after the application of lipoplexes, treated cells in the transparent 96-well plate were washed with 1x PBS, and 10 μ L of passive lysis buffer (Promega) was added to each well. Plates were incubated at rt for 30 min. BCA working reagent (200 μ L), prepared according to the manufacturer's directions, was then added to each well, gently mixed by pipetting, and incubated at rt for 1 h prior to reading at 562 nm on a Victor Envision plate reader. A calibration curve obtained from a bovine serum albumin standard solution was used to determine cellular protein content per well.

Cytotoxicity assay

The cytotoxicity associated with the lipoplex formulations at N:P (+/-) molar charge ratios ranging from 0.5:1 to 10:1 was evaluated using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. Forty-eight hours after the application of lipoplexes, CHO-K1 cells in the transparent 96-well plates were washed with 1x PBS, 50 μ L of DMEM (phenol red-free media) followed by 10 μ L of CellTiter96[®] Aqueous One Solution Cell Proliferation Assay (Promega) was added to each well and mixed by gentle rocking. The plates were incubated further for 1 h at 37 °C. The absorbance of converted dye, which correlates with the number of viable cells, was measured at 492 nm using a Victor Envision high throughput plate reader. The percentage of viable cells was calculated as the absorbance ratio of treated to untreated cells.

Gel retardation assays

Assays related to experiments labelled Exp1 and Exp4 in Tables S1-S5 were previously reported: Parvizi, P.; Jubeli, E.; Raju, L.; Khalique, N. A.; Almeer, A.; Allam, H.; Manaa, M. A.; Larsen, H.; Nicholson, D.; Pungente, M. D.; Fyles, T. M. Aspects of nonviral gene therapy: Correlation of molecular parameters with lipoplex structure and transfection efficacy in pyridinium-based cationic lipids *Int. J. Pharm.* **2014**, *461*, 145. doi: http://dx.doi.org/10.1016/j.ijpharm.2013.11.045

						. [.		116					
	D	EPC/D	12:0/E/D	14:0/E/D	16:0/E/D	18:0/E/D	18:1/E/D	20:0/E/D	Br20:0/E/D	Blend50/E/D	Blend66/E/D	Blend85/E/D	
		1 1.					. 0.						
T	D	EPC/C	12:0/E/C	14:0/E/C	16:0/E/C	18:0/E/C	18:1/E/C	20:0/E/C	Br20:0/E/C	Blend50/E/C	Blend66/E/C	Blend85/E/C	

Figure S1 -Gel retardation assay of lipids diC12:0 to diC20:0 co-formulated with commercial lipid EPC (E) and neutral co-lipid DOPE (D) or cholesterol (C) at molar charge ratios 3, and run through a 1% agarose gel impregnated with the pDNA gel stain, ethidium bromide. Lanes λ and DNA denote the 1 kb DNA ladder and pDNA, respectively. Data from the experiment labelled Exp7 in Tables S1-S5.

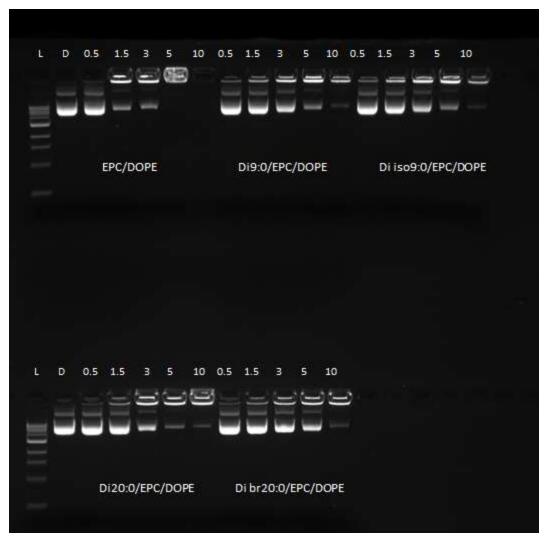


Figure S2 - Gel retardation assay of lipids diC9:0, diCisoC9:0, diC20:0 or dibrC20:0 co-formulated with commercial lipid EPC and neutral co-lipid DOPE at charge ratios 0.5, 1.5, 3, 5 and 10 and run through a 1% agarose gel impregnated with the pDNA gel stain, ethidium bromide. Lanes λ and DNA denote the 1 kb DNA ladder and pDNA, respectively. Data from the experiment labelled Exp8 in Tables S1-S5.

Figure S3 - Gel retardation assay of lipids diC9:0, diCisoC9:0, diC20:0 or dibrC20:0 co-formulated with commercial lipid EPC and neutral co-lipid cholesterol at charge ratios 0.5, 1.5, 3, 5 and 10 and run through a 1% agarose gel impregnated with the pDNA gel stain, ethidium bromide. Lanes λ and DNA denote the 1 kb DNA ladder and pDNA, respectively. Data from the experiment labelled Exp8a in Tables S1-S5.

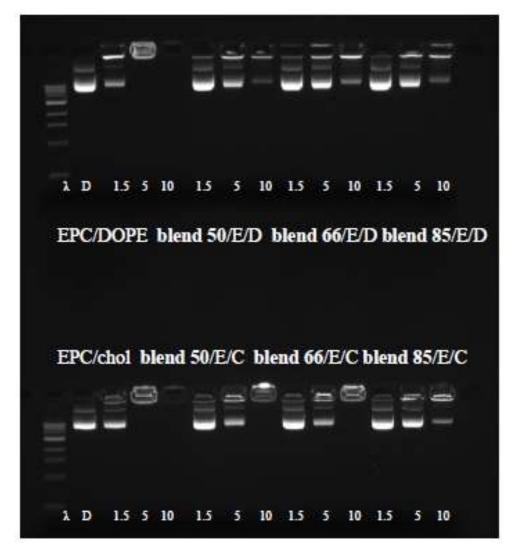


Figure S4 - Gel retardation assay of lipids for blend 50, blend 66 and blend 85 co-formulated with commercial lipid EPC (E) and neutral co-lipid DOPE (D) or cholesterol (C) at charge ratios 1.5, ,5 and 10 and run through a 1% agarose gel impregnated with the pDNA gel stain, ethidium bromide. Lanes λ and DNA denote the 1 kb DNA ladder and pDNA, respectively. Data from the experiment labelled Exp9 in Tables S1-S5.

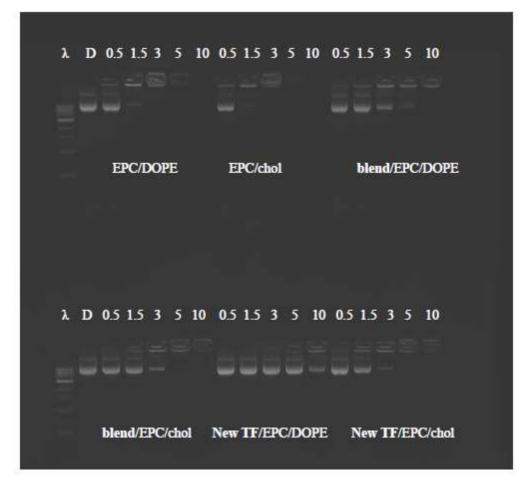


Figure S5 -Gel retardation assay of lipids for synthesized ternary lipid mixture (New TF) and binary blend of pure lipids (blend) co-formulated with commercial lipid EPC and neutral co-lipid DOPE or cholesterol at charge ratios 0.5, 1.5, 3, 5 and 10 and run through a 1% agarose gel impregnated with the pDNA gel stain, ethidium bromide. Lanes λ and DNA denote the 1 kb DNA ladder and pDNA, respectively. Data from the experiment labelled Exp17 in Tables S1-S5.

DNase I degradation assays

Assays related to experiments labelled Exp1 and Exp4 in Tables S1-S5 were previously reported: Parvizi, P.; Jubeli, E.; Raju, L.; Khalique, N. A.; Almeer, A.; Allam, H.; Manaa, M. A.; Larsen, H.; Nicholson, D.; Pungente, M. D.; Fyles, T. M. Aspects of nonviral gene therapy: Correlation of molecular parameters with lipoplex structure and transfection efficacy in pyridinium-based cationic lipids *Int. J. Pharm.* **2014**, *461*, 145. doi: http://dx.doi.org/10.1016/j.ijpharm.2013.11.045

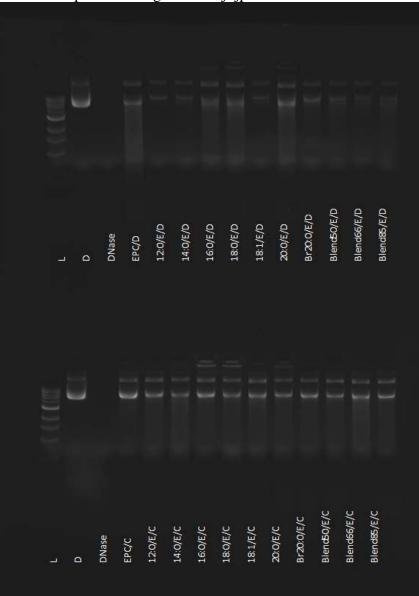


Figure S6 -DNase I degradation assay of lipids diC12:0 to diC20:0 co-formulated with commercial lipid EPC (E) and neutral co-lipid DOPE (D) or cholesterol (C) at molar charge ratios 3, and run through a 1% agarose gel impregnated with the pDNA gel stain, ethidium bromide. Lanes λ and DNA denote the 1 kb DNA ladder and pDNA, respectively. Data from the experiment labelled Exp7 in Tables S1-S5.

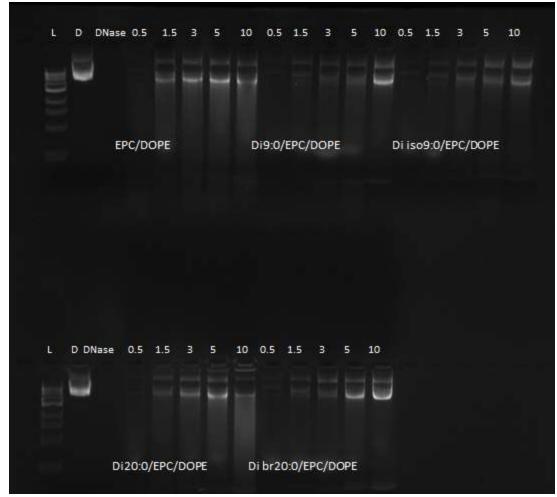


Figure S7 - DNase I degradation assay of lipids diC9:0, diCisoC9:0, diC20:0 or dibrC20:0 coformulated with commercial lipid EPC and neutral co-lipid DOPE at charge ratios 0.5, 1.5, 3, 5 and 10 and run through a 1% agarose gel impregnated with the pDNA gel stain, ethidium bromide. Lanes λ and DNA denote the 1 kb DNA ladder and pDNA, respectively. Data from the experiment labelled Exp8 in Tables S1-S5.

Figure S8 - DNase I degradation assay of lipids diC9:0, diCisoC9:0, diC20:0 or dibrC20:0 coformulated with commercial lipid EPC and neutral co-lipid cholesterol at charge ratios 0.5, 1.5, 3, 5 and 10 and run through a 1% agarose gel impregnated with the pDNA gel stain, ethidium bromide. Lanes λ and DNA denote the 1 kb DNA ladder and pDNA, respectively. Data from the experiment labelled Exp8a in Tables S1-S5.

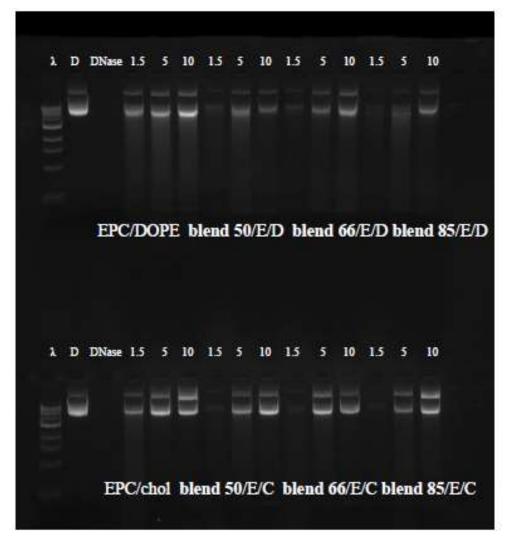


Figure S9 - DNase I degradation assay of blend 50, blend 66 and blend 85 co-formulated with commercial lipid EPC (E) and neutral co-lipid DOPE (D) or cholesterol (C)at charge ratios 1.5, 5 and 10 and run through a 1% agarose gel impregnated with the pDNA gel stain, ethidium bromide. Lanes λ and DNA denote the 1 kb DNA ladder and pDNA, respectively. Data from the experiment labelled Exp9 in Tables S1-S5.

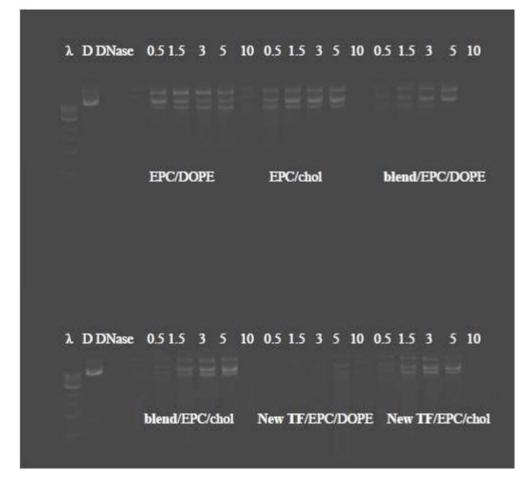


Figure S10 - DNase I degradation assay of lipids synthesized ternary lipids (New TF) and binary blend of pure lipids (blend) co-formulated with commercial lipid EPCand neutral co-lipid DOPE or cholesterol at charge ratios 0.5, 1.5, 3, 5 and 10 and run through a 1% agarose gel impregnated with the pDNA gel stain, ethidium bromide. Lanes λ and DNA denote the 1 kb DNA ladder and pDNA, respectively. Data from the experiment labelled Exp17 in Tables S1-S5.

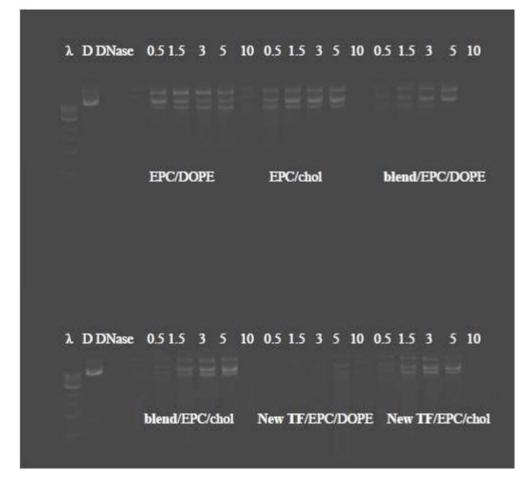


Figure S11 - DNase I degradation assay of lipids synthesized ternary lipids (New TF) and binary blend of pure lipids (blend) co-formulated with commercial lipid EPCand neutral co-lipid DOPE or cholesterol at charge ratios 0.5, 1.5, 3, 5 and 10 and run through a 1% agarose gel impregnated with the pDNA gel stain, ethidium bromide. Lanes λ and DNA denote the 1 kb DNA ladder and pDNA, respectively. Data from the experiment labelled Exp17 in Tables S1-S5.

Transfection and cell viability bar charts

Charts related to experiments labelled Exp1 and Exp4 in Table S3 were previously reported: Parvizi, P.; Jubeli, E.; Raju, L.; Khalique, N. A.; Almeer, A.; Allam, H.; Manaa, M. A.; Larsen, H.; Nicholson, D.; Pungente, M. D.; Fyles, T. M. Aspects of nonviral gene therapy: Correlation of molecular parameters with lipoplex structure and transfection efficacy in pyridinium-based cationic lipids *Int. J. Pharm.* **2014**, *461*, 145. doi: <u>http://dx.doi.org/10.1016/j.ijpharm.2013.11.045</u>

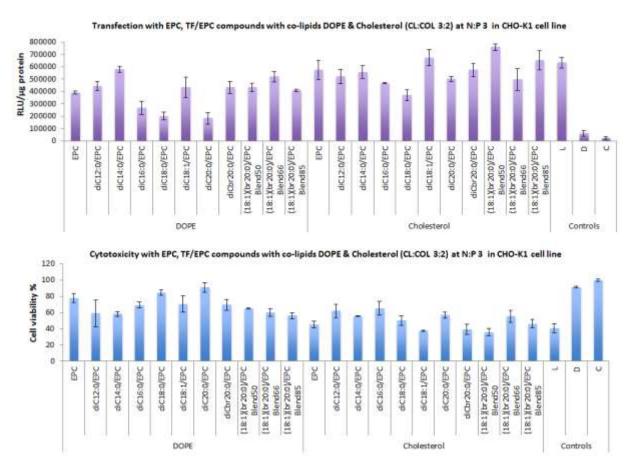


Figure S12 -Transfection efficiency as luminescence readings of β -galactosidase (left) and cytotoxicity (right) (after 48 h) of synthetic lipid diC12:0 to diC20:0/co-lipid/DNA lipoplexes compared to EPC/co-lipid/DNA at molar charge ratio of 3 and Lipofectamine 2000TM (Lipo) (n = 9; mean ± SD) as positive controls, and plasmid DNA alone and CHO-K1 cells alone as negative controls. Numerical from this experiment is labelled Exp7 in Table S3.

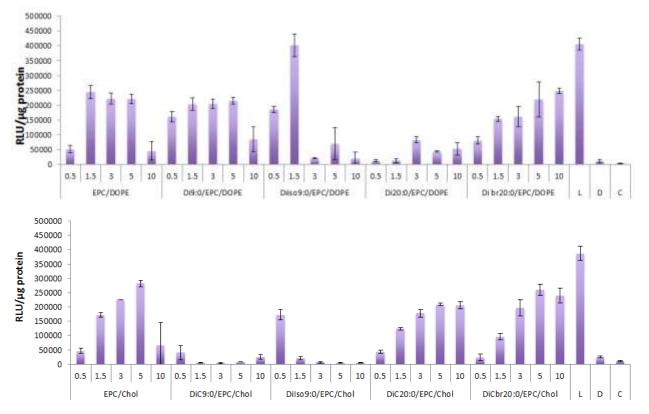


Figure S13 -Transfection efficiency as luminescence readings of β -galactosidase (after 48 h) of diC9:0, diCisoC9:0, diC20:0 or dibrC20:0 co-formulated with commercial lipid EPC and neutral co-lipid DOPE (top) or cholesterol (bottom) at molar charge ratio of 0.5 to 10 and Lipofectamine 2000TM (Lipo) (n = 9; mean ± SD) as positive controls, and plasmid DNA alone and CHO-K1 cells alone as negative controls. Numerical data from this experiment is labelled Exp8 (top) or Exp8a(bottom) in Table S3.

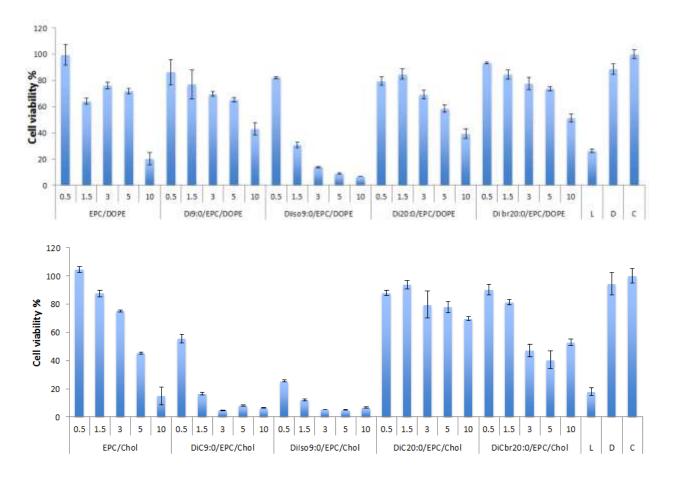


Figure S14 -Cytotoxicity (after 48 h) of diC9:0, diCisoC9:0, diC20:0 or dibrC20:0 co-formulated with commercial lipid EPC and neutral co-lipid DOPE (top) or cholesterol (bottom) at molar charge ratio of 0.5 to 10 and Lipofectamine 2000^{TM} (Lipo) (n = 9; mean ± SD) as positive controls, and plasmid DNA alone and CHO-K1 cells alone as negative controls. Numerical data from this experiment is labelled Exp8 (top) or Exp8a(bottom) in Table S3.

