Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

A three-component reagent system for rapid and mild removal of *O-*, *N-* and *S-*trityl protecting groups

Máté Kicsák,^a Miklós Bege,^a Ilona Bereczki,^a Magdolna Csávás,^a Mihály Herczeg,^a Lajos Kovács,^b

Zoltán Kupihár, b Anikó Borbása and Pál Herczegha

^aDepartment of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary, ^bDepartment of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary

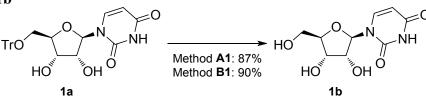
Table of Contents

General Information	S2
General Method	S2
Synthetic procedures and characterization of compounds	S2
References	S10
¹ H and ¹³ C NMR spectra of the compounds	S11

General Information

Optical rotations were measured at room temperature with a Perkin-Elmer 241 automatic polarimeter. TLC was performed on Kieselgel 60 F_{254} (Merck) with detection by UV-light (254 nm) and immersing into 5 vol.% ethanolic sulfuric acid or sulfuric acidic ammonium-molibdenate solution followed by heating. Column chromatography was performed on Silica gel 60 (Merck 0.040-0.063 mm). Organic solutions were dried over Na₂SO₄, and concentrated in vacuum. The ¹H NMR (360 and 400 MHz) and ¹³C NMR (90 and 100 MHz) spectra were recorded with Bruker DRX-360 and DRX-400 spectrometers at 25 °C. Chemical shifts are referenced to Me₄Si (0.00 ppm for ¹H) and to the residual solvent signals (CDCl₃: 77.16, DMSO-d₆: 39.52 ppm for ¹³C). MALDI-TOF MS analyses of the compounds were carried out in the positive reflectron mode using a BIFLEX III mass spectrometer (Bruker, Germany) equipped with delayed-ion extraction. 2,5-Dihydroxybenzoic acid (DHB) was used as matrix and F₃CCOONa as cationising agent in DMF. ESI-TOF MS spectra were recorded by a microTOF-Q type QqTOFMS mass spectrometer (Bruker) in the positive ion mode using MeOH as the solvent. Elemental analysis (C, H, N) was performed on an Elementar Vario MicroCube instrument.

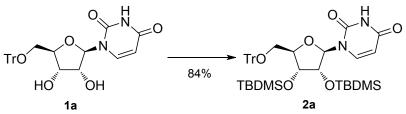
Compound 12 and 13a were purchased from Sigma-Aldrich.


General method A for detritylation using BF₃·Et₂O as the Lewis acid

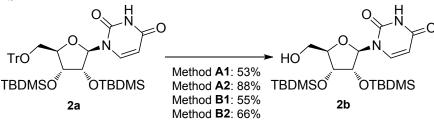
0.500 mmol of trityl, monomethoxytrityl or dimethoxytrityl derivative was added to the mixture of hexafluoroisopropanol (0.5 mL), BF₃·Et₂O (method A1: 0.2 equiv., method A2: 0.065 equiv.) and Et₃SiH (3.8 equiv., 300 μ L). When the yellow colour of the solution was disappeared the reaction was monitored by TLC. After complete conversion of the starting compound (cc. 3-5 min) the reaction was quenched by saturated aqueous solution of NaHCO₃. The solvent was evaporated in *vacuo* and the residue was purified by flash column chromatography.

General method B for detritylation using Cu(TfO)₂ as the Lewis acid

0.500 mmol of trityl derivative was added to the mixture of hexafluoroisopropanol (0.5 mL), $Cu(TfO)_2$ (method **B1**: 0.2 equiv., method **B2**: 0.065 equiv., 100 mg in 50 mL MeNO₂) and Et₃SiH (3.8 equiv., 300 µL). When the yellow colour of the solution was disappeared the reaction was monitored by TLC. After complete conversion of the starting compound (cc. 3-5 min) the reaction was quenched by saturated aqueous solution of NaHCO₃. The solvent was evaporated in *vacuo* and the residue was purified by flash column chromatography.


Compound 1b

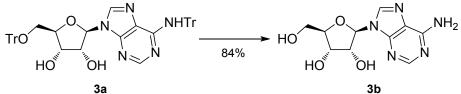
Compound 1a¹ (A1: 243 mg, 0.50 mmol; B1: 122 mg, 0.250 mmol) was converted to 1b by method A1 and B1. The crude product was purified by flash column chromatography (CH₂Cl₂/MeOH A1: 10:0 \rightarrow 9:1 \rightarrow 8:2, B1: 85:15 \rightarrow 8:2) to yield 1b (A1: 106 mg, 87%; B1: 56 mg, 90%) as a white solid. The spectral data were the same as those described in the literature. R_f= 0.14 (CH₂Cl₂/MeOH 9:1); ¹H NMR (400 MHz, DMSO-d₆ + one drop of D₂O) δ = 11.32 (s, 1H, NH), 7.89 (d, *J* = 8.1 Hz, 1H, CH_a uracil), 5.79 (d, *J* = 5.4 Hz, 1H, H-1), 5.67 (d, *J* = 8.1 Hz, 1H, CH_b uracil), 5.42 (s, 0.2H, OH), 5.17 (s, 0.4H, OH), 4.04 (t, *J* = 5.3 Hz, 1H, H-2), 3.98 (t, *J* = 4.4 Hz, 1H, H-4), 3.87 (q, *J* = 3.3 Hz, 1H, H-3), 3.63 (dd, *J* = 12.2