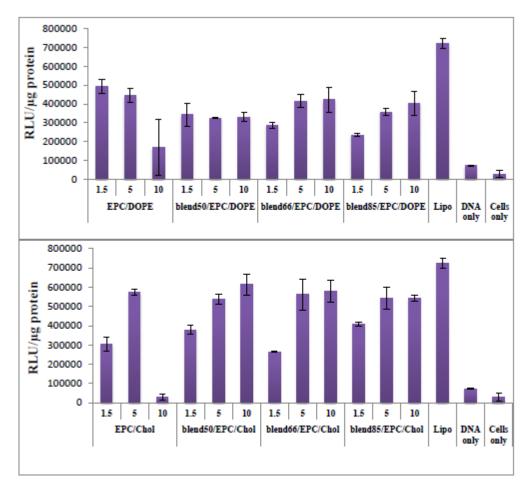


Figure S15 - Transfection efficiency as luminescence readings of β -galactosidase (after 48 h) of blend 50, blend 66 and blend 85/co-lipid/DNA lipoplexes compared to EPC/co-lipid/DNA at molar charge ratios of 1.5, 5 and 10 and Lipofectamine 2000TM (Lipo) (n = 9; mean ± SD) as positive controls, and plasmid DNA alone and CHO-K1 cells alone as negative controls. Numerical data from this experiment is labelled Exp9 in Table S3.

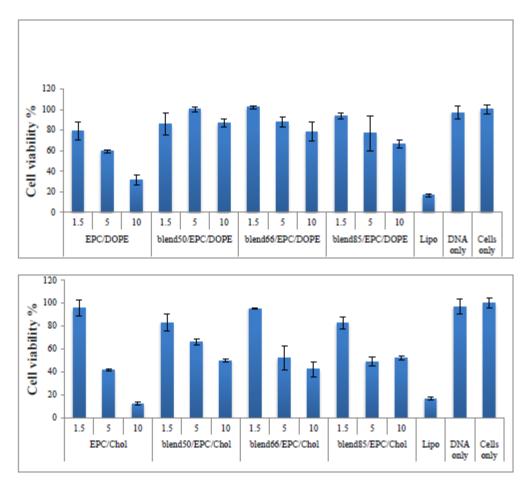


Figure S16 - Cytotoxicity (after 48 h) of blend 50, blend 66 and blend 85/co-lipid/DNA lipoplexes compared to EPC/co-lipid/DNA at molar charge ratios of 1.5, 5 and 10 and Lipofectamine 2000^{TM} (Lipo) (n = 9; mean ± SD) as positive controls, and plasmid DNA alone and CHO-K1 cells alone as negative controls. Numerical data from this experiment is labelled Exp9 in Table S3.

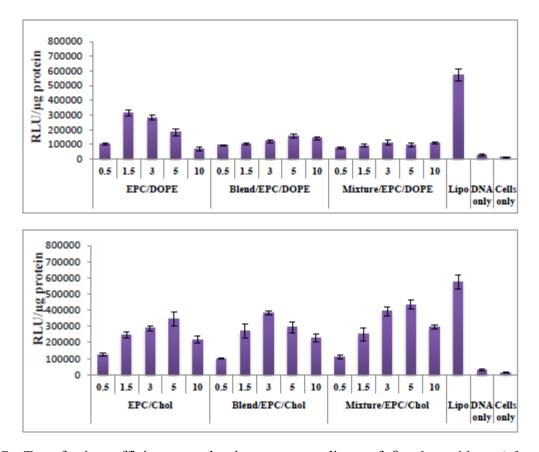


Figure S17 -Transfection efficiency as luminescence readings of β -galactosidase (after 48 h) of synthesized ternary lipids (mixture) and binary blend of pure lipids (blend)/co-lipid/DNA lipoplexes compared to EPC/co-lipid/DNA at molar charge ratio of 0.5 to 10 and Lipofectamine 2000TM (Lipo) (n = 9; mean ± SD) as positive controls, and plasmid DNA alone and CHO-K1 cells alone as negative controls. Numerical data from this experiment is labelled Exp17 in Table S3.

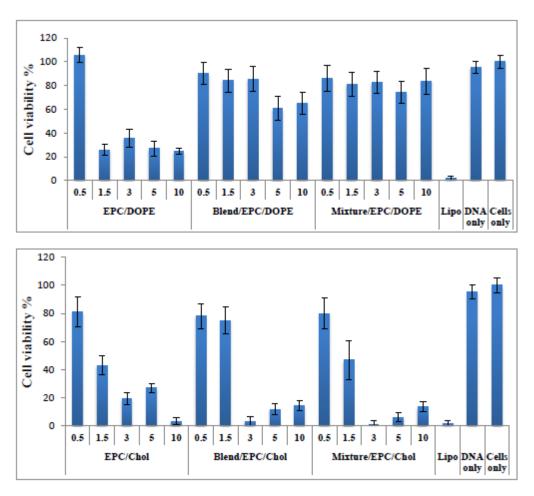


Figure S18 - Cytotoxicity (after 48 h) of synthesized ternary lipids (mixture) and binary blend of pure lipids (blend)/co-lipid/DNA lipoplexes compared to EPC/co-lipid/DNA at molar charge ratio of 0.5 to 10 and Lipofectamine 2000^{TM} (Lipo) (n = 9; mean ± SD) as positive controls, and plasmid DNA alone and CHO-K1 cells alone as negative controls. Numerical data from this experiment is labelled Exp17 in Table S3.

Table S1: Particle sizing data

The column headings are: Experiment label; Formulation label used as the experiments were conducted;; Identity of the pyridinium lipid if present (Cat A); Identity of the other cationic lipid (Cat B); Identity of the co-lipid (Co-lipid); three columns giving the molar ratio of Cat A: CatB:Co-lipid; Charge ration of the experiment (CR) as the ratio of N/P cationic lipid:DNA phosphate; Average liposome diameter (Å); Polydispersity index (PDI) of the liposome; Average lipoplex diameter (Å); PDI of the lipoplex

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	diC16:0 diC16:0			Ļ	Ļ	~	50	ľ (			
	ж Ж Ж Ж К М М М М М М М М М М М М М М М М	diC16:0	5	5 C	2	2	J	3	671	0.5	830	0.3
	ж Ж Ж Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш		EPC	DOPE	15	1.5	0	3.0	671	0.5	1375	0.4
	<u>ж</u> ппппп	diC16:0	EPC	DOPE	1.5	1.5	0	5.0	173	0.5	1205	0.4
	w w w w w _	diC16:0	EPC	DOPE	1.5	1.5	0	10.0	671	0.5	1160	0.4
		diC16:1	EPC	DOPE	15	1.5	0	0.5	288	0.4	1142	0.3
	шш <u></u> ш	diC16:1	EPC	DOPE	1.5	1.5	0	1.5	288	0.4	1334	0.3
	шш_	diC16:1	EPC	DOPE	15	1.5	0	3.0	288	0.4	1568	0.4
	ш_	diC16:1	EPC	DOPE	15	1.5	0	5.0	288	0.4	2380	0.6
		diC16:1	EPC	DOPE	1.5	1.5	N	10.0	288	0.4	1118	0.3
	_	diC16:0	EPC	chol	15	1.5	0	0.5	201	0.5	876	0.3
		diC16:0	EPC	chol	15	1.5	0	1.5	501	0.5	952	0.3
		diC16:0	EPC	chol	15	1.5	0	3.0	501	0.5	1335	0.4
	_	diC16:0	EPC	chol	15	1.5	0	5.0	501	0.5	1203	0.4
	Ř	diC16:0	EPC	DOPE	1.5	1.5	0	1.5	671	0.5	381	0.4
		diC16:0	EPC	chol	1.5	1.5	0	10.0	501	0.5	1244	0.5
		diC16:1	EPC	chol	15	1.5	0	0.5	256	0.3	497	0.3
		diC16:1	EPC	chol	15	1.5	0	1.5	256	0.3	436	0.3
		diC16:1	EPC	chol	15	1.5	0	3.0	256	0.3	1290	0.4
		diC16:1	EPC	chol	15	1.5	0	5.0	256	0.3	9493	0.5
		diC16:1	EPC	chol	1.5	1.5	0	10.0	256	0.3	2102	0.7
Exp4_6 (16:0)(11:1)/EPC/DOPE	DOPE	(16:0)(11:1)mix	БС	DOPE	1.5	1.5	0	0.5	260	0.3	1472	0.4
Exp4_7 (16:0)(11:1)/EPC/DOPE	DOPE	(16:0)(11:1)mix	БРС	DOPE	15	1.5	~	1.5	260	0.3	1733	0.3
Exp4_8 (16:0)(11:1)/EPC/DOPE	DOPE	(16:0)(11:1)mix	БРС	DOPE	15	1.5	~	3.0	260	0.3	1611	0.5
Exp4_9 (16:0)(11:1)/EPC/DOPE	DOPE	(16:0)(11:1)mix	EPC	DOPE	1.5	1.5	0	5.0	260	0.3	4130	0.5
Exp4_10 (16:0)(11:1)/EPC/DOPE	DOPE	(16:0)(11:1)mix	EPC	DOPE	15	1.5	0	10.0	260	0.3	5200	0.3
Exp7_2 diC12:0/EPC/DOPE	PE	diC12:0	С	DOPE	15	1.5	~	3.0	1891	0.5	2964	0.6
Exp7_3 diC14:0/EPC/DOPE	PE	diC14:0	Б	DOPE	15	1.5	~	3.0	86	0.5	2532	0.3
Exp7_4 diC16:0/EPC/DOPE	IPE	diC16:0	EPC	DOPE	15	1.5	0	3.0	209	0.2	3621	0.4
Exp7_5 diC18:0/EPC/DOPE	IPE	diC18:0	EPC	DOPE	1.5	1.5	0	3.0	357	0.3	649	0.3
Exp7_6 diC18:1/EPC/DOPE	PE	diC18:1	EPC	DOPE	15	1.5	0	3.0	723	0.8	4992	0.4
Exp7_7 diC20:0/EPC/DOPE	DPE	diC20:0	EPC	DOPE	1.5	1.5	0	3.0	392	0.3	4219	0.4
Exp7_8 diCbr20:0/EPC/DOPE	DOPE	dibrC20:0	EPC	DOPE	15	1.5	0	3.0	542	0.9	661	0.3
Exp7_9 (18:1)(br20:0)/EP	(18:1)(br20:0)/EPC Blend50/DOPE	(18:1)(br20:0)blend50	EPC	DOPE	15	1.5	0	3.0	481	0.5	864	0.5
Exp7_10 (18:1)(br20:0)/EP	(18:1)(br20:0)/EPC Blend66/DOPE	(18:1)(br20:0)blend66	EPC	DOPE	15	1.5	0	3.0	1923	0.7	807	0.4
Exp7_11 (18:1)(br20:0)/EP	(18:1)(br20:0)/EPC Blend85/DOPE	(18:1)(br20:0)blend85	Б	DOPE	15	1.5	~	3.0	324	0.4	470	0.3
Exp7_13 diC12:0/EPC/chol	0	diC12:0	Б	loho	15	1.5	~	3.0	1367	0.5	1096	0.4
Exp7_14 diC14:0/EPC/chol	0	diC14:0	EPC	chol	15	15	~	3.0	330	0.9	1227	0.5

31

Label	Formulation labels	Cat A	Cat B	lipid -	D at P Cat P	mol Cat	molCo	ස	liposome /A	PDI liposome /A	lipoplex /A	lipoplex /A
Exp7_15	diC16: 0/EPC/chol	diC16:0	EPC	chol	15	1.5	0	3.0	842	0.5	2451	0.5
Exp7_16	diC18: 0/EPC/chol	diC18:0	EPC	chol	15	1.5	2	3.0	372	0.3	1589	0.4
Exp7_17	diC18: 1/EPC/chol	diC18:1	EPC	chol	15	1.5	2	3.0	338	0.4	344	0.2
Exp7_18	diC20: 0/EPC/chol	diC20:0	EPC	chol	15	1.5	2	3.0	899	0.5	658	0.4
Exp7_19	diCbr20:0/EPC/ehol	dibrC20:0	EPC	chol	1.5	1.5	0	3.0	392	0.4	497	0.3
Exp7_20	(18:1)(br20:0)/EPC Blend50/chol	(18:1)(br20:0)blend50	EPC	chol	1.5	1.5	0	3.0	274	0.3	2074	0.6
Exp7_21	(18:1)(br20:0)/EPC Blend66/chol	(18:1)(br20:0)blend66	EPC	chol	1.5	1.5	0	3.0	181	0.3	3367	0.6
Exp7_22	(18:1)(br20:0)/EPC Blend85/chol	(18:1)(br20:0)blend85	EPC	chol	1.5	1.5	0	3.0	414	0.5	511	0.4
Exp8_6	Di3:0/EPC/DOPE	diC3:0	EPC	DOPE	1.5	1.5	2	0.5	197	0.4	1103	0.2
Exp8_7	Di3:0/EPC/DOPE	diC3:0	EPC	DOPE	15	1.5	2	1.5	197	0.4	1066	0.3
Exp8_8	Di3:0/EPC/DOPE	diC3:0	EPC	DOPE	15	1.5	2	3.0	197	0.4	834	0.3
Exp8_9	Di3:0/EPC/DOPE	diC3:0	EPC	DOPE	15	1.5	2	5.0	197	0.4	3782	0.3
Exp8_10	Di3:0/EPC/DOPE	diC3:0	EPC	DOPE	1.5	1.5	0	10.0	197	0.4	4756	0.6
Exp8_11	Diiso3:0/EPC/DOPE	diisoC3:0	EPC	DOPE	15	1.5	0	0.5	336	0.4	1394	0.3
Exp8_12	Diiso3:0/EPC/DOPE	diisoC3:0	EPC	DOPE	1.5	1.5	0	1.5	396	0.4	1677	0.3
Exp8_13	Diiso3:0/EPC/DOPE	diisoC3:0	EPC	DOPE	15	1.5	2	3.0	336	0.4	1526	0.4
Exp8_14	Diiso3:0/EPC/DOPE	diisoC3:0	EPC	DOPE	15	1.5	2	5.0	396	0.4	2468	0.3
Exp8_15	Diiso3:0/EPC/DOPE	diisoC3:0	EPC	DOPE	15	1.5	2	10.0	336	0.4	4150	0.6
Exp8_16	Di20:0/EPC/DOPE	diC20:0	EPC	DOPE	15	1.5	2	0.5	369	0.4	483	0.3
Exp8_17	Di20:0/EPC/DOPE	diC20:0	EPC	DOPE	1.5	1.5	0	1.5	369	0.4	541	0.3
Exp8_18	Di20:0/EPC/DOPE	diC20:0	EPC	DOPE	1.5	1.5	0	3.0	369	0.4	4388	0.5
Exp8_19	Di20:0/EPC/DOPE	diC20:0	EPC	DOPE	15	1.5	0	5.0	369	0.4	5339	0.4
Exp8_20	Di20:0/EPC/DOPE	diC20:0	EPC	DOPE	1.5	1.5	0	10.0	369	0.4	1989	0.4
Exp8_21	Di br20:0/EPC/DOPE	dibrC20:0	EPC	DOPE	15	1.5	2	0.5	473	0.5	542	0.2
Exp8_22	Di br20:0/EPC/DOPE	dibrC20:0	EPC	DOPE	15	1.5	2	1.5	473	0.5	502	0.2
Exp8_23	Di br20:0/EPC/DOPE	dibrC20:0	EPC	DOPE	15	1.5	2	3.0	473	0.5	505	0.2
Exp8_24	Di br20:0/EPC/DOPE	dibrC20:0	EPC	DOPE	15	1.5	0	5.0	473	0.5	563	0.3
Exp8_25	Di br20:0/EPC/DOPE	dibrC20:0	EPC	DOPE	15	1.5	2	10.0	473	0.5	4135	0.8
Exp8a_6	Di3:0/EPC/chol	diC3:0	EPC	chol	1.5	1.5	0	0.5	287	0.2	353	0.3
Exp8a_7	Di3:0/EPC/chol	diC3:0	EPC	chol	15	1.5	0	1.5	287	0.2	377	0.3
Exp8a_8	Di3:0/EPC/chol	diC3:0	EPC	chol	15	1.5	2	3.0	287	0.2	1498	0.4
Exp8a_9	Di3:0/EPC/chol	diC3:0	EPC	chol	15	1.5	2	5.0	287	0.2	5836	0.4
Exp8a_10	Di3:0/EPC/chol	diC3:0	EPC	chol	15	1.5	2	10.0	287	0.2	429	0.2
Exp8a_11	Diiso3:0/EPC/chol	diisoC3:0	БРС	chol	1.5	1.5	~	0.5	1186	0.5	678	0.3
Exp8a_12	Diiso3:0/EPC/chol	diisoC3:0	С	chol	1.5	15	~	15	1186	0.5	620	0.3
Exp8a_13	Diiso3:0/EPC/chol	diisoC3:0	EPC	ohol	1.5	1.5	0	3.0	1186	0.5	2016	0.6

Label	Formulation labels	Cat A	Cat B	₽id Pid	D at P C at P	B Cat	molCo	8	liposome /A	PDI liposome /A	lipoplex /A	lipoplex /A
Exp8a_14	Diiso3:0/EPC/chol	diisoC3:0	EPC	chol	1.5	15	0	5.0	1186	0.5	5765	0.4
Exp8a_15	Diiso3:0/EPC/chol	diisoC3:0	EPC	chol	1.5	15	0	10.0	1186	0.5	2923	0.5
Exp8a_16	Di20:0/EPC/chol	diC20:0	EPC	chol	15	1.5	0	0.5	632	0.7	465	0.4
Exp8a_17	Di20:0/EPC/chol	diC20:0	EPC	chol	1.5	15	0	15	632	0.7	467	0.3
Exp8a_18	Di20:0/EPC/chol	diC20:0	EPC	chol	1.5	15	0	3.0	632	0.7	553	0.4
Exp8a_19	Di20:0/EPC/chol	diC20:0	EPC	chol	15	1.5	0	5.0	632	0.7	4421	0.7
Exp8a_20	Di20:0/EPC/chol	diC20:0	EPC	chol	1.5	1.5	0	10.0	632	0.7	3651	0.6
Exp8a_21	Di br20:0/EPC/chol	dibrC20:0	EPC	chol	1.5	1.5	0	0.5	278	0.3	304	0.3
Exp8a_22	Di br20:0/EPC/chol	dibrC20:0	ЕРС	chol	1.5	1.5	2	1.5	278	0.3	350	0.2
Exp8a_23	Di br20:0/EPC/chol	dibrC20:0	EPC	chol	15	1.5	0	3.0	278	0.3	3278	0.7
Exp8a_24	Di br20:0/EPC/chol	dibrC20:0	EPC	chol	15	1.5	0	5.0	278	0.3	5839	0.4
Exp8a_25	Di br20:0/EPC/chol	dibrC20:0	EPC	chol	1.5	1.5	0	10.0	278	0.3	301	0.2
Exp3_4	(18:1)(br20:0)blend50/EPC/DOPE	(18:1)(br20:0)blend50	EPC	DOPE	1.5	1.5	0	15	481	0.5	515	0.3
Exp3_5	(18:1)(br20:0)blend50/EPC/DOPE	(18:1)(br20:0)blend50	EPC	DOPE	15	1.5	2	5.0	481	0.5	641	0.3
Exp3_6	(18:1)(br20:0)blend50/EPC/DOPE	(18:1)(br20:0)blend50	EPC	DOPE	1.5	15	0	10.0	481	0.5	7320	0.5
Exp9_7	(18:1)(br20:0)blend66/EPC/DOPE	(18:1)(br20:0)blend66	EPC	DOPE	15	1.5	2	1.5	1923	0.7	618	0.3
Exp3_8	(18:1)(br20:0)blend66/EPC/DOPE	(18:1)(br20:0)blend66	EPC	DOPE	15	1.5	2	5.0	1923	0.7	607	0.3
Exp3_9	(18:1)(br20:0)blend66/EPC/DOPE	(18:1)(br20:0)blend66	EPC	DOPE	15	1.5	2	10.0	1923	0.7	3056	0.7
Exp3_10	(18:1)(br20:0)blend85/EPC/DOPE	(18:1)(br20:0)blend85	EPC	DOPE	15	1.5	2	1.5	324	0.4	395	0.3
Exp9_11	(18:1)(br20:0)blend85/EPC/DOPE	(18:1)(br20:0)blend85	EPC	DOPE	15	1.5	2	5.0	324	0.4	522	0.3
Exp9_12	(18:1)(br20:0)blend85/EPC/DOPE	(18:1)(br20:0)blend85	EPC	DOPE	15	1.5	2	10.0	324	0.4	4961	0.5
Exp3_16	(18:1)(br20:0)blend50/EPC/Chol	(18:1)(br20:0)blend50	EPC	chol	1.5	15	~	15	274	0.3	301	0.2
Екр9_17	(18:1)(br20:0)blend50/EPC/Chol	(18:1)(br20:0)blend50	EPC	chol	15	1.5	0	5.0	274	0.3	10153	0.4
Exp3_18	(18:1)(br20:0)blend50/EPC/Chol	(18:1)(br20:0)blend50	EPC	chol	1.5	15	~	10.0	274	0.3	385	0.2
Exp3_19	(18:1)(br20:0)blend66/EPC/Chol	(18:1)(br20:0)blend66	EPC	chol	1.5	15	~	15	181	0.3	252	0.2
Екр9_20	(18:1)(br20:0)blend66/EPC/Chol	(18:1)(br20:0)blend66	БРС	loho	15	15	0	5.0	₽	0.3	13990	0.6
Екр9_21	(18:1)(br20:0)blend66/EPC/Chol	(18:1)(br20:0)blend66	EPC	ohol	15	1.5	~	10.0	₽	0.3	280	0.1
Exp9_22	(18:1)(br20:0)blend85/EPC/Chol	(18:1)(br20:0)blend85	EPC	chol	15	1.5	0	1.5	414	0.5	409	0.3
Екр9_23	(18:1)(br20:0)blend85/EPC/Chol	(18:1)(br20:0)blend85	EPC	chol	15	1.5	0	5.0	414	0.5	2745	0.6
Exp9_24	(18:1)(br20:0)blend85/EPC/Chol	(18:1)(br20:0)blend85	EPC	chol	15	1.5	0	10.0	414	0.5	5680	0.8
Exp17_11	blend(18:1)(br20:0) 32/EPC/Chol	(18:1)(br20:0)blend0.32/0.68	EPC	Ш Ш Ш	15	1.5	0	0.5	445	0.3	689	0.3
Exp17_12	blend(18:1)(br20:0) 32/EPC/Chol	(18:1)(br20:0)blend0.32/0.68	БРС	Ш Ш Ш	15	1.5	0	1.5	445	0.3	586	0.3
Exp17_13	blend(18:1)(br20:0) 32/EPC/Chol	(18:1)(br20:0)blend0.32/0.68	БРС	Ш Ш Ш	15	1.5	0	3.0	445	0.3	827	0.3
Exp17_14	blend(18:1)(br20:0) 32/EPC/Chol	(18:1)(br20:0)blend0.32/0.68	БРС	Ш Ш Ш	15	1.5	0	5.0	445	0.3	5750	0.5
Exp17_15	blend(18:1)(br20:0) 32/EPC/Chol	(18:1)(br20:0)blend0.32/0.68	EPC	ШOD	1.5	15	~	10.O	445	0.3	6887	0.4
Exp17_16	blend(18:1)(br20:0) 32/EPC/Chol	(18:1)(br20:0)blend0.32/0.68	С	loho	1.5	15	0	0.5	379	0.4	277	0.4

				ပ်	0Ĕ	molCat			liposome	Ō	lipoplex	lipoplex
Label	Formulation labels	Cat A	Cat B	lipid	Cat A	60	molCo	8	₹	liposome /A	₹	đ
Exp17_17	Exp17_17 blend(18:1)(br20:0) 32/EPC/Chol	(18:1)(br20:0)blend0.32/0.68	EPC	chol	1.5	1.5	0	1.5	379	0.4	324	0.3
Exp17_18	Exp17_18 blend(18:1)(br20:0) 32/EPC/Chol	(18:1)(br20:0)blend0.32/0.68	EPC	chol	1.5	1.5	0	3.0	379	0.4	7738	0.3
Exp17_19	Exp17_13 blend(18:1)(br20:0) 32/EPC/Chol	(18:1)(br20:0)blend0.32/0.68	EPC	chol	1.5	1.5	0	5.0	379	0.4	3625	0.7
Exp17_20	Exp17_20 blend(18:1)(br20:0) 32/EPC/Chol	(18:1)(br20:0)blend0.32/0.68	EPC	chol	1.5	1.5	0	10.0	379	0.4	294	0.2
Exp17_21	Exp17_21 mix (br20:0)(18:1)/EPC/Chol	(C18:1)(brC20:0)mix	EPC	DOPE	15	1.5	2	0.5	462	0.4	737	0.4
Exp17_22	Exp17_22 mix (br20:0)(18:1)/EPC/Chol	(C18:1)(brC20:0)mix	EPC	DOPE	15	1.5	2	15	462	0.4	530	0.3
Exp17_23	Exp17_23 mix (br20:0)(18:1)/EPC/Chol	(C18: 1)(brC20: 0)mix	EPC	DOPE	15	1.5	2	3.0	462	0.4	468	0.3
Exp17_24	Exp17_24 mix (br20:0)(18:1)/EPC/Chol	(C18: 1)(brC20: 0)mix	EPC	DOPE	15	1.5	0	5.0	462	0.4	738	0.3
Exp17_25	Exp17_25 mix (br20:0)(18:1)/EPC/Chol	(C18:1)(brC20:0)mix	EPC	DOPE	1.5	1.5	0	10.0	462	0.4	5409	0.4
Exp17_26	Exp17_26 mix (br20:0)(18:1)/EPC/Chol	(C18:1)(brC20:0)mix	EPC	chol	1.5	1.5	0	0.5	319	0.4	251	0.3
Exp17_27	Exp17_27 mix (br20:0)(18:1)/EPC/Chol	(C18:1)(brC20:0)mix	EPC	chol	1.5	1.5	0	1.5	319	0.4	301	0.2
Exp17_28	Exp17_28 mix (br20:0)(18:1)/EPC/Chol	(C18:1)(brC20:0)mix	EPC	chol	1.5	1.5	0	3.0	319	0.4	8004	0.3
Exp17_29	Exp17_29 mix (br20:0)(18:1)/EPC/Chol	(C18:1)(brC20:0)mix	EPC	oho	1.5	1.5	N	5.0	319	0.4	1745	0.4
Exp17_30	Exp17_30 mix (br20:0)(18:1)/EPC/Chol	(C18:1)(brC20:0)mix	EPC	chol	1.5	1.5	~	10.0	319	0.4	264	0.2

# Table S2: SAXD data

The column headings are: Experiment label; Formulation label used as the experiments were conducted; Identity of the pyridinium lipid if present (Cat A); Identity of the other cationic lipid (Cat B); Identity of the co-lipid (Co-lipid); three columns giving the molar ratio of Cat A: CatB:Co-lipid; Charge ration of the experiment (CR) as the ratio of N/P cationic lipid:DNA phosphate; SAXD phase observed; lattice parameter of the phase (Å)

lattice Darameter	22	2	22	02	02	65	65	65	65	65	9	g	g	9	9	7	7	7	7	7	60-62	8	64	8	2	8	22	76-84	2	22		0	<b>t</b> 0	8	2	58	75-90	2	g	ę	82	g	B	ß	8	5	<u>8</u> :	8	66-85	5	2
SAXS phase	hexagonal	hexagonal	hexagonal	hexagonal	hexagonal	hexagonal	hexagonal	hexagonal	hexagonal	hexagonal	9	9	9	9	9	hexagonal	hexagonal	hexagonal	hexagonal	hexagonal	hexagonal	hexagonal?	hexagonal?	hexagonal?	indeterminate	hexagonal	hexagonal?	hexagonal	no XBD .	hexagonal			hexagonal?	indoterminate indoterminate	hevenonal	hexanonal	hexagonal?	lamellar	indeterminate	indeterminate	hexagonal	indeterminate	indeterminate	lamellar	hexagonal	hexagonal	hexagonal	lamellar	lamellar	lamellar	lamellar
5	0.5	15	3.0	5.0	10.0	0.5	15	3.0	5.0	10.0	0.5	15	3.0	5.0	10.0	0.5	15	3.0	5.0	10.0	3.0	15	3.0	15	3.0	2	3.0	12	30	2	9.9 9.9	<u>0</u>	0, ¥	2 0	12	308	12	3.0	15	3.0	15	3.0	15	15	15	22	3.0	5	15	3.0	6
Ēů	2	~	~	2	2	~	2	2	2	~	2	2	2	~	2	~	~	~	0	~	~	~	~	~	~	~	~	~	~		2	2			•	•	101	2	~	2	2	~	~	~	~	N	~	~	~	~	¢
B S S S S S S S S S S S S S S S S S S S	15	15	15	15	15	15	15	15	15	12	15	15	15	15	15	15	15	15	15	15	15	15	5	22	5	2	12	2	22	<u>פ</u>	<u></u>	<u></u>	<u>n</u>	<u>2</u>	2 12	2 10	2 12	15	15	15	15	15	15	12	5	2	5	5	5	2	ų
oat ⊳ Oat ⊳	1.5	15	15	15	1.5	15	15	1.5	1.5	15	15	1.5	1.5	15	15	15	15	15	15	15	15	15	12	15	15	12	15	15	12	<u>פ</u> י	<u></u>	<u></u>	<u>n</u>	2 4	2 12	2 10	2 12	15	15	15	15	15	15	15	£	2	5	5	<u>5</u> i	15	Ļ
b iai	DOPE	ШOD	BOD	BOPE	BOPE	ШOD	BOPE	DOPE	DOPE	Шdod	chol	BOPE	Щ 00	ШOO			Щ ОС	Щ ОО										o logo	chol	chol	chol	chol	chol	chol					eho Sho	oło	eho Sho	1 - 1 -									
Cat B	EPC	U U U		C E D C	C E D C	С	СЧ	СЧ	С	С	С	СЧ	C	С	EPC	EPC	С	EPC	EPC	EPC	С	EPC	U U U	L L L		U U U	C E B C	U U U										C E D	с Ш	EPC	EPC	EPC	EPC	L L L	U L L L	C L		U U U	U C	U U U	
Cat A	diC16:0	diC16:0	diC16:0	diC16:0	diC16:0	diC16:1	diC16:1	diC16:1	diC16:1	diC16:1	diC16:0	diC16:0	diC16:0	diC16:0	diC16:0	diC16:1	diC16:1	diC16:1	diC16:1	diC16:1	diC12:0	diC12:0	diC14:0	diC14:0	diC16:0	diC16:0	diC18:0	diC18:0	diC18:1	diC18:1	diC:20:0	diC/20:0			diC14:0	diCt6-0	diC16:0	diC18:0	diC18:0	diC18:1	diC18:1	diC20:0	diC20:0	diC9:0	diisoC9:0	diC:20:0	dibrC20:0	diC9:0	diisoC9:0	diC20:0	404-020.0
Formulation labels	Dit6:0/EPC/DOPE	Dit6:0/EPC/DOPE	Dit6:0/EPC/DOPE	Dif6:0/EPC/DOPE	Dit6:0/EPC/DOPE	Dit6:I/EPC/DOPE	Diterc/DOPE	Diterc/DOPE	Diterc/DOPE	Dit6:I/EPC/DOPE	Dit6:0/EPC/Chol	Dit6:0/EPC/Chol	Dit6:0/EPC/Chol	Dit6:0/EPC/Chol	Dit6:0/EPC/Chol	Dit6:I/EPC/Chol	Dit6:I/EPC/Chol	Dit6:I/EPC/Chol	Dit6:I/EPC/Chol	Dit6:I/EPC/Chol	diC12:0/EPC/DOPE	diC12:0/EPC/DOPE	diC14:0/EPC/DOPE	diC14:0/EPC/DOPE	diC16:0/EPC/DOPE	diC16:0/EPC/DOPE	diC18:0/EPC/DOPE	diC18:0/EPC/DOPE	diC18:1/EPC/DOPE	dic18:1/EPC/UUPE	diczu:u/EPC/DOPE	dicizioner-chuche acta armonte el	dic iz:uren orono 4:014:016001.5601		diC14-04EPC/chol	diCt8-0/EPC/ehol	diC16:0/EPC/chol	diC18: 0/EPC/chol	diC18: 0/EPC/chol	diC18:11EPC/ehol	diC18:1/EPC/chol	diC20:0/EPC/chol	diC20:0/EPC/chol	Di9:0/EPC/DOPE	Diiso9:0/EPC/DOPE	DIZU:U/EP/C/UUPE	Di br20:0/EPC/DOPE				
Label					Exp1 5												Exp1_22	Exp1_23	Exp1_24				Exp7_3		Exp7_4							Exp(					Exp7 15x						Exp7_18x	Exp8_7	Exp8_12	Expo 2	Exp8_23	Exp8a_7	Exp8a_12	Exp8a_18	7.001 33

# Table S3: Transfection and cell viability data

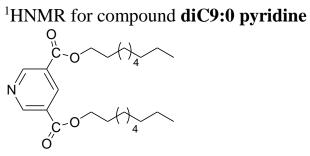
The column headings are: Experiment label; Formulation label used as the experiments were conducted; Identity of the pyridinium lipid if present (Cat A); Identity of the other cationic lipid (Cat B); Identity of the co-lipid (Co-lipid); three columns giving the molar ratio of Cat A: CatB:Co-lipid; Charge ration of the experiment (CR) as the ratio of N/P cationic lipid:DNA phosphate; Average transfection; Standaed error in Transfection; Normalized transfection efficiency based on the efficiency of Lipofetamine = 100 and cells-alone = 0; Average cell viability; Standard deviation in cell viability.

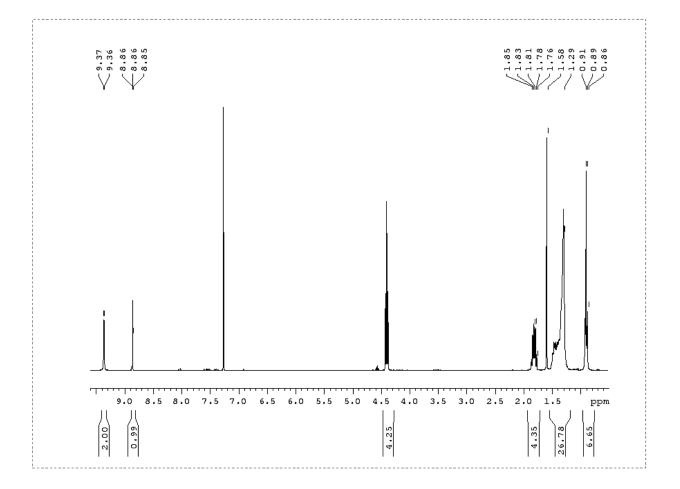
;		20.8	20.4	8.6 6	15.8	17.6	11.6	18.1	17.6	12.5	1 0 1 0	0.0	18.1	<del>9</del> .9	15.2	20.4	1000	37.3	12.6	19.3	16.3	12.0	2 C	0.0	2.0	44.6	48.6	5.2	10.3	42	:	= ;	<u>6</u> 2	0.8	₽	50	16.2	2.9	3.7	3.6	102	102	67	000	0 1	 + -	0.4 4	2.8	0.3	8.5	6.0	F	3.9	5.7	2	15	9.6	10.8
	Cytavg	113.9	107.7	106.3	82.8	75.7	139.4	119.5	117.8	1041	105.1	1001	108.2	108.2	67.7	510	010	49.3	14.9	104.8	603	841	0 1/2	o e e	×.	100.7	100.0	102.7	106.4	859	0002	D.02	203	10.9	96.7	100.0	59.1	58.4	683	84.5	20.4	20.7	693	100	04:0	00.1	0.00	1.29	55.3	65.0	50.0	37.4	56.8	40.8	91.1	100.0	86.4	76.9
T SE	EJON	0.030	0.031	0.036	0.051	0.045	0.018	0.024	0.036	0.021	0.000	070.0	0.022	0.034	0.071	0.127	10100	0.060	0.027	0.042	0.078	0.060	0.054	+000	0.047			0.028	0.027	0.025	0.047	0.047	0.029	0.064			0.078	0.079	0.085	0.051	0.139	0.071	0.092	0.070	2000	0.000	0.000	III'N	0.104	0.056	0.081	0.130	0.067	0.103	;		0.018	0.023
Ξ	EJOL	0.152	0.189	0.267	0.392	0.257	0.078	0.122	0.152	0.172	0.126	0.120	0.118	0.278	0.645	0.650	0,000	0.260	0.207	0.384	0.800	0 585	0.477	1000	<b>N</b> 001	-0.019	0.000	0.120	0.134	0.196	0.150	701.0	711.0	1.000	0.037	0.017	0.693	0.912	0.402	0.293	0.674	0.262	0.674	0.670	0.014	0.004	1000	11810	0.876	0.729	0.568	1.069	0.782	1.000	0.062	0.000	0.392	0.497
	L SE	9136	8538	8925	13363	12856	5175	6679	11996	8691	2015	1010	5370	7976	18388	JOCED	10000	18508	5632	10218	19568	14821	10047	1001	9990	4675	7224	8912	8148	5913	20204	40,02	3746	19997	3328	9945	36644	25100	52171	29951	82735	46259	48869	10001	02200	031.CU	13(3	28483	50858	3256	44352	64639	19661	44732	22682	10593	6833	8343
	DVA I	58924	68418	88966	121390	86290	39649	51208	58884	64794	54714	1010	50132	91697	187306	100444	1110010	8/038	73271	119358	227503	1716.34	14 DATE	0142410	2/3043	14453	19371	59611	66451	96917	76070	10000	2/ <u>6</u> 63	494825	18174	8565	445353	578507	268641	201873	433876	102650	434017	10101	10000	104004	100004	220807	556771	467554	369694	674285	499928	632277	61595	23842	161269	203491
}	5	0.5	15	3.0	5.0	10.0	0.5	15	3.0	20	20 9	22	0.5	15	3.0	202	0.00	U.U	0.5	15	30	20	ģ	0.0				0.5	5	30		0.0	0.01				3.0	3.0	3.0	3.0	30	02	808	000	0.0	0.0	0.0	0.5 1	3.0	3.0	3.0	3.0	3.0				0.5	15
Ē	3	~	~	~	2	2	~	2	~	•	•		2	~	~	•	J	N	~	~	~	•		J				~	~	•			N				2	~	~	~	•	•	•			<b>.</b>		2	~	2	2	~	~				2	~
Ē		15	15	15	15	15	15	15	5	ţ	2 4	3	12	15	5	i i	3	2	15	15	5	ţ	2 ¥	3				15	5	1	2	<u></u>	2				15	15	15	5	i F	ţ	ŝ	3	2	2	3	2	5	15	15	15	15				15	15
Ē	A M U	15	1.5	15	15	1.5	15	15	5	ţ	2	3	12	15	5	e F	3	2	5	15	5	ţ	2 ¥	2				15	E F	5	2	<u>.</u>	2				15					ľ						2	15	15	15	15	1.5				1.5	
ċ	pidi			Ш ОО		BOPE		ШOD	HOO DOPE			Ц. 5.	cho	chol	cho	lodo	3	cho	oho	chol	chol	logo		015					1400									Ш Ц Ц	Шdo	BOD D							1 - 5 -	cho Cho	chol	chol	chol	chol	chol				DOPE	ПОРЕ
1	Cat B	U L L	Б С	U L L	U L L	БРО	U U U	С Ц	U L L		) ( ] []		С Ц	U U U	U L L		5	с Н	U U U	С Ц				5				С Ц	U L L				с Ц				U L L	С Ц	U H H	EPC E								- L	С Ц	С	EPC	С Ц	С Ц				БС	с Ш
	Cat A	diC16:0	diC16:0	diC16:0	diC16:0	diC16:0	diC16:1	diC16:1	diC16:1	dicted	40.46.4		diC16:0	diC16:0	diC16:0	dicte.o		dilC16:U	diC16:1	diC16:1	diC184	diC18.1	40.46.4	ulc10:1				(16:0)(11:1)mix	(16:0)(11:1)mix	(18-0)(11-1)mix	(10.0)(11.0)	(16:U)(11:1)mix	(16:0)(11:1)mix				diC12:0	diC14:0	diC16:0	diC18:0	diC18-1	diC20.0	dibrC20-0	districtions (40.4)(he20.0)ElsedE0	(10:1)[0120:0]01811000 (40:4)(4-20:0)41 400	1000LDC (10:1)[DIZU:0)DIED000	(io:i)[przu:u]piendoo	dicT2:U	diC14:0	diC16:0	diC18:0	diC18:1	diC20:0				diC9:0	diC9:0
							Dif6:I/EPC/DOPE	Dif6:I/EPC/DOPE						Dif6:0/EPC/Chol	Dif6:0/EPC/Chol			_	Dif6:ItEPC/Chol	Dif6:I/EPC/Chol	DifettEPC/Chol				Liporectamine	DNA alone	Cells alone	PC/DOPE					RUCHE	Lipofectamine	DNA alone			diC14:0/EPC/DOPE					L	AE0.DO						diC16:0/EPC/chol c	diC18: 0/EPC/chol	diC18:1/EPC/chol	diC20:0/EPC/chol	Lipo+DNA	DNA alone	Cells alone	DOPE	DI3:0/EPC/DOPE
	Label	Exp1_1	Exp1_2	Exp1.3	Exp1 4	Exp1_5	Exp1 6	Exp1 7	Exo1 8	0,10,1			Exp1_16	Exp1_17	Exp1 18	1	2 2		Exp1 21	Exp1 22	Exn1 23	Fund 24			Exp] 31	Exp1_32	Exp1 33	Exp4 6	Exn4_7	Exn4 8		n txp+ t	Exp4_10	Exp4_11	Exp4_12	Exp4_13	Exp7 2	Exp7 3	Exp7 4	Exp7_5	Evn7 6	Even7 7	Evn7 8					Exp(_13	Exp7_14	Exp7_15	Exp7_16	Exp7_17	Exp7_18	Exp7_23	Exp7 24	Exp7 25	Exp8_6	Exp8_7