Hz, J = 3.0 Hz, 1H, H-5a), 3.60-3.54 (m, 1H, H-5b), 2.53 (s, 1H, O*H*); ¹³C NMR (100 MHz, DMSO-d₆ + one drop of D₂O) $\delta = 163.5$ (1C, C_q uracil), 151.0 (1C, C_q uracil), 141.1 (1C, CH_a uracil), 102.0 (1C, CH_b uracil), 87.9, 85.5, 73.7, 70.1 (4C, skeleton carbons), 61.0 (1C, C-5); ESI-TOF-MS: m/z calcd for C₉H₁₂N₂NaO₆ [M+Na]⁺ 267.059, found 267.055.

Compound 2a²

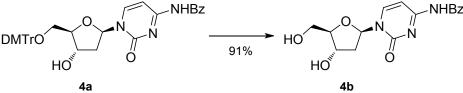
Compound **1a** (9.1 g, 18.60 mmol) was dissolved in dry DMF (50 mL) and cooled to 0 °C. Imidazole (6.3 g, 93.0 mmol, 5.0 equiv.) and *tert*-butyldimethylsilyl chloride (9.0 g, 59.7 mmol, 3.2 equiv) were added to the reaction mixture and stirred overnight. The reaction was diluted with EtOAc and extracted with water. The organic phase was dried over Na₂SO₄, filtered and concentrated. The crude product was purified by flash column chromatography (hexane/EtOAc 8:2) to yield **2a** (11.2 g, 84%) as a white foam. R_f = 0.41 (hexane/acetone 7:3); ¹H NMR (360 MHz, CDCl₃) δ = 9.25 (s, 1H, NH), 8.14 (d, *J* = 8.1 Hz, 1H, CH_a uracil), 7.38-7.25 (m, 15H, arom.), 5.84 (s, 1H, H-1), 5.26 (dd, *J* = 8.1 Hz, *J* = 1.7 Hz, 1H, CH_b uracil), 4.19 (s, 3H, H-2, H-3, H-4), 3.71 (d, *J* = 10.8 Hz, 1H, H-5a), 3.37 (d, *J* = 10.8 Hz, 1H, H-5b), 0.90, 0.77 (2 x s, 18H, 2 x *t*-Bu-CH₃), 0.17, 0.11, 0.02, -0.07 (4 x s, 12H, 4 x CH₃); ¹³C NMR (90 MHz, CDCl₃) δ = 163.5 (1C, C_q uracil), 150.4 (1C, C_q uracil), 143.1 (3C, C_q arom.), 140.4 (1C, CH_a uracil), 129.1, 128.1, 127.7 (15C, arom.), 102.1 (1C, CH_b uracil), 89.9, 83.0, 76.3, 70.9 (4C, skeleton carbons), 87.9 (1C, C_q Tr), 61.9 (1C, C-5), 25.9 (6C, 2 x *t*-Bu-CH₃), 18.1 (1C, C_q *t*-Bu), -3.9, -4.3, -4.7, -4.8 (4C, 4 x CH₃); ESI-TOF-MS: *m/z* calcd for C₄₀H₅₄N₂NaO₆Si₂ [M+Na]⁺ 737.342, found 737.340.

Compound 2b³

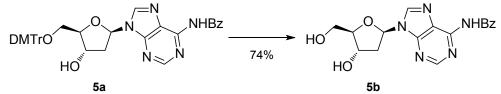


Compound **2a** (**A1**, **A2**, **B1** and **B2**: 178 mg, 0.250 mmol) was converted to **2b** by method **A1**, **A2**, **B1** and **B2**. The crude product was purified by flash column chromatography (hexane/acetone 8:2) to yield **2b** (**A1**: 63 mg, 53%; **A2**:^a 104 mg, 88%; **B1**: 65 mg, 55%; **B2**: 79 mg, 66%) as a white solid. $R_f = 0.25$ (hexane/acetone 7:3); ¹H NMR (360 MHz, CDCl₃) $\delta = 8.74$ (s, 1H, N*H*), 7.73 (d, J = 8.1 Hz, 1H, CH_a uracil), 5.84 (d, J = 8.0, 1H, CH_b uracil), 5.58 (d, J = 5.3 Hz, 1H, H-1), 4.67 (t, J = 4.9 Hz, 1H), 4.29 (t, J = 3.9 Hz, 1H), 4.21 (s, 1H), 4.05 (d, J = 12.2 Hz, 1H, H-5a), 3.86-3.81 (m, 1H, H-5b), 3.12 (d, J = 4.7 Hz, 1H, OH), 1.03, 0.99 (2 x s, 18H, 2 x *t*-Bu-CH₃), 0.21, 0.20, 0.18, 0.15 (4 x s, 12H, 4 x CH₃); ¹³C NMR (90 MHz, CDCl₃) $\delta = 163.9$, 150.6 (2C, 2 x C_q uracil), 143.1, 102.1 (2C, 2 x CH uracil), 93.6, 86.0, 74.0, 71.6 (C-1, C-2, C-3, C-4), 61.5 (1C, C-5), 26.0, 25.9 (6C, 2 x *t*-Bu-CH₃), 18.2, 18.1 (2C, 2 x C_q *t*-Bu); MALDI-TOF-MS: *m/z* calcd for C₂₁H₄₀N₂NaO₆Si₂ [M+Na]⁺ 495.23, found 495.33.