Cut SD	992 922	4	7.5	5.2	1.9	1.6	<b>4</b> .0	0.8	2.0	0.5	0.5	0.2	3.2	4.0	33	2.9	38	0.7	3.4	<b>4</b> .8	15	3.2	1.5	4.0	3.4	2.8	Ð	01	0.4	0.3	0.8	8.0	53	0.3	4 ) 4 )	<u>0</u> c	7.0	104	-	39	20	4.3	6.3	2.3	2.9	8.1	23 23	R.⊡ ⊒ ¢	40	14	4.7
Cut aug	983 983	357	55.2	46.1	69.7	65.4	43.1	82.0	30.8	13.8	8.8	6.7	79.4	84.7	69.2	58.5	39.5	93.3	84.4	77.6	73.6	51.3	26.3	88.7	100.0	55.5	16.4	4.7	81	6.3	25.5	12	23	• •	9.0	000	D.00 D	78.0	969	90.3	814	47.2	40.5	52.9	17.8	94.4	100.0	9.00 1 00	1.001 86.6	102.0	87.7
North North	0108	0.099	0.147	0.144	0.018	0.016	0.040	0.014	0.043	0.002	0.051	0.018	0.003	0.005	0.011	0.003	0.020	0.013	0.011	0.035	0.060	0.016	0.028			0.024	0.000	0.000	0.002	0.007	0.022	0.005	0.00	0.000	0.000	0.000	0.010	0.015	0.020	0.011	0.013	0.032	0.028	0.032	0.037		0000	0.000	0.047	0.036	0.060
	0.903	1209	0.779	1.035	0.499	0.525	0.202	0.453	0.990	0.046	0.167	0.042	0.022	0.024	0.199	0.100	0.122	0.193	0.376	0.393	0.536	0.608	1.000	0.019	0.000	0.094	0.000	0.001	0.010	0.056	0.440	0.044	0.005	0.002	1000	0.103	0.455	0.524	0.528	0.051	0.239	0.502	0.667	0.614	1.000	0.055	0.018	0.400	0.434	0.372	0.557
T SF	53795	26750	86312	76992	6320	4687	16850	4153	15478	816	21743	9035	1847	2772	4318	<del>3</del> 68	8504	5402	3329	14114	24047	3935	8128	2003	456	10322	211	836	128	2906	2173	2250	672	<u>8</u>	,999 999	0207	1353 E405	1920	5286	4672	4465	11385	8120	10672	10186	1319	1187	0010	55080 25080	13958	34365
T Aun	573175	759474	497548	653813	204182	214562	84854	185653	401669	22191	70734	20538	12421	13362	83495	44028	52854	81336	154651	161748	219192	248256	405616	11350	3700	39945	4186	4304	7975	25706	172545	20768	6127	4818	4604	45085	170460	208522	206353	23809	95793	196281	259709	239287	387139	25224	10983	5444US	169025	286877	415016
g	508	30	98	3.0	3.0	5.0	10:0	0.5	15	3.0	5.0	10.0	0.5	15	3.0	5.0	10.0	0.5	15	3.0	5.0	10.0				0.5	15	3.0	5.0	10.0	0.5	5	8	20	0.0	°.	2 0	20		0.5	12	3.0	5.0	10.0			Ľ	<u>0</u>	0 Q	22	5.0
ĒĈ	8	•~	0	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~				2	~	~	~	~	~	~	~	~ ~	2	<b>v</b> 0	ч c	10	•	~	0	~	~	~			•		~~	•	101
а С С	2 2 2	2 10	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15				15	15	15	15	15	15	12	12	2	2	<u>0</u>	<u>0</u>	2 4	2 12	12	12	15	15	15			L.	<u>0</u>	<u>0</u>	2	15
o de Cation	15	2 10	15	15	15	15	15	12	12	12	15	12	12	15	12	15	15	15	15	12	15	12				15	15	15	15	15	12	12	12	<u></u>	2	<u>0</u>	<u>0</u>	2 ¥	2 10	12	12	15	15	12			L T	<u>0</u>	<u>0</u> 10	2	12
5 E	odo lodo		cho	chol	DOPE	Ш Ц Ц	900 100		Щ 00 0		Щ 00	Ш 00		DOPE		ПOP	Щ		Щ		BOPE					chol	chol	chol	chol	chol	chol	lo e b o f o	eko	e g	cho cho	enol enol				cho	cho	chol	chol	chol							
			i L L	U E E	EPC	Ц	БРС	U U U	U E D U	U L L	EPC	EPC	Ц	БРС	ЦЦ	БРС	ЦЦ	С Ц	Ц	U L L	С Н	U L L				с Б	С Ц	С Ц	С	С Н С	С Ц	U E D U			36							U L L	EPC	U L L			Ĺ	10		) () j []	цП
Cat A	dihrC20-0	of (18-1)(hr/20-0)hlend50	oc [18:11[br20:0]blend66	nd [18:1][br20:0]blend85	diC9:0	diC9:0	diC9:0	diisoC3:0	diisoC9:0	diisoC3:0	diisoC9:0	diisoC9:0	diC20:0	diC20:0	diC20:0	diC20:0	diC20:0	dibrC20:0	dibrC20:0	dibrC20:0	dibrC20:0	dibrC20:0				diC3:0	diC3:0	diC9:0	diC9:0	diC9:0	diisoC9:0	diisoC9:0	diisoC9:0	diisoC9:0				di(C20:0	diC20-0	dibrC20:0	dibrC20:0	dibrC20:0	dibrC20:0	dibrC20:0			20 240 424 - 00 0341 - 460	JF (18:1)[Df2U:U]DlendOU Df (19:4)(4:20:0)H12:24E0	JF (18:1)[DrZU:U]DiendoU DF (18:1)[hr20:0]blend50	DF (18-1)(hr20-0)hlend66	0F (18:1)(br20:0)blend66
Formulation labels	diChr20:07EPC/chol	discretional claration (18-10) (http://discretion.com	[18:1][br20:0]/EPC Blend66/chc [18:1][br20:0]blend66	18:10br20:00EPC Blend85tct	DI3:07EPC/DOPE	DI3:0/EPC/DOPE	Di9:0/EPC/DOPE	Diiso9:0/EPC/DOPE	Diiso9:0/EPC/DOPE	Diiso9:0/EPC/DOPE	Diiso9:0/EPC/DOPE	Dijso9:0/EPC/DOPE	Di20:0/EPC/DOPE	Di20:0/EPC/DOPE	Di20:0/EPC/DOPE	Di20:0/EPC/DOPE	Di20:0/EPC/DOPE	Di br20:0/EPC/DOPE	Lipo+DNA	DNA alone	Cells alone	Di9:0/EPC/chol	Di3:0/EPC/chol	Di3:0/EPC/chol	Di3:0/EPC/chol	Di3:0/EPC/chol	Dijso9:0/EPC/chol	Dijso9:0/EPC/chol	Diiso9:0/EPC/chol	Diiso9:0/EPC/chol	Uliso3:UtEPU/chol				Di20.01EPC/chol	Di br20:0/EPC/chol	Lipo+DNA		_	(18:1)[br20:0)blendourEF-CrUCH (18:1)[br (18:1)[t-20:0)blendourEF-CrUCH (18:1)[br	(18:1)[0r20:0]blendourEP-CrUCH (18:1)[0r [18:1][hr20:0]blend50;FPC2DOF (18:1)[hr	(18-1)(br20-0)blend66/EPC/DOF (18-1)(br	(18:1)(br20:0)blend66/EPC/DOF (18:1)(br								
lahe l	Exn7 19	Exn7 20	Exp7 21	Exp7_22	Exp8 8	Exp8_9	Exp8_10	Exp8_1	Exp8_12				Exp8_16	Exp8_17	Exp8_18	Exp8_19	Exp8_20	Exp8 21			Exp8_24			Exp8 27	Exp8 28	Exp8a 6	Exp8a_7	Exp8a_8	Exp8a_9	Exp8a_10	Exp8a_11	Exp8a_12	Exp8a_13	Exp8a_14	Exp8a_15		Expod_17	Funda 10	Exn8a 20	Exp8a 21	Exp8a 22	Exp8a 23	Exp8a_24	Exp8a_25	Exp8a 26	Exp8a_27	Exp8a_28		Expa o Expa o	Fkn9 7	Exp9_8

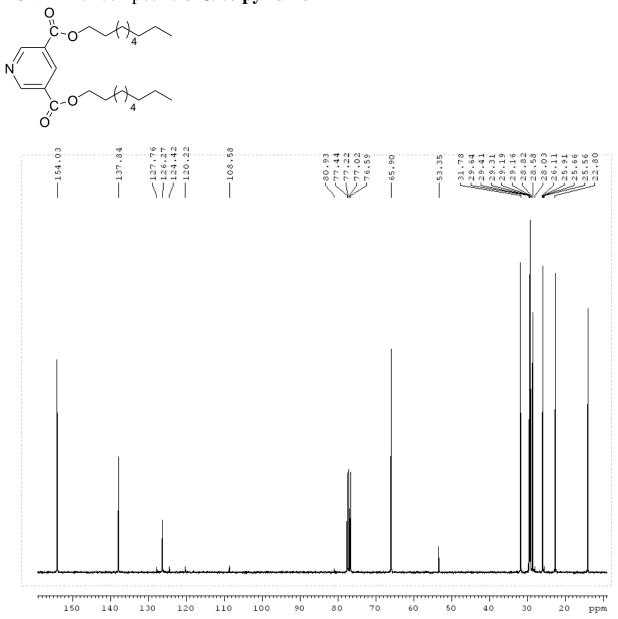
	Cyt SD	8.9	2.8	16.8	3.5	7.5	2.4	12	9.0	10.6	6.5	5.2	3.7	4	1.6	6.2	4.6	27.4	29.2	31.9	30.8	28.2	26.5	29.1	10.7	12.1	10.8	33.2	31.3	28.1	28.0	32.1	33.6	41.9	6.0	9.6	10.9	4.9	15.6	15.8
	Cyt avg	78.6	93.7	76.8	66.4	82.9	66.0	49.7	94.9	51.9	42.1	82.7	48.8	52.0	16.5	96.9	100.0	90.1	84.4	85.6	60.6	65.2	78.2	75.0	3.0	11.8	14.6	86.0	81.0	82.5	74.4	83.6	79.8	46.7	0.7	6.1	13.6	₽	95.2	100.0
T SE	Norm	0.097	0.032	0.042	0.091	0.046	0.056	0.089	0.031	0.116	0.091	0.040	0:030	0.049	0.067			0.013	0.082	0.052	0.070	0.049	0.025	0.074	0.069	0.073	0.041	0.014	0.015	0.020	0.031	0.026	0.012	0.017	0.028	0.022	0.017	0.102	0.199	0.145
끧	EJOU	0.567	0.299	0.474	0.540	0.505	0.736	0.843	0.340	0.767	0.794	0.546	0.740	0.738	1.000	0.064	0.000	0.156	0.460	0.658	0.502	0.381	0.173	0.424	0.679	0.750	0.504	0.146	0.165	0.195	0.262	0.229	0.108	0.143	0.178	0.147	0.177	1000	0.029	0.000
	T SE	66717	10033	17864	61858	21140	25734	54256	1275	78330	57516	10155	57169	14889	27378	3832	20175	4171	44092	12131	34942	24238	13614	39980	28063	28254	10545	5107	5584	8362	14571	12379	6318	8429	15523	12318	6688	41492	5731	1813
	T Avg	422258	235546	357239	403305	379126	539314	613986	264227	560840	579727	407372	541839	541066	722757	72649	28223	99819	270250	381234	294124	226004	109394	250544	393463	432762	294897	94530	105110	122005	159308	141009	73424	92533	112667	94910	111950	573168	28890	12618
	<del>6</del>	10.0	15	5.0	10.0	15	5.0	10.0	15	5.0	10.0	15	5.0	10.0				0.5	12	3.0	5.0	10.0	0.5	15	3.0	5.0	10.0	0.5	15	3.0	5.0	10.0	0.5	15	3.0	5.0	10.0			
Рош	ů	2	~	2	2	2	~	~	~	~	~	~	~	~				~	~	~	~	~	2	2	2	2	2	~	~	~	~	~	~	~	~	~	~			
Рош	Cat B C	15	15	15	15	15	15	15	15	15	15	15	15	15				15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15			
Ē	A teO	15	15	15	15	15	15	15	15	15	15	15	15	15				15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15			
ċ	lipid	Ш ОО	900 100	900 00	Шdo	chol	chol	chol	chol	chol	chol	chol	chol	chol				chol	chol	chol	chol	chol	chol	chol	chol	chol	chol	Ш ОО	DOPE	DOPE	DOPE	DOPE	DOPE	DOPE	Ш ООБ	DOPE	ПОРЕ			
	Cat B	С Ш	с Ц	С Ц	С Ц	Б	С Ц	Ц	с Ш	с Ш	Ц	С Ш	С Ш	БРС				Ц	Ц	С Ш	с Ш	С Ш	Б	Б	Б	С Ц	Б	С Ц	Ц	Ц	Ц	Ц	БРС	БРС	ЦЦ	Б	Ц			
	Cat A	F (18:1)(br20:0)blend66	F (18:1)(br20:0)blend85	F (18:1)(br20:0)blend85	F (18:1)(br20:0)blend85	o (18:1)(br20:0)blend50	o (18:1)(br20:0)blend50	o (18:1)(br20:0)blend50	o (18:1)(br20:0)blend66	o (18:1)(br20:0)blend66	o (18:1)(br20:0)blend66	o (18:1)(br20:0)blend85	o (18:1)(br20:0)blend85	o (18:1)(br20:0)blend85				d (18:1)(br20:0)blend0.32/0.68	d (18:1)(br20:0)blend0.32/0.68	c (18:1)(br20:0)blend0.32/0.68	d (18:1)(br20:0)blend0.32/0.68	c (18:1)(br20:0)blend0.32/0.68	(C18:1)(brC20:0)mix	(C18:1)(brC20:0)mix	(C18:1)(brC20:0)mix	(C18:1)(brC20:0)mix	(C18:1)(brC20:0)mix	d (18:1)(br20:0)blend0.32/0.68	(C18:1)(brC20:0)mix	(C18:1)(brC20:0)mix	(C18:1)(brC20:0)mix	(C18:1)(brC20:0)mix	(C18:1)(brC20:0)mix							
	Formulation labels	[18:1](br20:0)blend66/EPC/DOF (18:1](br20:0)blend66	[18:1](br20:0)blend85/EPC/DOF (18:1)(br20:0)blend85	[18:1][br20:0]blend85/EPC/DOF [18:1][br20:0]blend85	[18:1](br20:0)blend85/EPC/DOF (18:1)(br20:0)blend85	[18:1](br20:0)blend50/EPC/Cho [18:1](br20:0)blend50	[18:1](br20:0)blend50/EPC/Cho] (18:1](br20:0)blend50	[18:1](br20:0)blend50/EPC/Cho] (18:1](br20:0)blend50	[18:1](br20:0)blend66/EPC/Cho [18:1](br20:0)blend66	(18:1)(br20:0)blend66/EPC/Cho (18:1)(br20:0)blend66	(18:1)(br20:0)blend66/EPC/Cho (18:1)(br20:0)blend66	[18:1][br20:0]blend85/EPC/Cho [18:1][br20:0]blend85	[18:1](br20:0)blend85/EPC/Cho] (18:1](br20:0)blend85	[18:1](br20:0)blend85/EPC/Cho [18:1](br	Lipofectamine	DNA alone	Cells alone	blend(18:1)(br20:0) 32/EPC/Chd (18:1)(br	blend(18:1)[br20:0] 32/EPC/Chc [18:1][br20:0]blend0.32/0.68	blend(18:1)(br20:0) 32/EPC/Chc (18:1)(br20:0)blend0.32/0.68	blend(18:1)[br20:0] 32/EPC/Chc (18:1)[br20:0]blend0.32/0.68	blend(18:1)(br20:0) 32/EPC/Chc (18:1)(br20:0)blend0.32/0.68	mix (br20:0)(18:1)/EPC/Chol	blend(18:1)[br20:0] 32/EPC/Chc (18:1)[br20:0]blend0.32/0.68	blend(18:1)(br20:0) 32/EPC/Chc (18:1)(br20:0)blend0.32/0.68	blend(18:1)(br20:0) 32/EPC/Chc (18:1)(br20:0)blend0.32/0.68	blend(18:1)(br20:0) 32/EPC/Chc (18:1)(br20:0)blend0.32/0.68	blend(18:1)(br20:0) 32/EPC/Chc (18:1)(br20:0)blend0.32/0.68	mix (br20:0)(18:1)/EPC/Chol	Lipofectamine	DNA alone	Cells alone								
	Label	Exp9_9	Exp9_10	Exp9_11	Exp9_12	Exp9_16	Exp9_17	Exp9_18	Exp9 19	Exp9_20	Exp9_21	Exp9 22	Exp9_23	Exp9_24	Exp9_25	Exp9_26	Exp9_27	Exp17_16	Exp17_17	Exp17_18	Exp17_19	Exp17_20	Exp17_26	Exp17_27	Exp17_28	Exp17_29	Exp17_30	Exp17_11	Exp17_12	Exp17_13	Exp17_14	Exp17_15	Exp17_21	Exp17_22	Exp17_23	Exp17_24	Exp17_25	Exp17_31	Exp17_32	Exp17_33