^a The UV-active byproduct triphenylmethane was isolated from the reaction mixture (45 mg) and its structure was determined by NMR measurements: ¹H NMR (360 MHz, CDCl₃) δ =

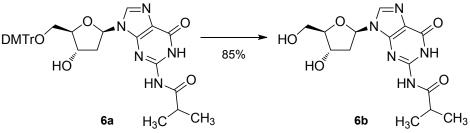

7.28-7.10 (m, 15H, arom), 5.54 (s, 1H, C*H*); ¹³C NMR (90 MHz, CDCl₃) δ = 144.1 (3C, 3 x C_q arom), 129.6, 128.4, 126.4 (15C, arom), 100.0 (1C, C_q trityl), 57.0 (1C, CH).

Compound 3b

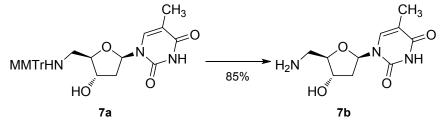

Compound **3a**⁴ (376 mg, 0.500 mmol) was converted to **3b** by method **A1**. The crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 95:5 \rightarrow 9:1 \rightarrow 85:15) to yield **3b** (112 mg, 84%) as a white solid. The spectral data were the same as those described in the literature. R_f= 0.32 (CH₂Cl₂/MeOH 85:15); ¹H NMR (400 MHz, DMSO-d₆ + one drop of D₂O) δ = 8.38, 8.17 (2 x s, 2H, 2 x CH adenine), 7.37 (s, 2H, NH₂), 5.91 (d, *J* = 6.2 Hz, 1H, H-1), 5.52 (d, *J* = 6.1 Hz, 0.5H, OH), 5.27 (d, *J* = 4.2 Hz, 0.3H, OH), 4.63 (t, *J* = 5.5 Hz, 1H, H-4), 4.18-4.17 (m, 1H), 4.01 (q, *J* = 3.2 Hz, 1H), 3.70 (dd, *J* = 12.1 Hz, *J* = 3.3 Hz, 1H, H-5a), 3.58 (dd, *J* = 12.4 Hz, *J* = 3.7 Hz, 1H, H-5b), 2.53 (s, 0.3H, OH); ¹³C NMR (100 MHz, DMSO-d₆ + one drop of D₂O) δ = 156.2 (1C, C_q adenine), 152.6 (2C, 2 x CH adenine), 149.2 (1C, C_q adenine), 119.5 (1C, C_q adenine), 88.1, 86.0, 73.5, 70.7 (4C, skeleton carbons), 61.7 (1C, C-5); ESI-TOF-MS: *m/z* calcd for C₁₀H₁₃N₅NaO₄ [M+Na]⁺ 290.087, found 290.086.

Compound 4b⁵

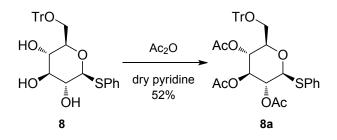
Compound **4a**⁶ (317 mg, 0.500 mmol) was converted to **4b** by method **A1**. The crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 95:5 \rightarrow 9:1) to yield **4b** (150 mg, 91%) as a white solid. R_f= 0.44 (CH₂Cl₂/MeOH 9:1); ¹H NMR (400 MHz, DMSO-d₆) δ = 11.24 (s, 1H, NH), 8.43 (d, *J* = 7.5 Hz, 1H, CH_a cytosine), 8.04-7.37 (m, 6H, 5 x arom., CH_b cytosine), 6.18 (t, *J* = 6.3 Hz, 1H, H-1), 5.33 (d, *J* = 4.2 Hz, 1H), 5.12 (t, *J* = 5.0 Hz, 1H), 4.31-4.27 (m, 1H), 3.94-3.91 (m, 1H), 3.67-3.63 (m, 2H, H-5a,b), 2.39-2.33 (m, 1H, H-2a), 2.13-2.06 (m, 1H, H-2b); ¹³C NMR (100 MHz, DMSO-d₆) δ = 163.0 (1C, C_q cytosine), 154.5 (1C, C_q cytosine), 145.0 (1C, CH_a cytosine), 133.3 (1C, C_q arom.), 132.7, 128.5 (5C, arom.), 96.2 (1C, CH_b cytosine), 88.0, 86.3, 70.0 (3C, skeleton carbons), 61.0 (1C, C-5), 41.0 (1C, C-2); ESI-TOF-MS: *m/z* calcd for C₁₆H₁₇N₃NaO₅ [M+Na]⁺ 354.107, found 354.104.


Compound 5b⁵

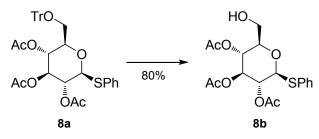
Compound **5a**⁵ (329 mg, 0.500 mmol) was converted to **5b** by method **A1**. The crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 95:5) to yield **5b** (131 mg, 74%) as a white solid. R_f= 0.33 (CH₂Cl₂/MeOH 9:1); ¹H NMR (400 MHz, DMSO-d₆) δ = 11.23 (s, 1H, NH), 8.78 (s, 1H, CH_a adenine), 8.72 (s, 1H, CH_b adenine), 8.09-7.54 (m, 5H, arom.), 6.53 (t, *J* = 6.8 Hz, 1H, H-1), 5.42 (d, *J* = 2.8 Hz, 1H), 5.08 (t, *J* = 4.9 Hz, 1H), 4.50


(d, J = 1.9 Hz, 1H), 3.95 (dd, J = 7.4 Hz, J = 4.4 Hz, 1H), 3.71-3.66 (m, 1H, H-5a), 3.61-3.56 (m, 1H, H-5b), 2.87-2.80 (m, 1H, H-2a), 2.43-2.38 (m, 1H, H-2b); ¹³C NMR (100 MHz, DMSO-d₆) $\delta = 152.0$, 150.4, 125.9 (3C, C_q adenine), 133.5 (1C, C_q arom.), 132.5, 128.5 (5C, arom.), 88.1, 83.9, 70.8 (3C, skeleton carbons), 61.7 (1C, C-5), 39.4 (1C, C-2); ESI-TOF-MS: m/z calcd for C₁₇H₁₇N₅NaO₄ [M+Na]⁺ 378.118, found 378.117.

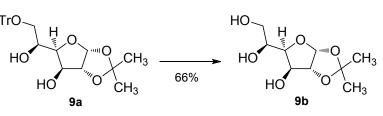
Compound 6b⁷


Compound **6a**⁸ (312 mg, 0.500 mmol) was converted to **6b** by method **A1**. The crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 95:5 \rightarrow 9:1) to yield **6b** (144 mg, 85%) as a white solid. R_f= 0.20 (CH₂Cl₂/MeOH 9:1); ¹H NMR (400 MHz, DMSO-d₆) δ = 12.09, 11.69 (s, 2H, 2 x N*H*), 8.25 (s, 1H, C*H* guanine), 6.23 (dd, *J* = 7.1 Hz, *J* = 6.3 Hz, 1H, H-1), 5.34 (d, *J* = 3.7 Hz, 1H), 4.98 (t, *J* = 5.3 Hz, 1H), 4.40 (dd, *J* = 5.1 Hz, *J* = 2.8 Hz, 1H), 3.86 (dd, *J* = 7.4 Hz, *J* = 4.4 Hz, 1H), 3.63-3.51 (m, 2H, H-5a,b), 2.82-2.75 (m, 1H, H-2a), 2.60-2.55 (m, 1H, H-2b), 2.33-2.28 (m, 1H, C*H*), 1.15, 1.13 (2 x s, 6H, 2 x C*H*₃); ¹³C NMR (100 MHz, DMSO-d₆) δ = 180.2 (1C, CO), 154.9, 148.4, 148.1, 120.2 (4C, C_q guanine), 87.8, 83.0, 70.5 (3C, skeleton carbons), 61.5 (1C, C-5), 39.7 (1C, C-2), 34.8 (1C, CH), 18.9 (2C, 2 x CH₃); ESI-TOF-MS: *m/z* calcd for C₁₄H₁₉N₅NaO₅ [M+Na]⁺ 360.128, found 360.127.

Compound 7b⁹

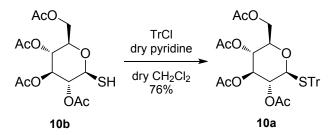

Compound $7a^{10}$ (136 mg, 0.260 mmol) was converted to 7b by method A1. The crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 1:1 + 0.1% of Et₃N) to yield 7b (51 mg, 85%) as a yellow solid. R_f= 0.10 (CH₂Cl₂/MeOH 1:1 + 0.1% of Et₃N); ¹H NMR (400 MHz, DMSO-d₆) δ = 7.64 (d, J = 1.0 Hz, 1H, CH thymine), 6.15 (t, J = 6.6 Hz, 1H), 4.70-4.38 (m, 5H), 4.21 (dt, J = 6.4 Hz, J = 3.4 Hz, 1H), 3.66 (dd, J = 8.6 Hz, J = 5.2 Hz, 1H), 2.74-2.73 (m, 2H), 2.18-2.11 (m, 1H, H-2a), 2.08-2.02 (m, 1H, H-2b), 1.80 (s, 3H, CH₃); ¹³C NMR (100 MHz, DMSO-d₆) δ = 164.0, 150.7, 109.6 (3C, 3 x C_q thymine), 136.3 (1C, CH thymine), 87.8, 83.5, 70.8 (3C, skeleton carbons), 43.7 (1C, C-5), 39.0 (1C, C-2), 12.2 (1C, CH₃); ESI-TOF-MS: m/z calcd for C₁₀H₁₆N₃O₄ [M+H]⁺ 242.114, found 242.114.