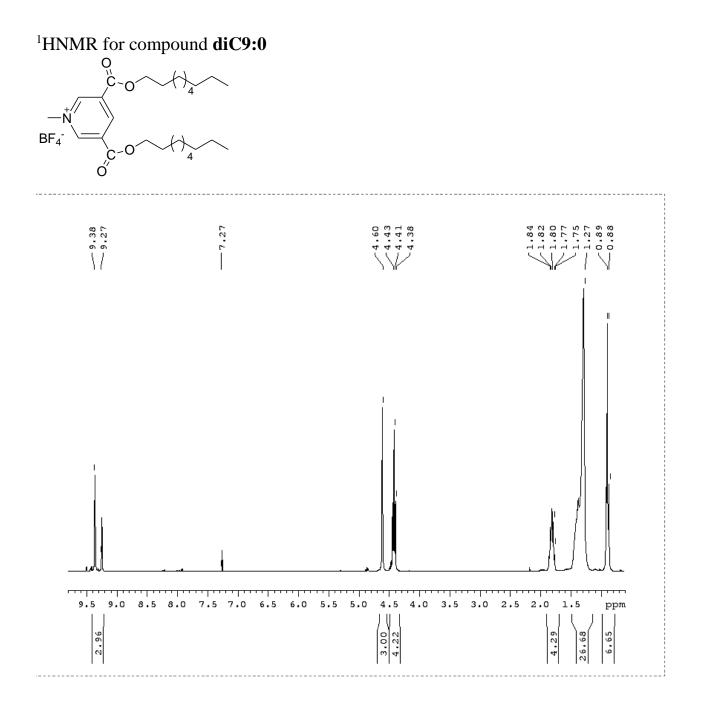
Compound name	Ic	a head	V tails	S	clogP	ltot	Vtot	nC
	Å	Å ²	Å ³			Å	Å ²	
chol	17.4	27.5	545	1.14	9.9	23.3	654	14
EPC	17.9	54.5	876	0.90	9.8	26.2	1179	12
DOPE	18.7	45.4	967	1.14	14.8	26.3	1198	8
diC9:0	10.3	42.0	506	1.17	5.1	17.6	712	8
diisoC9:0	7.2	42.0	506	1.67	4.0	14.5	712	8
diC11:1	12.0	41.9	593	1.18	6.3	19.3	798	8
diC11:0	12.3	41.9	614	1.19	7.3	19.6	819	9
diC12:0	13.3	41.9	668	1.20	8.3	20.6	872	10
diC14:0	15.3	41.8	775	1.21	10.5	22.6	979	12
diC16:0	17.4	41.7	883	1.22	12.6	24.6	1086	14
diC16:1	17.4	41.7	862	1.19	11.6	24.6	1066	13
diC18:0	19.4	41.7	990	1.23	14.7	26.7	1193	16
diC18:1	18.7	41.7	969	1.25	13.7	26.0	1173	8
(C16:1)(C11:0)	14.7	41.8	728	1.19	9.4	22.0	932	11
diC20:0	21.4	41.6	1097	1.23	16.8	28.7	1300	18
dibrC20:0	12.3	41.6	1108	2.16	16.5	19.6	1311	10
(C16:0)(C11:1)	14.7	41.8	738	1.20	9.4	22.0	942	11.
(C18:1)(brC20:0)	15.5	41.7	1033	1.60	15.1	22.8	1236	9
(16:0)(11:1)mix	14.5	41.8	722.9	1.2	9.2	21.8	927.1	10.
diC16:1 mix	17.1	41.7	849	1.19	11.4	24.4	1052	12.
(C18:1)(brC20:0)mix	15.1	41.7	1044	1.70	14.9	22.4	1247	8.8
(18:1)(br20:0)blend0.32/0.68	14.3	41.6	1063	1.87	15.6	21.6	1266	9.3
(18:1)(br20:0)blend50	15.5	41.7	1039	1.70	15.1	22.8	1242	9
(18:1)(br20:0)blend66	14.5	41.6	1061	1.85	15.5	21.7	1264	9.3
(18:1)(br20:0)blend85	13.3	41.6	1087	2.03	16.1	20.5	1290	9.7

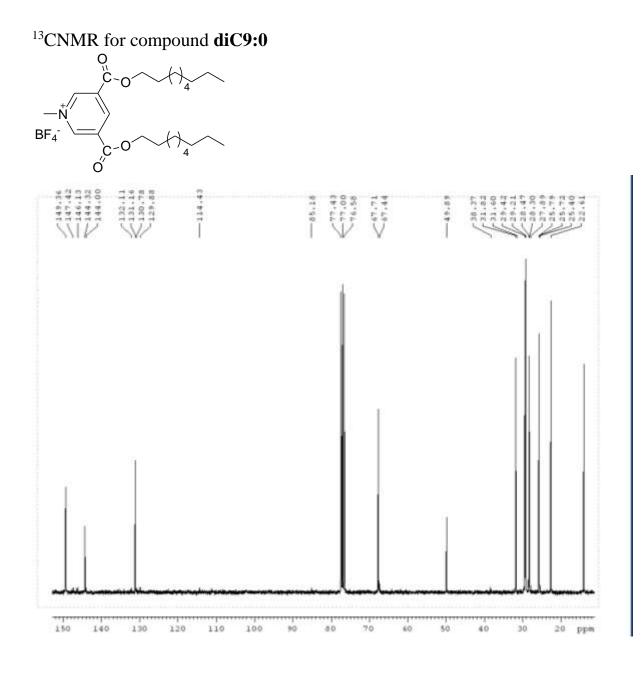

#### Table S5: TI_{PVM} for experimental mixtures


The column headings are: Experiment label; Formulation label used as the experiments were conducted; Identity of the pyridinium lipid if present (Cat A); Identity of the other cationic lipid (Cat B); Identity of the co-lipid (Co-lipid); three columns giving the molar ratio of Cat A: CatB:Co-lipid; Charge ration of the experiment (CR) as the ratio of N/P cationic lipid:DNA phosphate;; calculated logP of the mixed lipids; calculated S of the mixed lipids; calculated l_c of the mixed lipids (Å³); calculated TI_{PVM}; calculated partition term; calculated volume filling term; calculated melting term.

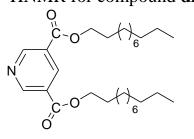
-11	111	ιε	, '		41	-	•																																													
	5	20.8	20.4	<b>9</b> 8	15.8	17.6	11e	2 ₽	17.6	13.2	a a	181	66	152	39.4	37.3	12.6	19.3	16.3	12.0	10.7	0.3	44.6	48.6	5.2	10.3	4.2	Þ	61	0.8	₽	2.0	16.2	2.9	3.7	3.6	10.2	229	200	20		2	10	30	09	3=	3.9	57	9	1.5	9.6	108
	Oyt avg	113.9	107.7	106.3	808	75.7	139.4	119.5	117.8	109.1	1051	108.2	108.2	677	51.0	49.3	114.9	104.8	60.3	84.1	74.8	14.8	100.7	100.0	102.7	106.4	85.9	78.9	70.3	10.9	96.7	100.0	59.1	58.4	68.9	84.5	70.4	90.7	2.29	04.4 0	00.1	5	55.3	650	20.0	37.4	56.8	40.8	911	100.0	86.4	76.9
T SE	Norm	0.030	0.031	0.036	0.051	0.045	0.018	0.024	0.036	0.031	0.020	0.020	0.034	0.071	0.137	0.060	0.027	0.042	0.078	0.060	0.054	0.047			0.028	0.027	0.025	0.047	0.029	0.064			0.078	0.079	0.085	0.051	0.139	1200	760.0	0.000	0.050	0,110	0104	0.056	0.036	0,130	0.067	0.103			0.018	0.022
Ц	ELOU	0.152	0.189	0.267	0.392	0.257	0.078	0.122	0.152	0.173	0.136	0.118	0.278	0.645	0.650	0.260	0.207	0.384	0.800	0.585	0.477	1.000	-0.019	0.000	0.120	0.134	0.196	0.152	0.117	1.000	0.037	0.017	0.693	0.912	0.402	0.293	0.674	0.263	0.070	270.0	10.0	0.817	0.876	0.709	0.568	1069	0.782	1000	0.062	0.000	0.392	0.407
	ΠSE	9136	8538	8925	13363	12856	5175	6679	11996	8681	2915	5370	9262	18388	38650	18508	5632	10218	19568	14831	13847	5866	4675	7224	8912	8148	5913	20704	9746	19997	3328	9 <b>9</b> 45	36644	25100	52171	29951	82735	46359	40004	15255	707E	58483	50858	2050	3200 44352	64639	19661	44732	22682	10593	6833	C FCO
	T Avg	58924	68418	88966	121390	86230	39649	51208	58884	64384	54714	50132	2630	187306	188444	87038	73271	119358	227503	171634	143416	279549	14453	19371	59611	66451	96917	75372	57663	494825	18174	8565	445353	578507	268641	201873	433876	183658	43401/	432033 E10400	004010	F20807	556771	ACTERA	400/04 369694	674285	499928	632277	61595	23842	161269	101000
	6	0.5	1.5	3.0	20	100	0.5	12	30	20	00 100	220	12	30	20	10.0	0.5	5	30	5.0	10.0				0.5	15	3.0	5.0	10.0				3.0	30	30	30	30	8.0	0,9	0,0		000	200	200	0.0	30	30	•			0.5	L T
Ē	8	~	~	~	•	•	~	• ~	~	~	•	•	•	•	~	2	~	~	~	~	~				~	~	~	2	~				~	~	~	~	~	~	<b>v</b> 0		4 0	10	•	40	~	10	• ~•	•			~	•
Ī		5	1.5	12	i i i	2	5	5	5	i i i	ŝ	2 10	2 10	2	12	5	5	5	5	12	15				12	15	15	15	15				15	15	15	5	5	<u>5</u>	<u></u>	<u>0</u>	3	2 42	24	3 🛱	<u>0</u>	3 12	2				5	
ē	A b Cat⊳	12	12	15	2	2 12	12	2	12	5	ŝ	2 12	2 10	2	15	15	12	12	12	15	15				15	15	15	15	15				15	15	15	3	12	<u>1</u> 2	<u></u>	<u>0</u>	2 4	2 12	2	3 🛱	<u>0</u>	2 12	12				5	5
ģ	lipid 1	Ш 00		DOPE			BOD		BOD				opo	opo	cho	chol	cho	cho	cho	chol	chol				ШOD	BOPE	ШOD	900 00	900 00				DOPE	Щ 00	Щ 00	Ш 00	Щ 00								cho lo		chol				DOPE	
	e Terres Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Const Con	U U U	U E D U	U L L L L					EPC EPC							U L L	U L L	U d d		ц Ш	U L L				U E D U	С Ш	БРС	С Ц	С Ц				EPC	БС	EPC	С Ш	U U U		50			) () ] []	) ( ] []	י נ 1		) () ] []	i Lu	i			с Ц	
	CatA	diC16:0	diC16:0	diC16:0	tiC18-0	HICTE-0	liC16:1	11C16:1	liC16:1	HC18-1	HCTE-1	HCTB-0	HC16-0	HICTE-0	diC16:0	iiC16:0	diC18:1	diCt84	diC16:1	diC16:1	diC16:1				16:01(11:1)mix	16:0)(11:1)mix	(16:0)(11:1)mix	16:0)(11:1)mix	16:0)((11:1)mix				diC12:0	diC14:0	liC16:0	diC18:0	liC18:1	diC20:0	dibruzu:U 40 4/4-20 0/41 JEO	(18:1)[Df2U:0]Dfend5U (10:1)[t-20:0]t12=466	(10:1)[UIZU:0]UEUIU00 (10:1)[h:00:0]HI00:02E	diC12-0	diC14-0	40.450	diC18-0 diC18-0	diC18:1	diC20:0				diC9:0	0.000
			Dit6:0/EPC/DOPE																				DNA alone	Cells alone	PC/DOPE [	Щ	Ш		Ш	Pe	DNA alone		diC12:0/EPC/DOPE					diC20:0/EPC/DOPE		(18:1)(Drzu:u)rEPU Biendouruu (1 (18:1)(5-20:0)/EBC Biendouruu (1	(10.1)[0120:0]FEFU Elefitadorua (1.						_		DNA alone			
					T	T	T	1	T	t	T		t	t			t		F	t							-	-	-		F								-				t			-	+	t				-
	Label L	т, т,	щ	Exel 3	i ji		Exo1 6	Ϊü	Exo1 8	Exn1 9	Ì			Ĩ	Exp1 19	Э Ш	С Ш	Ц Ц	Ē	Exp1 24	е Ш	Exp.	ій Ш	е Ш	ě ů	ů ů	Exp4_8	ģ Ш	ģ. Ш	ф Ш	ģ Ш	ģ ŭ	Exp7_2	ц Ш	ц Ш	с Ш	ф Ш	а Ш	2 1			<u>وَ</u> الْ	<u>و</u> اړ	<u>و</u> ا	Exp(_13	<u>و</u> ار	Ĭ	۱ ش	Exp7_24	Exp7_2	Exp8_6	1

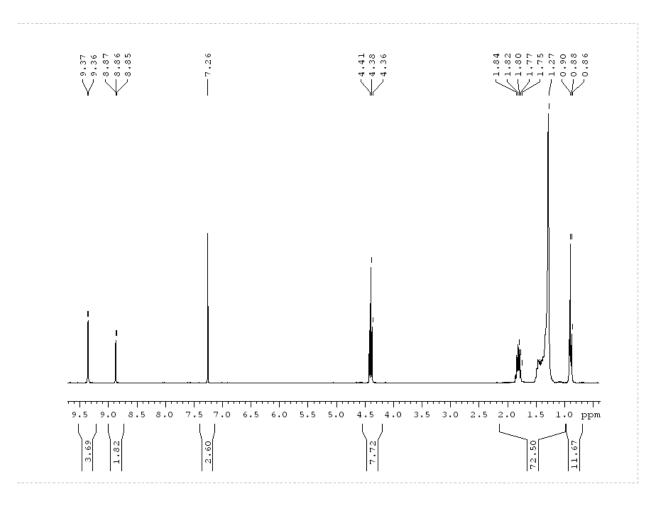

	C)t SD	8.8	2.8	16.8	3.5	7.5	2.4	12	9.0	10.6	6.5	5.2	3.7	4.	1.6	6.2	4.6	27.4	29.2	31.9	30.8	28.2	26.5	29.1	10.7	12.1	10.8	33.2	31.3	28.1	28.0	32.1	33.6	41.9	8.8	9.6	10.9	4,9	15.6	15.8
	Cyt avg	78.6	93.7	76.8	66.4	82.9	66.0	49.7	94.9	51.9	42.1	82.7	48.8	52.0	16.5	96.9	100.0	90.1	84.4	85.6	60.6	65.2	78.2	75.0	3.0	11.8	14.6	86.0	81.0	82.5	74.4	83.6	79.8	46.7	0.7	6.1	13.6	1.8	95.2	100.0
TSE	Norm	0.097	0.032	0.042	0.091	0.046	0.056	0.089	0.031	0.116	0.091	0.040	0:090	0.049	0.067			0.013	0.082	0.052	0.070	0.049	0.025	0.074	0.069	0.073	0.041	0.014	0.015	0.020	0.031	0.026	0.012	0.017	0.028	0.022	0.017	0.102	0.199	0.145
Ш	ШOU	0.567	0.299	0.474	0.540	0.505	0.736	0.843	0.340	0.767	0.794	0.546	0.740	0.738	1.000	0.064	0.000	0.156	0.460	0.658	0.502	0.381	0.173	0.424	0.679	0.750	0.504	0.146	0.165	0.195	0.262	0.229	0.108	0.143	0.178	0.147	0.177	1.000	0.029	0.000
	ΤSE	66717	10033	17864	61858	21140	25734	54256	1275	78330	57516	10155	57169	14889	27378	3832	20175	4171	44092	12131	34942	24238	13614	39980	28063	28254	10545	5107	5584	8362	14571	12379	6318	8429	15523	12318	8899	41492	5731	1813
	T Avg	422258	235546	357239	403305	379126	539314	613986	264227	560840	579727	407372	541839	541066	722757	72649	28223	99819	270250	381234	294124	226004	109394	250544	393463	432762	294897	94530	105110	122005	159308	141009	73424	92533	112667	94910	111950	573168	28890	12618
	б	10.0	12	5.0	10.0	15	5.0	10.0	15	5.0	10.0	15	5.0	10.0				0.5	15	3.0	5.0	10.0	0.5	15	3.0	5.0	10.0	0.5	15	3.0	5.0	10.0	0.5	15	3.0	5.0	10.0			
рш	ů	2	2	2	~	2	~	~	~	~	~	~	2	~				2	2	~	2	2	~	~	~	2	2	~	~	~	~	2	~	2	2	~	2			
0 E	Ш Т С	15	15	15	12	15	15	15	15	15	15	15	15	12				15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15			
0 E	A teO	15	15	15	15	15	15	15	15	15	15	15	15	15										15																
ů	lipid	DOPE	900 100	DOPE	900 100	chol	chol	chol	chol	chol	chol	chol	chol	- bolo				chol	chol	chol	chol	chol	chol	chol	chol	chol	chol	DOP	DOPE	DOPE	000	DOPE	DOPE	ПOP	ШOD		ЩOО			
	Ш Т С	С Н С	СЧЦ	Ц	U L L	СЧЭ	СЧ	СЧ	С Ц	С Ш	С Ц	С Ш	С	U H H										С Ш																
	CatA	터 (18:1)(br20:0)blend66	터 (18:1)(br20:0)blend85	터 (18:1)(br20:0)blend85	터 (18:1)(br20:0)blend85	o  (18:1)(br20:0)blend50	o (18:1)(br20:0)blend50	o (18:1)(br20:0)blend50	o (18:1)(br20:0)blend66	o  (18:1)(br20:0)blend66	o (18:1)(br20:0)blend66	o  (18:1)(br20:0)blend85	o  (18:1)(br20:0)blend85	o  (18:1)(br20:0)blend85				id (18:1)(br20:0)blend0.32/0.68	id (18:1)(br20:0)blend0.32/0.68	id (18:1)(br20:0)blend0.32/0.68	id (18:1)(br20:0)blend0.32/0.68	id (18:1)(br20:0)blend0.32/0.68	(C18:1)(brC20:0)mix	(C18:1)(brC20:0)mix	(C18:1)(brC20:0)mix	(C18:1)(brC20:0)mix	(C18:1)(brC20:0)mix	id (18:1)(br20:0)blend0.32/0.68	(C18:1)(brC20:0)mix	(C18:1)(brC20:0)mix	(C18:1)(brC20:0)mix	(C18:1)(brC20:0)mix	(C18:1)(brC20:0)mix							
	Formulation labels	[18:1](br20:0]blend66/EPC/DOF [18:1](br20:0]bl	[18:1](br20:0)blend85/EPC/DOF (18:1](br20:0)bl	[18:1](br20:0)blend85/EPC/DO	[18:1](br20:0)blend85/EPC/DO	(18:1)(br20:0)blend50/EPC/Ch(	[18:1](br20:0)blend50/EPC/Ch(	[18:1](br20:0)blend50/EPC/Ch(	[18:1](br20:0)blend66/EPC/Ch(	(18:1)(br20:0)blend66/EPC/Cho (18:1)(br20:0)blend66	(18:1)(br20:0)blend66/EPC/Ch(	(18:1)(br20:0)blend85/EPC/Ch(	[18:1](br20:0)blend85/EPC/Ch(	[18:1](br20:0)blend85/EPC/Ch(	Lipofectamine	DNA alone	Cells alone	blend(18:1)(br20:0) 32/EPC/Chc (18:1)(br20:0)bl	blend(18:1)(br20:0) 32/EPC/Ch	blend(18:1)(br20:0) 32/EPC/Ch	blend(18:1)(br20:0) 32/EPC/Ch	blend(18:1)(br20:0) 32/EPC/Ch	mix (br20:0)(18:1)/EPC/Chol	7 mix (br20:0)(18:1)/EPC/Chol (C18:1)(brC20:0)mix	mix (br20:0)(18:1)/EPC/Chol	mix (br20:0)(18:1)/EPC/Chol	mix (br20:0)(18:1)/EPC/Chol	blend(18:1)(br20:0) 32/EPC/Ch	mix (br20:0)(18:1)/EPC/Chol	Lipofectamine	DNA alone	Cells alone								
	Label	Exp9_9	Exp9_10	Exp9_11	Exp9_12	Exp9_16	Exp9 17	Exp9 18	Exp9 19	Exp9_20	Exp9_21	Exp9_22	Exp9_23	Exp9_24	Exp9_25	Exp9_26	Exp9_27	Exp17_16	Exp17_17	Exp17_18	Exp17_19	Exp17_20	Exp17_26	Exp17_27	Exp17_28	Exp17_29	Exp17_30	Exp17_11	Exp17_12	₽.	Exp17_14	₩.	Exp17_21	Exp17_22	Exp17_23	Exp17_24		Exp17_31	Exp17_32	Exp17_33