Compound 8a

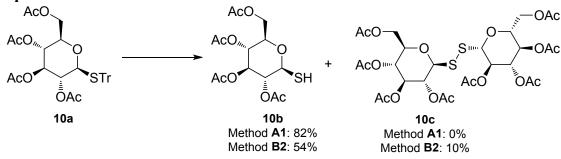

Compound **8** (800 mg, 1.55 mmol) was dissolved in dry pyridine (5 mL), Ac₂O (3.5 mL) was added to the mixture and stirred overnight. The solution was poured into ice-water, diluted with CH₂Cl₂ and extracted. The organic phase was extracted with diluted acetic acid, water, saturated aqueous NaHCO₃-solution and then dried over Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography (hexane/acetone 8:2 + 0.1 % of Et₃N) to afford **8a** (518 mg, 52%) as a white foam. R_f= 0.27 (hexane/acetone 8:2 + 0.1 % of Et₃N); ¹H NMR (400 MHz, CDCl₃) δ = 7.64-7.14 (m, 20H, arom.), 5.16 (t, *J* = 9.2 Hz, 1H, H-3), 5.08 (t, *J* = 9.8 Hz, 1H, H-2), 5.03 (t, *J* = 8.7 Hz, 1H, H-4), 4.73 (d, *J* = 10.0 Hz, 1H, H-1), 3.58 (ddd, *J* = 9.8 Hz, *J* = 5.1 Hz, *J* = 1.9 Hz, 1H, H-5), 3.26 (dd, *J* = 10.6 Hz, *J* = 1.9 Hz, 1H, H-6a), 3.14 (dd, *J* = 10.6 Hz, *J* = 5.1 Hz, 1H, H-6b), 2.09, 1.96, 1.70 (3 x s, 9H, 3 x Ac-CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 170.4, 169.4, 169.0 (3C, 3 x Ac-CO), 143.7 (3C,3 x C_q Tr-arom.), 133.3-127.1 (20C, arom.), 131.9 (1C, C_q SPh), 86.8 (1C, C_q Tr), 85.7 (1C, C-1), 77.7, 74.5, 70.2, 68.5 (4C, skeleton carbons), 62.1 (1C, C-6), 20.9, 20.7, 20.5 (3C, 3 x Ac-CH₃); Elemental analysis: calcd (%) for C₃₇H₃₆O₈S: C 69.36, H 5.66, S 5.00; found C 69.40, H 5.68, S 4.99.

Compound 8b

Compound **8a** (80 mg, 0.125 mmol) was converted to **8b** by method **A2**. The crude product was purified by flash column chromatography (CH₂Cl₂/acetone 10:0 \rightarrow 10:2) to yield **8b** (40 mg, 80%) as a white foam. R_f= 0.24 (CH₂Cl₂/acetone 98:2); ¹H NMR (400 MHz, CDCl₃) δ = 7.49-7.31 (m, 5H, arom.), 5.27 (t, *J* = 9.4 Hz, 1H, H-3), 5.00 (t, *J* = 9.6 Hz, 1H, H-2), 4.95 (t, *J* = 9.4 Hz, 1H, H-4), 4.75 (d, *J* = 10.1 Hz, 1H, H-1), 3.76-3.73 (m, 1H, H-6a), 3.62-3.64 (m, 2H, H-5, H-6b), 2.27 (s, 1H, OH), 2.08, 2.04, 2.00 (3 x s, 9H, 3 x Ac-CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 170.3, 170.1, 169.4 (3C, 3 x Ac-CO), 133.0, 129.2, 128.5 (5C, arom.), 131.7 (1C, C_q arom.), 85.8 (1C, C-1), 78.4, 73.9, 70.3, 68.6 (4C, skeleton carbons), 61.6 (1C, C-6), 20.8, 20.7 (3C, 3 x Ac-CH₃); Elemental analysis: calcd (%) for C₁₈H₂₂O₈S: C 54.26, H 5.57, S 8.05; found C 54.23, H 5.60, S 8.09.


Compound 9b¹¹

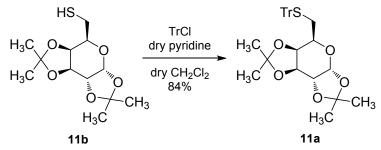
Compound **9a**¹² (230 mg, 0.500 mmol) was converted to **9b** by method **A2**. The crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 95:5) to yield **9b** (73 mg, 66%) as a white solid. The spectral data were the same as those described in the literature. $R_{f}= 0.13$ (CH₂Cl₂/MeOH 95:5); [α]_D: -10.1 (*c* 0.13, MeOH); lit. ¹³: [α]_D: -11.6 (*c* 2.50, H₂O); ¹H NMR (400 MHz, DMSO-d₆ + one drop of D₂O) $\delta = 5.79$ (d, $J_{1,2} = 3.7$ Hz, 1H, H-1), 4.38 (d, $J_{1,2} = 3.7$ Hz, 1H, H-2), 4.03 (d, J = 2.4 Hz, 1H, H-3), 3.83 (dd, $J_{4,5} = 8.6$ Hz, $J_{3,4} = 2.5$ Hz, 1H, H-4), 3.68 (ddd, $J_{4,5} = 8.7$ Hz, $J_{5,6b} = 6.2$ Hz, $J_{5,6a} = 2.9$ Hz, 1H, H-5), 3.55 (dd, $J_{gem} = 11.2$ Hz, $J_{5,6a} = 2.9$ Hz, 1H, H-6b), 1.37, 1.23 (2 x s, 6H, 2 x *i*P-CH₃); ¹³C NMR (100 MHz, DMSO-d₆ + one drop of D₂O) $\delta = 110.6$