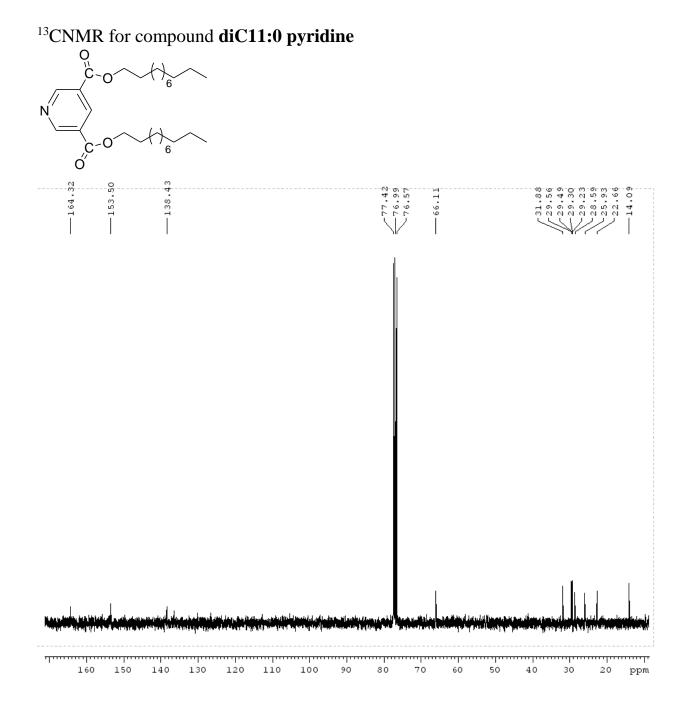

#### Proton and Carbon NMR spectra

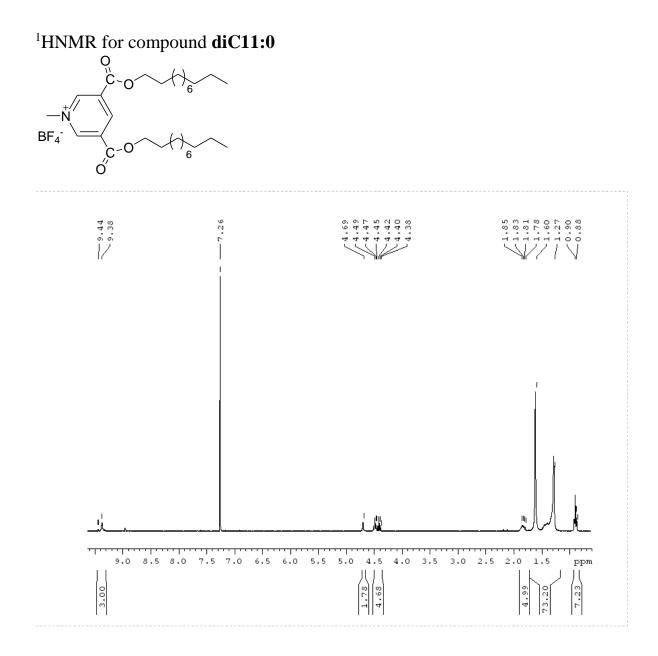


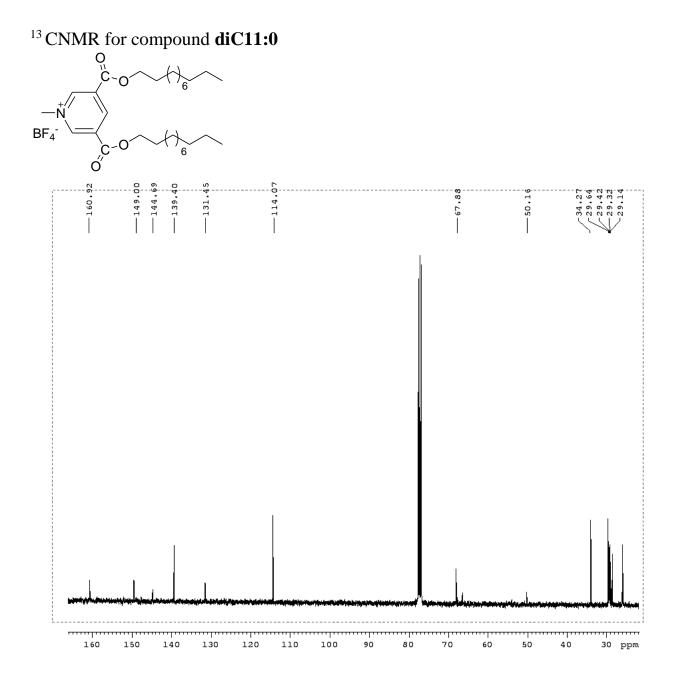




## ¹³CNMR for compound **diC9:0 pyridine**



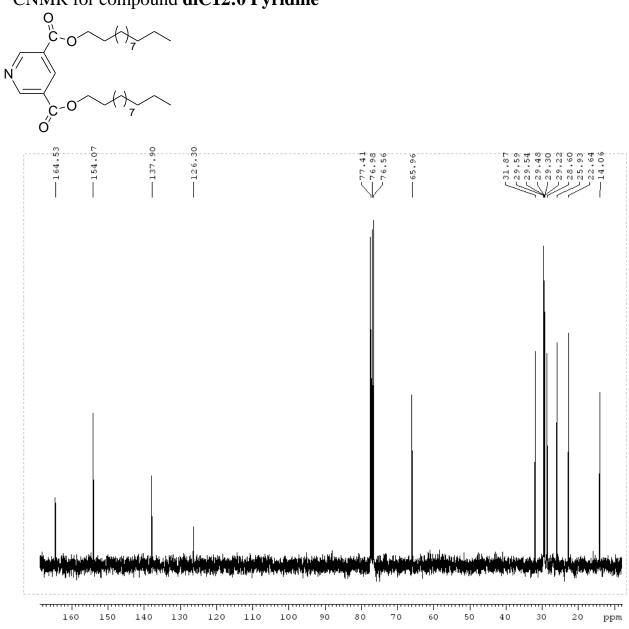



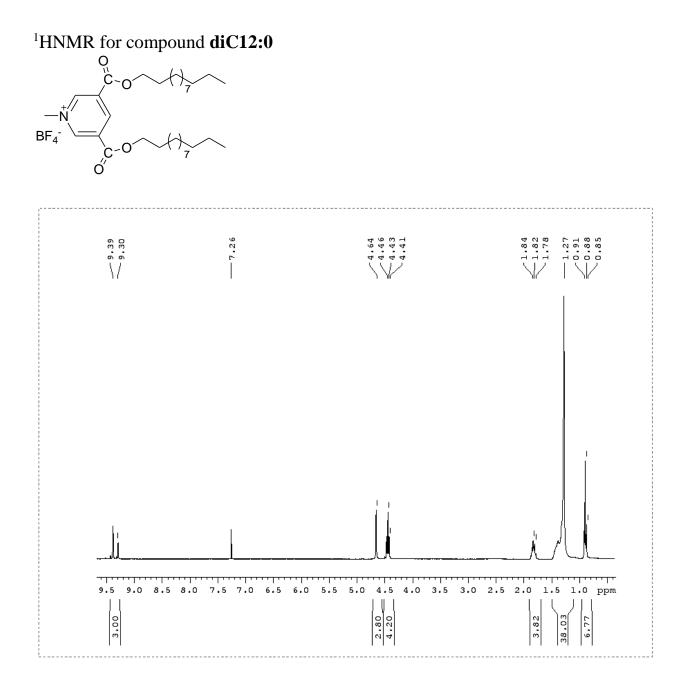


## ¹HNMR for compound **diC11:0 pyridine**

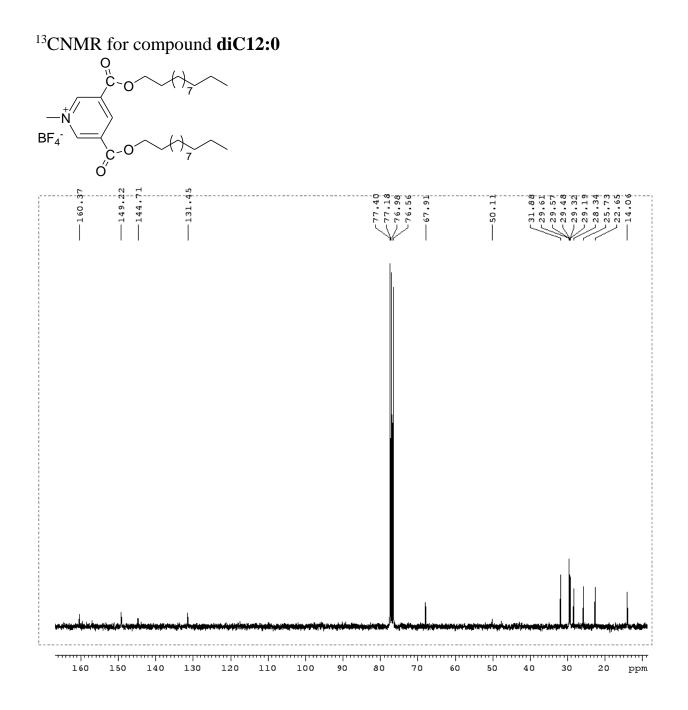


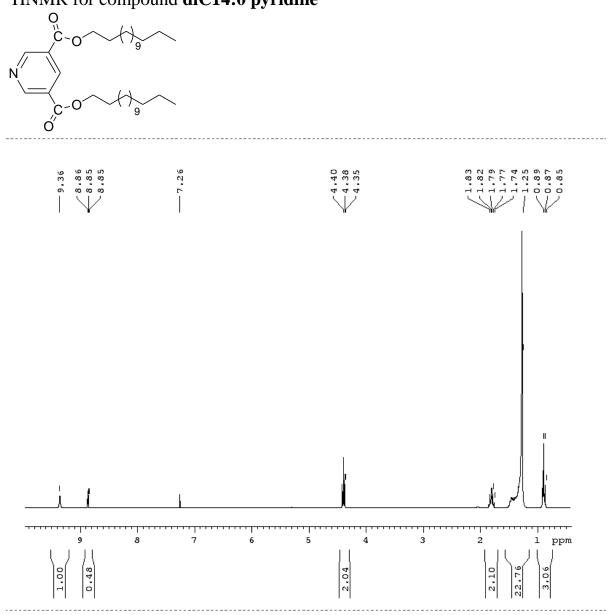






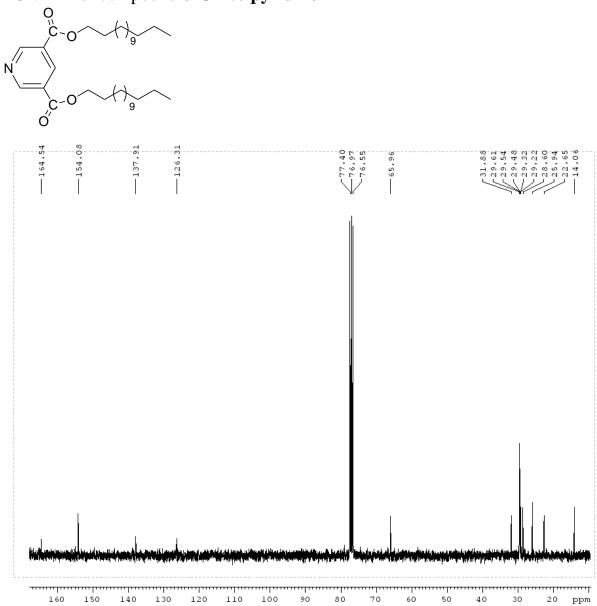



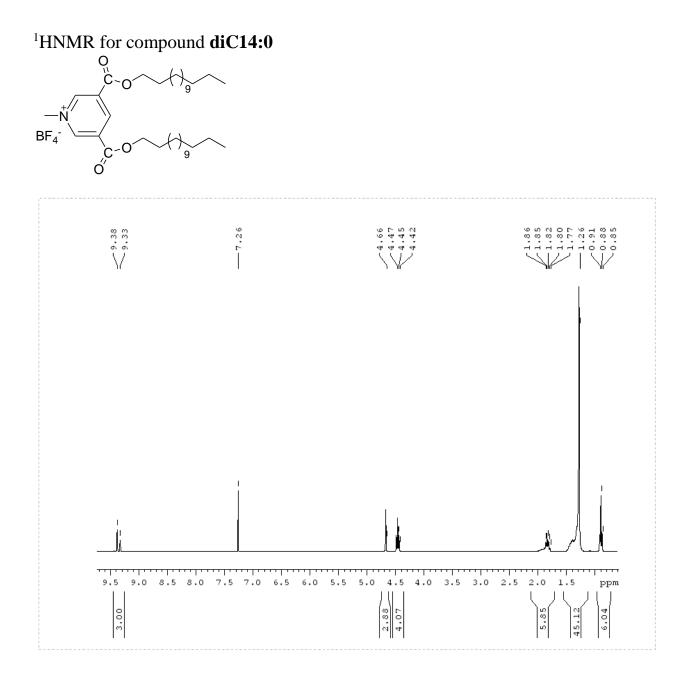



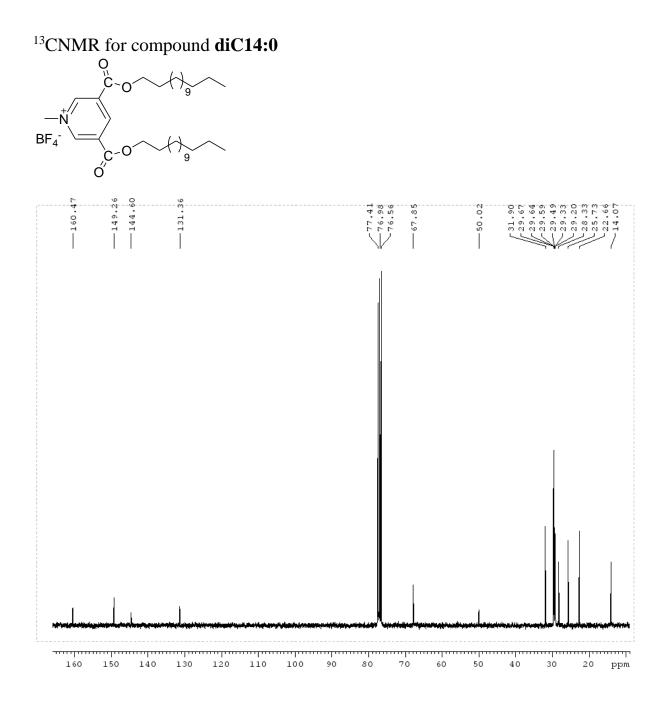


#### 



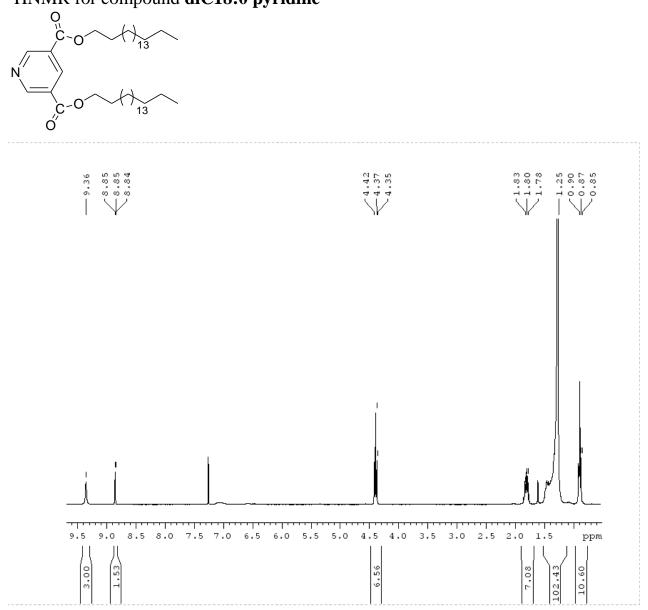
# ¹³CNMR for compound **diC12:0** Pyridine