(1C, C_q *i*P), 104.6 (1C, C-1), 84.8, 80.2, 73.3, 68.5 (4C, skeleton carbons), 63.7 (1C, C-6), 26.8, 26.2 (2C, 2 x *i*P-CH₃); ESI-TOF-MS: m/z calcd for C₉H₁₆NaO₆ [M+Na]⁺ 243.084, found 243.081.

Compound 10a

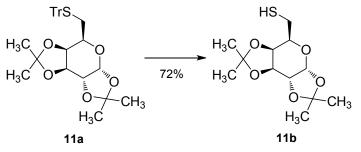
To a solution of compound **10b** (364 mg, 1.000 mmol) in dry CH₂Cl₂ (5 mL) dry pyridine (0.6 mL) and triphenylmethyl chloride (418 mg, 1.50 mmol, 1.5 equiv.) were added and stirred overnight under argon atmosphere. Next day the reaction mixture was diluted with CH₂Cl₂ and extracted with 10% aqueous NaHSO₄-solution then saturated aqueous NaHCO₃-solution. The organic phase was dried over Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography (hexane/ethyl-acetate 8:2) to afford **10a** (461 mg, 76%) as a white solid. R_f = 0.40 (hexane/ethyl-acetate 7:3); [α]_D: +1.64 (*c* 0.12, CHCl₃); ¹H NMR (360 MHz, CDCl₃) δ = 7.42-7.23 (m, 15H, arom.), 5.13-5.08 (m, 1H), 5.01-4.90 (m, 2H), 4.01 (dd, *J* = 12.2 Hz, *J* = 4.6 Hz, 1H), 3.78-3.72 (m, 2H), 2.90-2.87 (m, 1H), 2.07, 1.97, 1.96, 1.94 (4 x s, 12H, 4 x Ac-CH₃); ¹³C NMR (90 MHz, CDCl₃) δ = 170.6, 170.3, 169.4, 169.3 (4C, 4 x Ac-CO), 144.5 (3C, 3 x C_q arom.), 130.1, 127.9, 127.1 (15C, arom.), 83.8 (1C, C-1), 75.4, 74.5, 69.9, 68.3 (4C, C-2, C-3, C-4, C-5), 68.9 (1C, C_q Tr), 61.9 (1C, C-6), 20.9, 20.8, 20.7, 20.6 (4C, 4 x Ac-CH₃); ESI-TOF-MS: *m/z* calcd for C₃₃H₃₄NaO₉S [M+Na]⁺ 629.182, found 629.180.

Compound 10b^{14,15}

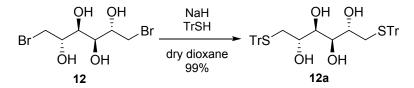

Compound **10a** (A1 and B2: 151 mg, 0.250 mmol) was converted to **10b** by method A1 and B2. The crude product was purified by flash column chromatography (hexane/acetone 8:2) to yield **10b** (A1: 75 mg, 82%; B2: 49 mg, 54%) and $10c^{16}$ (B2: 10%).

Compound **10b**: white foam, $R_f = 0.24$ (hexane/acetone 7:3); $[\alpha]_D$: +18.4 (*c* 0.13, CHCl₃); lit. ¹⁵: $[\alpha]_D$: +11.0 (*c* 1.00, CHCl₃); ¹H NMR (360 MHz, CDCl₃) $\delta = 5.20$ (t, J = 9.3 Hz, 1H), 5.11 (t, J = 9.7 Hz, 1H), 4.98 (t, J = 9.5 Hz, 1H), 4.56 (t, J = 9.8 Hz, 1H), 4.26 (dd, J = 12.4 Hz, J =4.7 Hz, 1H, H-6a), 4.15-4.11 (m, 1H, H-6b), 3.76-3.72 (m, 1H, H-5), 2.33 (d, J = 9.9 Hz, 1H, SH), 2.10, 2.08, 2.03, 2.01 (4 x s, 12H, 4 x Ac-CH₃); ¹³C NMR (90 MHz, CDCl₃) $\delta = 170.6$, 170.1, 169.6, 169.4 (4C, 4 x Ac-CO), 78.7 (1C, C-1), 76.4, 73.6, 68.3 (4C, C-2, C-3, C-4, C-5), 62.1 (1C, C-6), 20.7, 20.6 (4C, 4 x Ac-CH₃); ESI-TOF-MS: *m/z* calcd for C₁₄H₂₀NaO₉S [M+Na]⁺ 387.073, found 387.069.