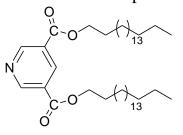



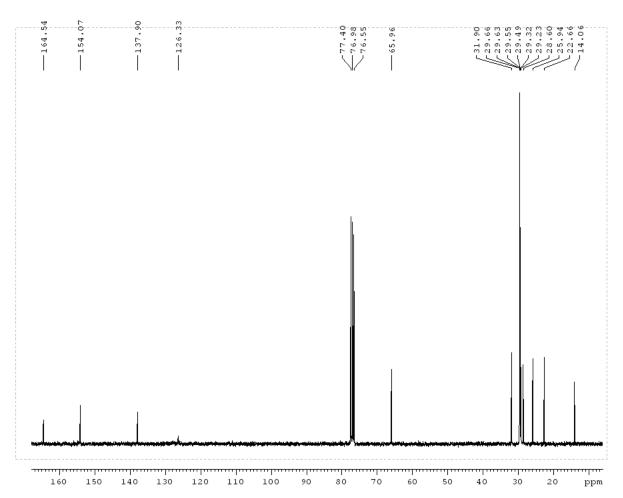

# ¹HNMR for compound **diC14:0 pyridine**

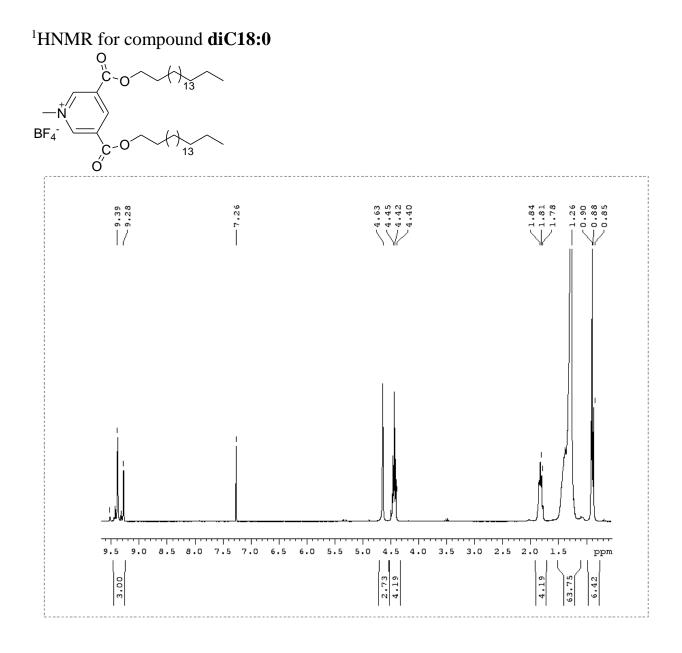

# ¹³CNMR for compound **diC14:0 pyridine**

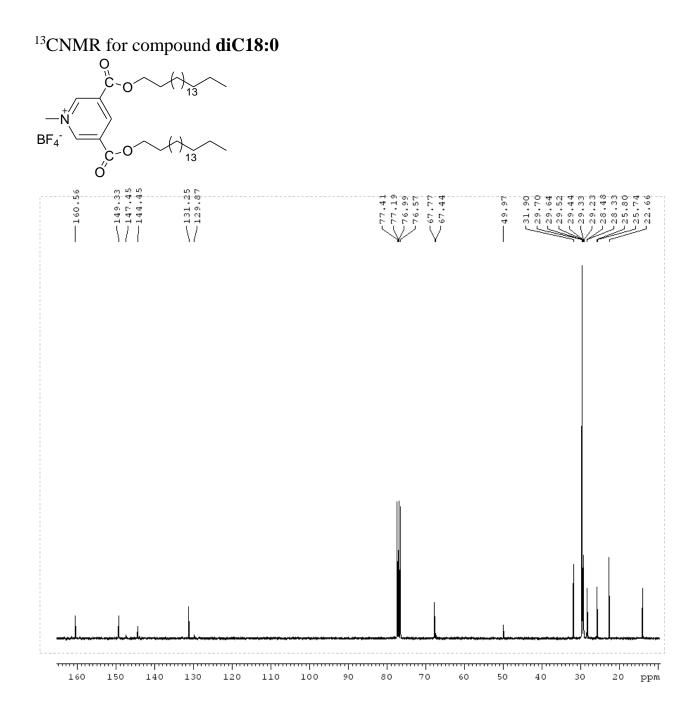




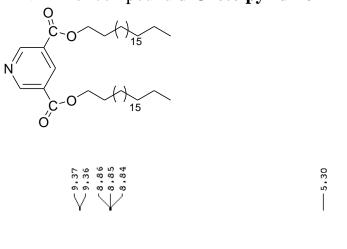




## ¹HNMR for compound **diC18:0 pyridine**



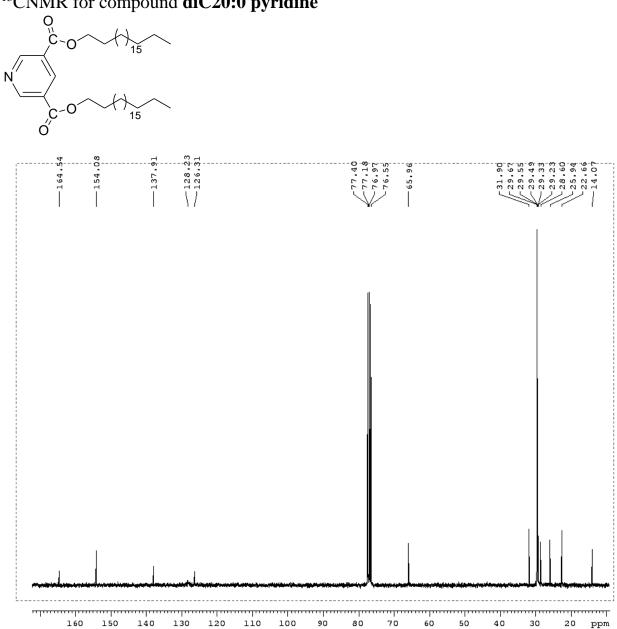


# ¹³CNMR for compound **diC18:0 pyridine**



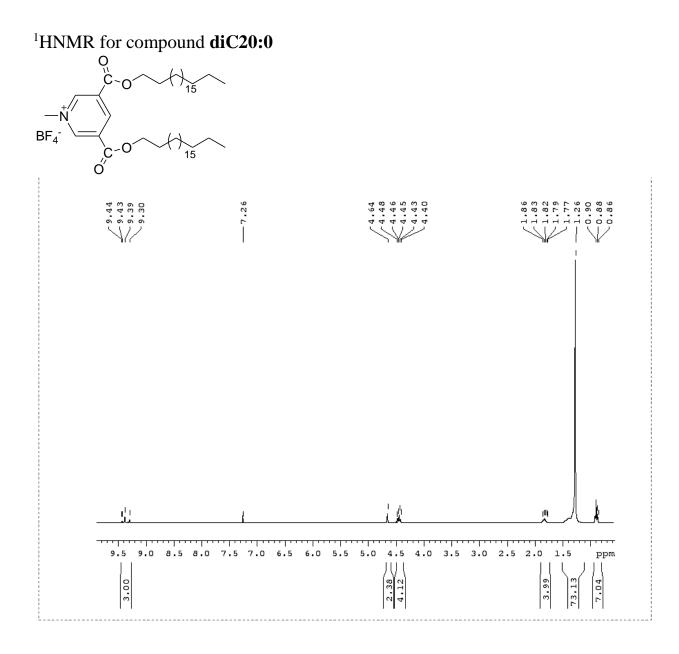




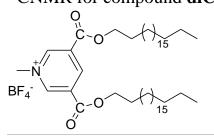


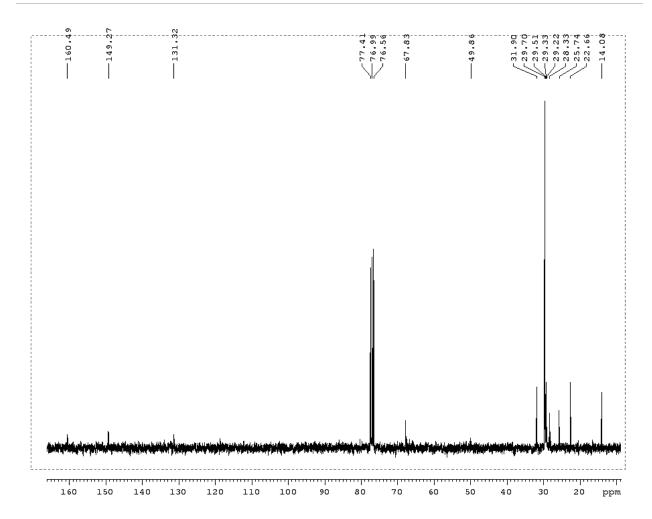




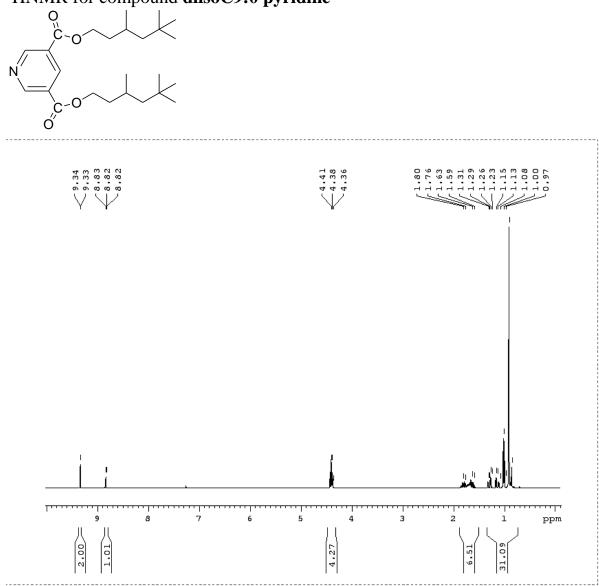


## ¹HNMR for compound **diC20:0 pyridine**

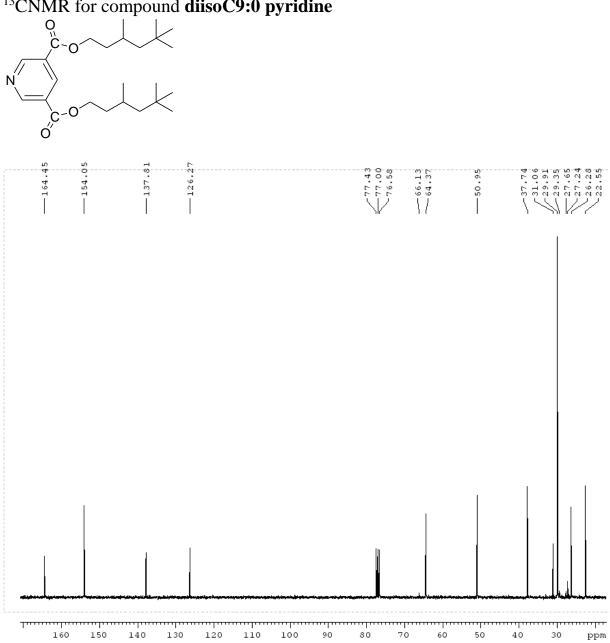




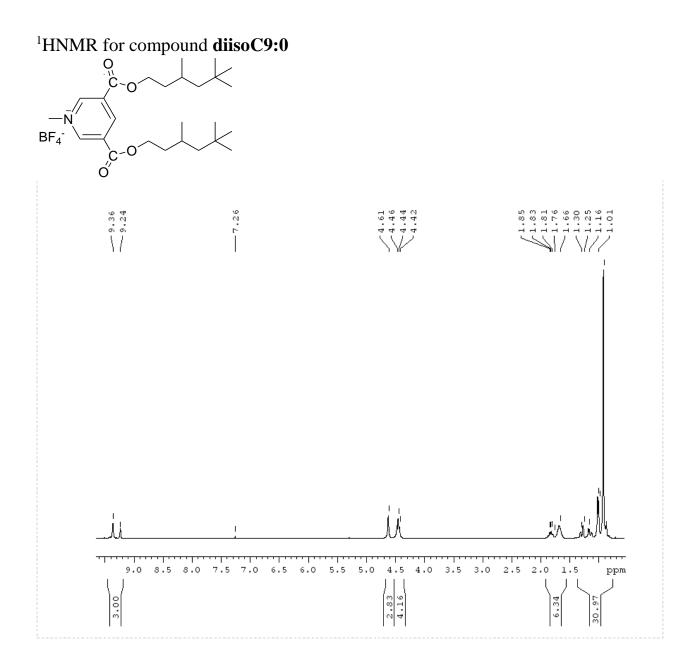



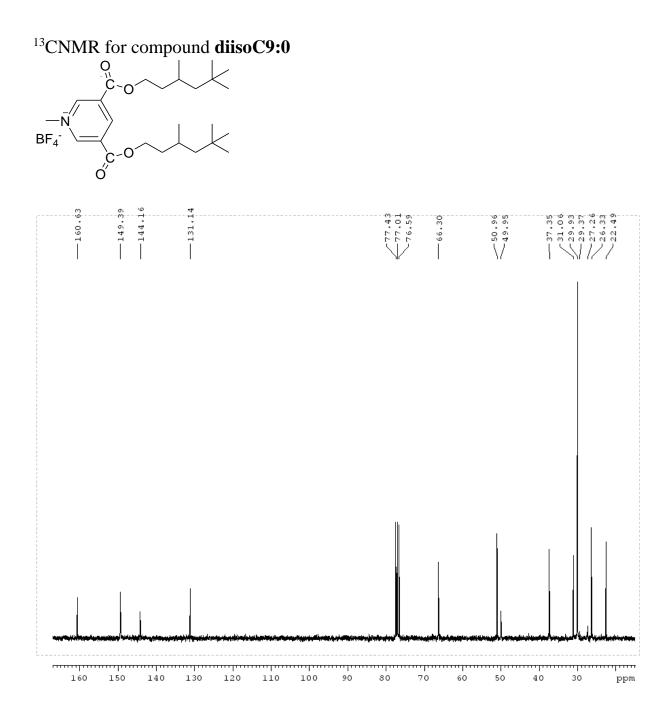

¹³CNMR for compound **diC20:0 pyridine** 

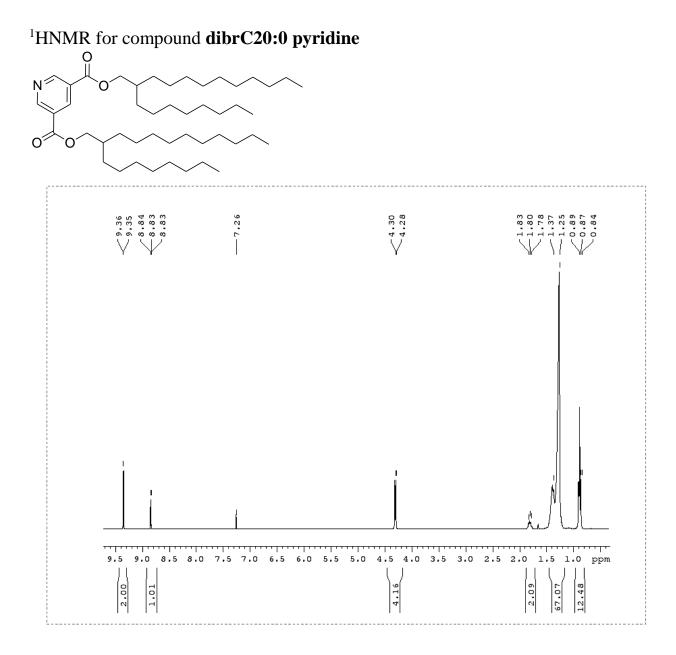


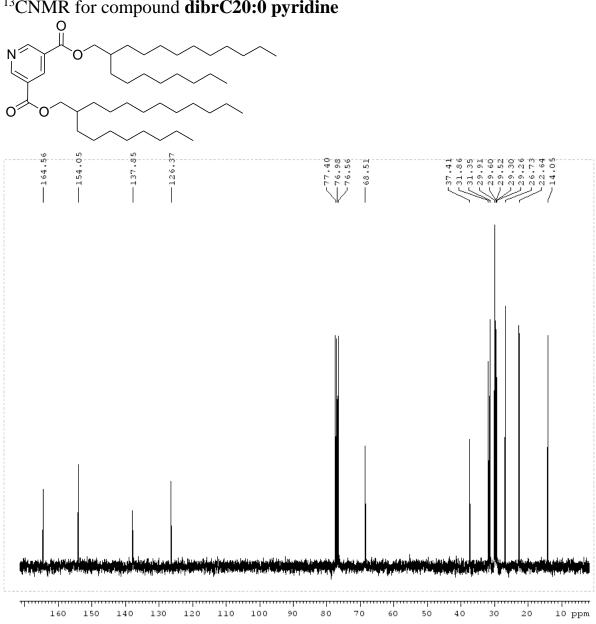


## ¹³CNMR for compound **diC20:0**



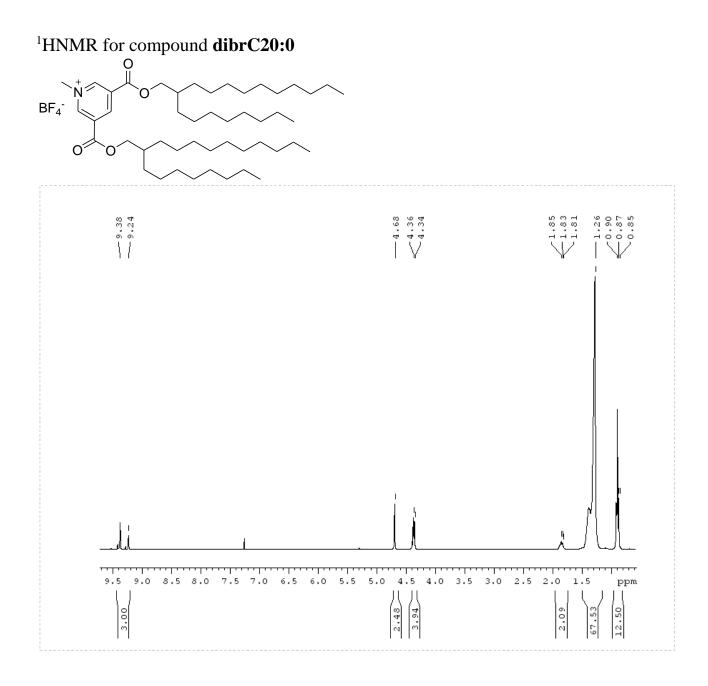


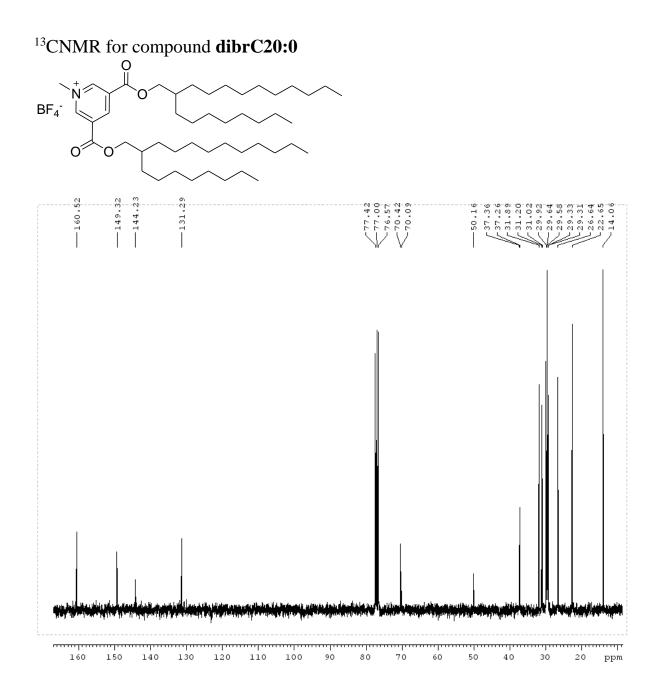