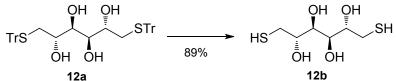
Compound **10c**: white foam, $R_f = 0.49$ (CH₂Cl₂/acetone 9:1); ¹H NMR (360 MHz, CDCl₃) $\delta = 5.36 - 4.95$ (m, 6H,), 4.67 (d, J = 9.6 Hz, 2H, H-1), 4.43 - 4.06 (m, 4H, H-6), 3.83-3.76 (m, 2H, H-5), 2.14, 2.11, 2.03, 2.01 (4 x s, 24H, 8 x Ac-CH₃); ¹³C NMR (90 MHz, CDCl₃) $\delta =$


170.8, 170.2, 169.4, 169.2 (4C, 4 x Ac-CO), 87.3 (1C, C-1), 76.3, 74.0, 69.9, 68.0 (4C, C-2, C-3, C-4, C-5), 61.7 (1C, C-6), 20.8, 20.7, 20.6 (4C, 4 x Ac-CH₃).

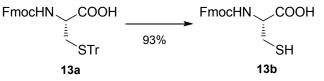
Compound 11a


To a solution of compound 11b (205 mg, 0.740 mmol) in dry CH₂Cl₂ (3 mL) dry pyridine (0.5 mL) and triphenylmethyl chloride (310 mg, 1.11 mmol, 1.5 equiv.) were added and stirred overnight under argon atmosphere. Next day the reaction mixture was diluted with CH₂Cl₂ and extracted with 10% aqueous NaHSO₄-solution then saturated aqueous NaHCO₃solution. The organic phase was dried over Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography (hexane/Et₂O 98:2 \rightarrow 95:5 \rightarrow 9:1) to afford 11a (324 mg, 84%). R_f = 0.53 (hexane/acetone 8:2); $[\alpha]_{D}$: -70.3 (c 0.11, CHCl₃); ¹H NMR (360 MHz, CDCl₃) δ = 7.42-7.14 (m, 15H, arom.), 5.44 (d, J = 5.0 Hz, 1H, H-1), 4.52 (dd, J = 7.9 Hz, J = 2.3 Hz, 1H, H-3), 4.23 (dd, J = 5.0 Hz, J = 2.4 Hz, 1H, H-2), 4.10 (dd, J = 7.9 Hz, J = 1.8 Hz, 1H, H-4), 3.63 (td, J = 7.0 Hz, J = 1.5Hz, 1H, H-5), 2.50 (ddd, *J* = 27.4 Hz, *J* = 12.2 Hz, *J* = 7.1 Hz, 2H, H-6a,b), 1.48, 1.39, 1.32, 1.29 (4 x s, 12H, 4 x *i*P-CH₃); ¹³C NMR (90 MHz, CDCl₃) δ = 145.0 (3C, 3 x C_q arom.), 129.9, 128.0, 126.8 (15C, arom.), 109.3, 108.7 (2C, 2 x C_q-iP), 96.5 (1C, C-1), 72.0, 71.0, 70.6, 67.5 (4C, C-2, C-3, C-4, C-5), 67.1 (1C, C_q Tr), 32.2 (1C, C-6), 26.3, 26.1, 25.0, 24.7 (4C, 4 x *i*P-CH₃); ESI-TOF-MS: m/z calcd for C₃₁H₃₄NaO₅S [M+Na]⁺ 541.202, found 541.203.

Compound 11b


Compound **11a** (130 mg, 0.250 mmol) was converted to **11b** by method **A2**. The crude product was purified by flash column chromatography (hexane/Et₂O 95:5) to yield **11b** (50 mg, 72%) as a colourless syrup. R_f = 0.41 (hexane/acetone 95:5); [α]_D: -74.1 (*c* 0.16, CHCl₃); ¹H NMR (360 MHz, CDCl₃) δ = 5.53 (d, *J* = 5.0 Hz, 1H, H-1), 4.63 (dd, *J* = 7.9 Hz, *J* = 2.4 Hz, 1H, H-3), 4.35 (dd, *J* = 7.9 Hz, *J* = 1.8 Hz, 1H, H-4), 4.32 (dd, *J* = 5.0 Hz, *J* = 2.4 Hz, 1H, H-2), 3.79 (td, *J* = 7.0 Hz, *J* = 1.6 Hz, 1H, H-5), 2.81 - 2.63 (m, 2H, H-6a,b), 1.62 (dd, *J* = 9.7 Hz, *J* = 7.5 Hz, 1H, S*H*), 1.55, 1.44, 1.35, 1.34 (4 x s, 12H, 4 x *i*P-CH₃); ¹³C NMR (90 MHz, CDCl₃) δ = 109.5, 108.8 (2C, 2 x C_q-*i*P), 96.7 (1C, C-1), 71.4, 71.1, 70.7, 70.0 (4C, C-2, C-3, C-4, C-5), 26.2, 26.1, 25.0, 24.6 (4C, 4 x *i*P-CH₃), 24.5 (1C, C-6); ESI-TOF-MS: *m/z* calcd for C₁₂H₂₀NaO₅S [M+Na]⁺ 299.093, found 299.089.