# ¹HNMR for compound **diisoC9:0 pyridine**

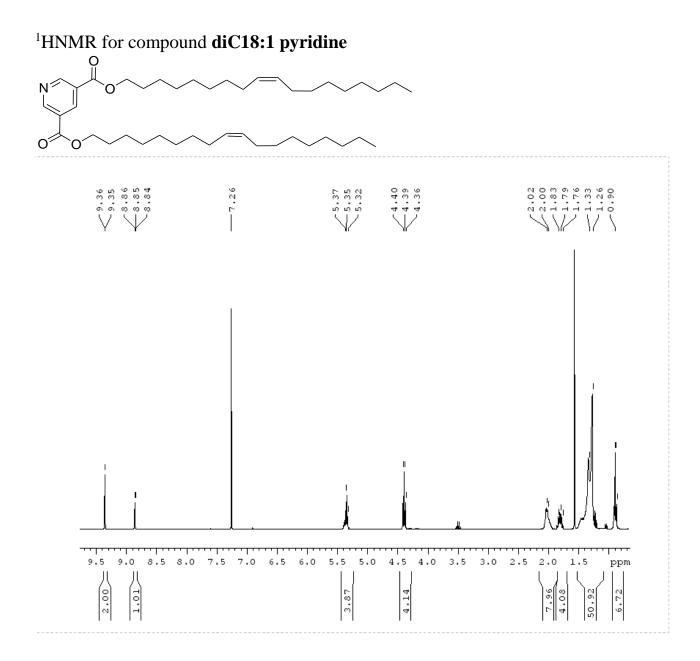


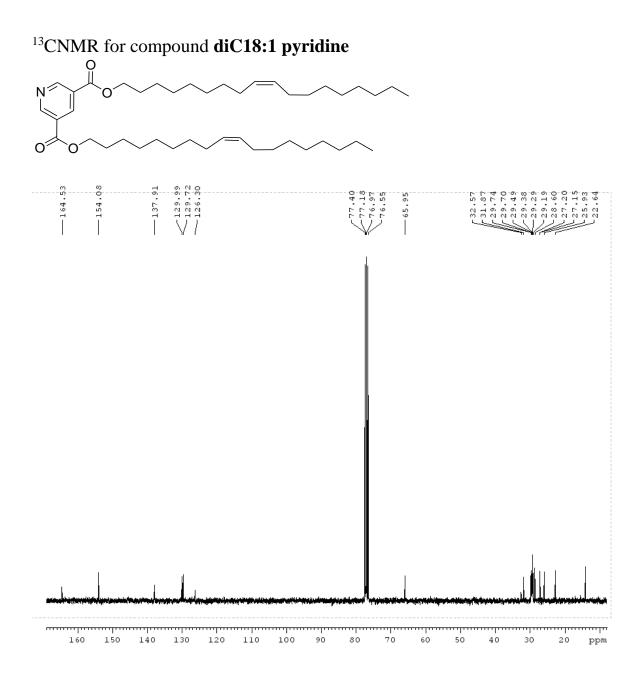



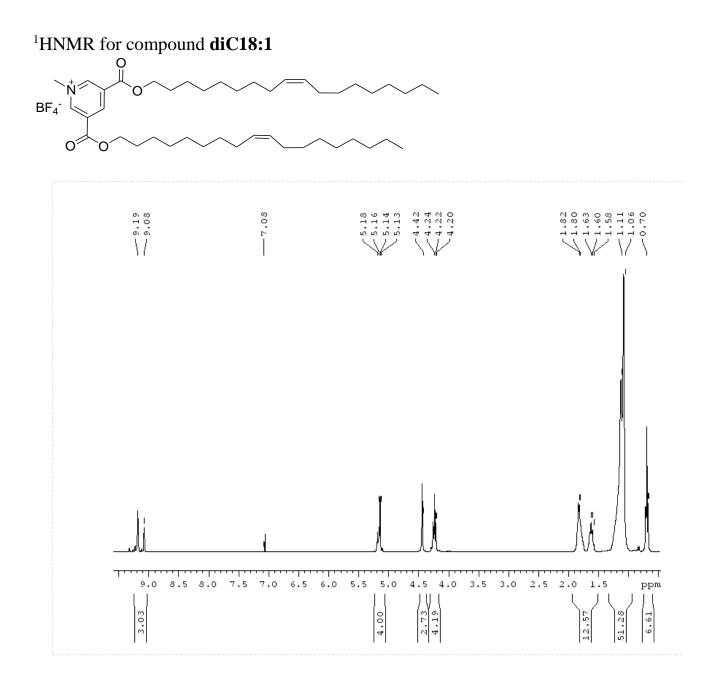

# ¹³CNMR for compound **diisoC9:0 pyridine**

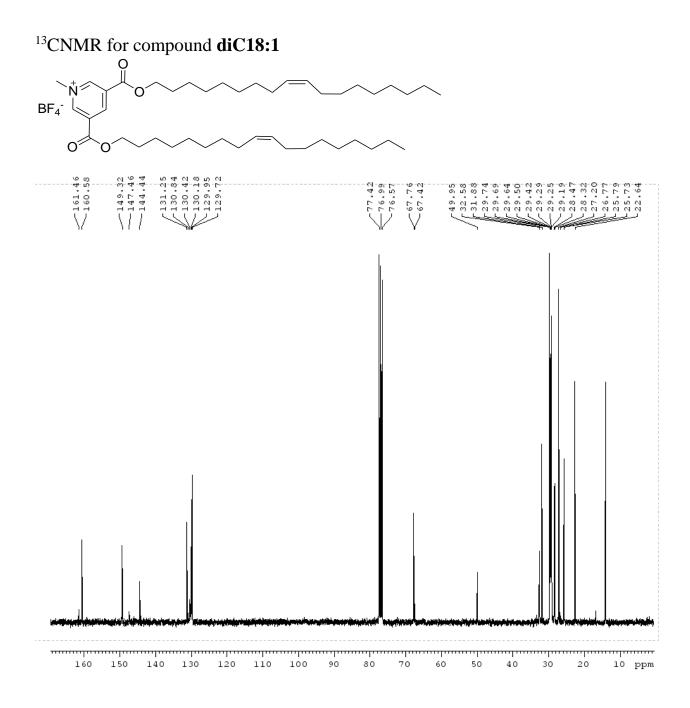


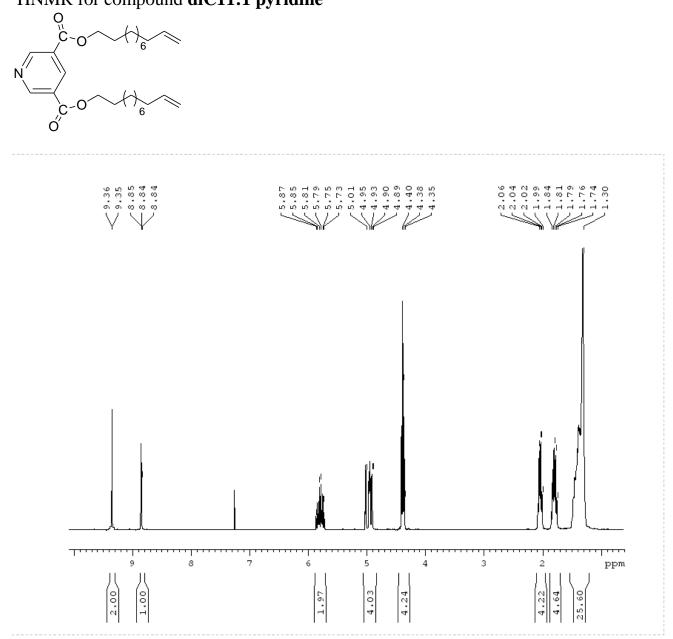



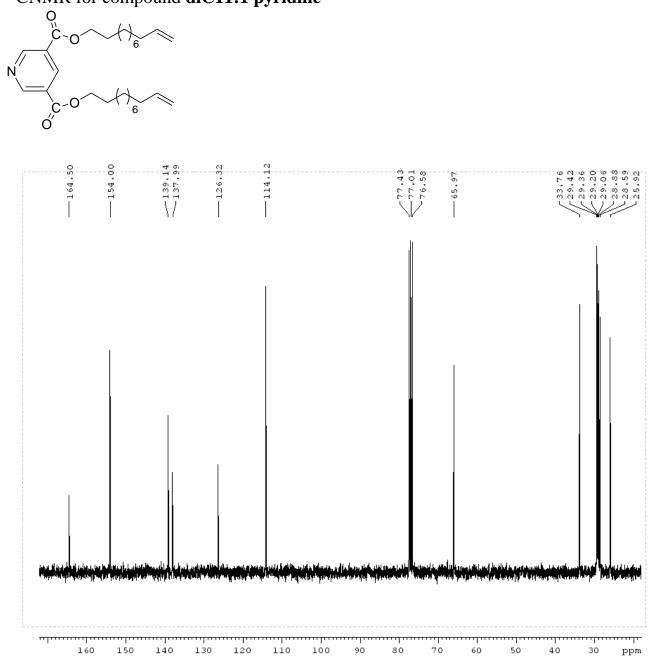


# ¹³CNMR for compound **dibrC20:0 pyridine**

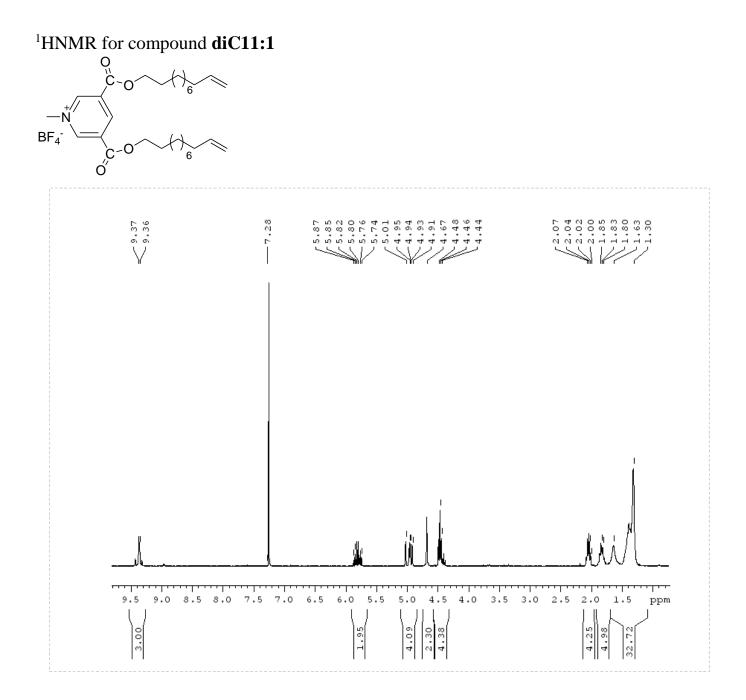


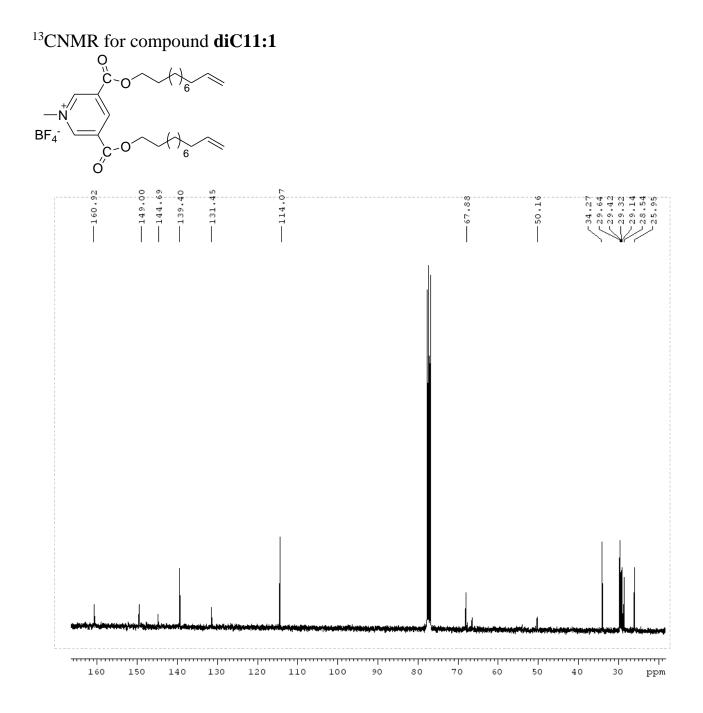


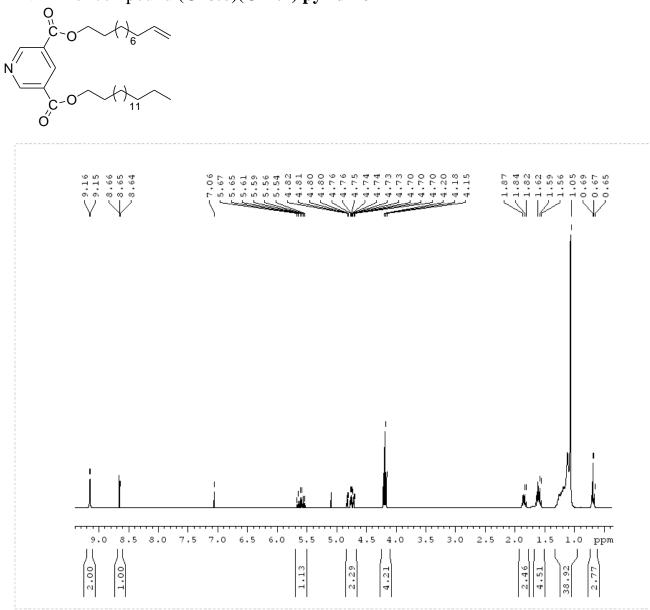





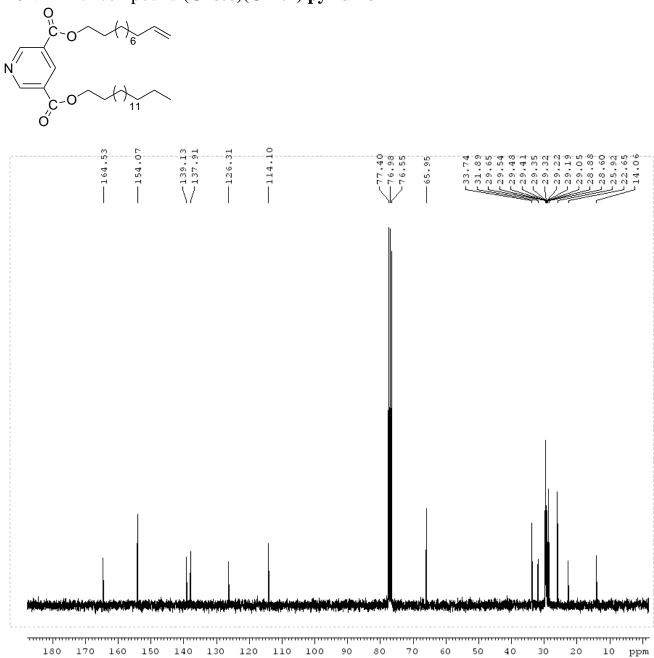





## ¹HNMR for compound **diC11:1 pyridine**

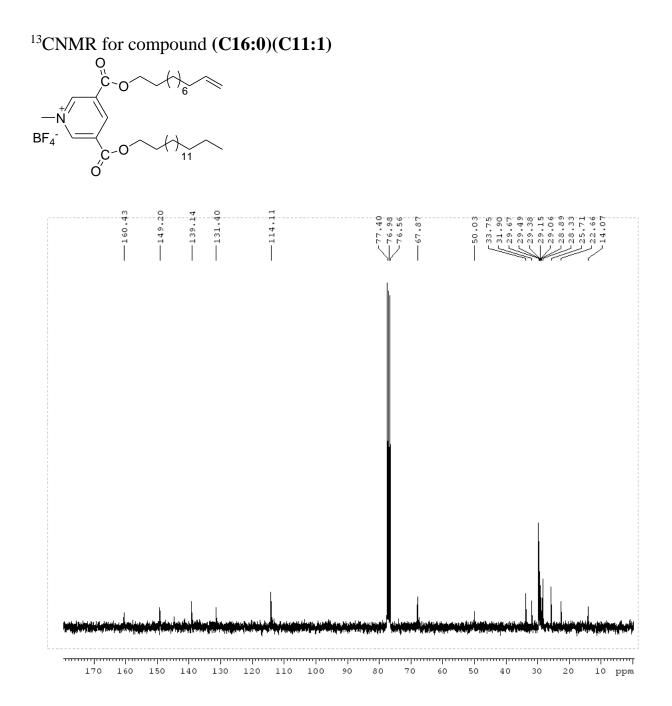


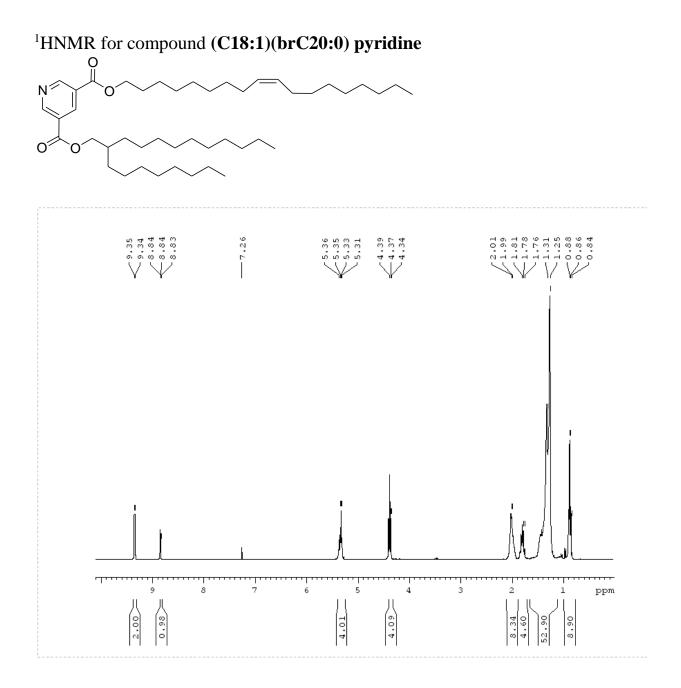

## ¹³CNMR for compound **diC11:1 pyridine**

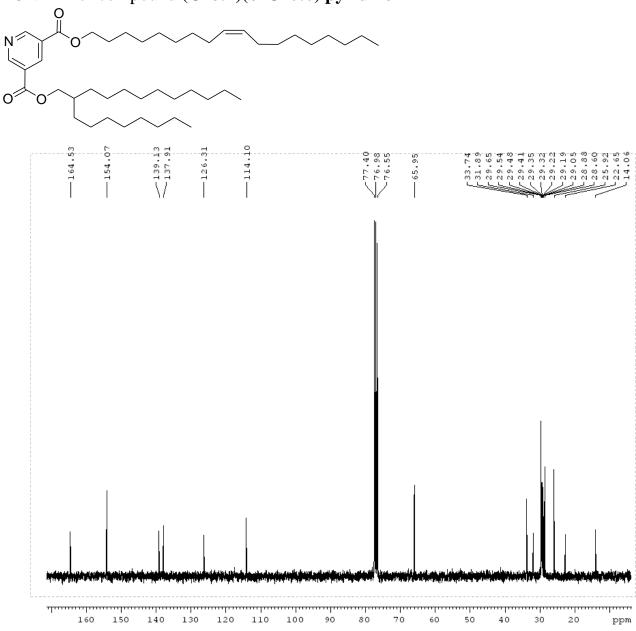


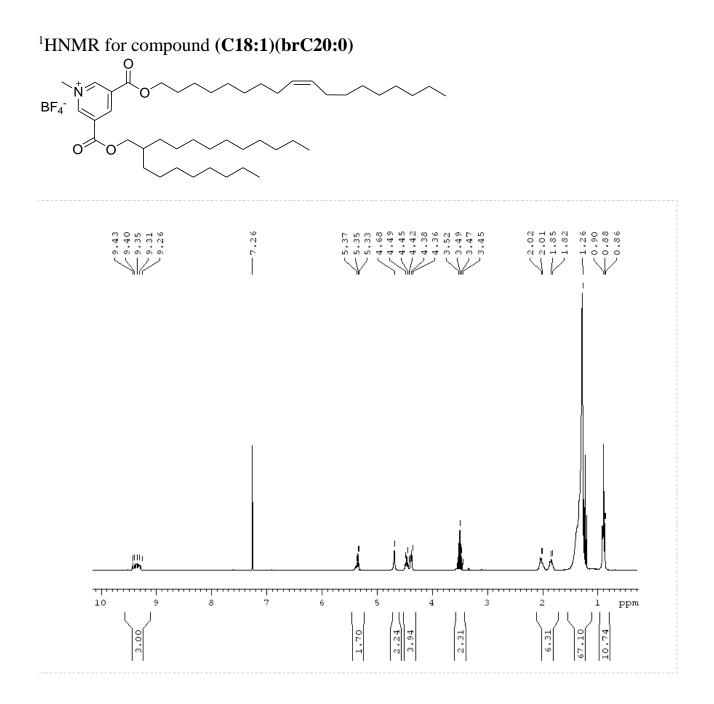


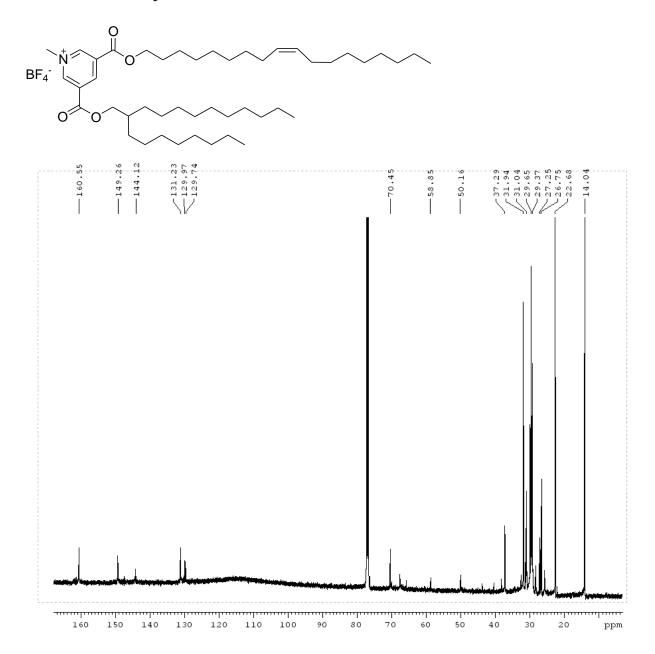




¹HNMR for compound (C16:0)(C11:1) pyridine





¹³CNMR for compound (C16:0)(C11:1) pyridine














¹³CNMR for compound (C18:1)(brC20:0)