Compound 12a¹⁷


NaH (50% in oil) (940 mg, 19.58 mmol, 3.0 equiv.) was washed with hexane (2x5 mL) and dried under the stream of argon followed by suspension in dry dioxane (130 mL). Triphenylmethanethiol (4.50 g, 16.28 mmol, 2.5 equiv.) was added to the suspension and stirred for 10 minutes followed by addition of **12** (2.0 g, 6.49 mmol) and stirring was continued for additional 2 hours. After completion of the reaction, methanol (3 mL) was added to the reaction mixture and stirred for 30 minutes to quench the unreacted NaH. The solvent was evaporated in *vacuo* and the residue was purified by flash column chromatography (hexane/acetone 75:25) to yield compound **12a** (4.53 g, 99%) as a white foam. R_f = 0.35 (hexane/acetone 6:4); [α]_D: -18.4 (*c* 0.30, CH₂Cl₂); ¹H NMR (360 MHz, CDCl₃) δ = 7.42-7.16 (m, 30H, arom.), 3.30 (t, *J* = 6.0 Hz, 2H), 3.23-3.20 (m, 2H), 2.65 (d, *J* = 5.7 Hz, 2H), 2.54-2.41 (m, 6H); ¹³C NMR (90 MHz, CDCl₃) δ = 144.7 (6C, 6 x C_q arom.), 129.7, 128.1, 127.0 (30C, arom.), 71.8, 71.7 (4C, skeleton carbons), 67.2 (2C, 2 x C_q Tr), 36.2 (2C, C-1, C-1'); ESI-TOF-MS: *m/z* calcd for C₄₄H₄₂NaO₄S₂ [M+Na]⁺ 721.242, found 721.244.

Compound 12b¹⁷

Compound **12a** (350 mg, 0.500 mmol) was added to the mixture of hexafluoroisopropanol (0.5 mL), BF₃:Et₂O (0.2 equiv.) and Et₃SiH (3.8 equiv., 300 µL). After complete conversion of the starting compound (cc. 5 min) the solvent was evaporated in *vacuo* and the crude product was purified by trituration with dry Et₂O to yield compound **12b** (96 mg, 89%) as a white solid. R_f= 0.08 (hexane/acetone 1:1); $[\alpha]_D$: +7.9 (*c* 0.30, MeOH) ¹H NMR (360 MHz, CDCl₃) δ = 4.74 (s, 2H), 4.24 (d, *J* = 5.6 Hz, 2H), 3.53 (d, *J* = 4.4 Hz, 4H), 2.85-2.79 (m, 2H), 2.53 (dd, *J* = 12.7 Hz, *J* = 5.7 Hz, 3H), 1.99 (t, *J* = 7.8 Hz, 1H); ¹³C NMR (90 MHz, DMSO-d₆) δ = 71.2, 70.7 (4C, skeleton carbons), 29.1 (2C, C-1, C-1'); ESI-TOF-MS: *m/z* calcd for C₆H₁₄NaO₄S₂ [M+Na]⁺ 237.023, found 237.022.

Compound 13b¹⁸

Compound **13a** (250 mg, 0.427 mmol) was converted to **13b** by method **A1**. The crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 9:1 \rightarrow 85:15) to yield **13b** (136 mg, 93%) as a white foam. R_f= 0.12 (CH₂Cl₂/MeOH 9:1); ¹H NMR (400 MHz, DMSO-d₆) δ = 7.90-7.18 (m, 9H, 8 x arom., 1 x N*H*), 4.36-4.23 (m, 3H), 4.09-4.07 (m, 1H), 3.20 (s, 1H), 2.95-2.82 (m, 2H, CH₂-SH), 1.21 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 155.8 (1C, CO), 144.0, 143.9, 140.8 (5C, 5 x C_q Fmoc), 127.7, 127.2, 125.3, 120.1 (8C, arom.), 65.7 (1C, CH₂-Fmoc), 57.2 (1C, CH), 46.8 (1C, CH-Fmoc), 26.6 (1C, CH₂-SH); ESI-TOF-MS: *m/z* calcd for C₁₈H₁₇NNaO₄S [M+Na]⁺ 366.078, found 366.071.

References

(1) A. M. Michelson and A. Todd, J. Chem. Soc., 1956, 3459-3463.

(2) J. M. J. Tronchet, R. Benhamza, N. Dolatshahi, M. Geoffroy and H. Türler, *Nucleosides, Nucleotides*, 1988, 7, 249-269.

(3) B. Gadakh, G. Vondenhoff, E. Lescrinier, J. Rozenski, M. Froeyen and A. Van Aerschot, *Bioorg. Med. Chem.*, 2014, **22**, 2875–2886.

(4) A. Charafeddine, W. Dayoub, H. Chapuis and P. Strazewski, Chem. Eur. J., 2007, 13, 5566-5584.

(5) G. S. Ti, B. L. Gaffney and R. A. Jones, J. Am. Chem. Soc., 1982, 104, 3821-3827.

(6) H. Salo, P. Virta, H. Hakala, T. P. Prakash, A. M. Kawasaki, M. Manoharan and H. Lönnberg, *Bioconjugate Chem.*, 1999, **10**, 815-823.

(7) T. Kline, S. R. Jackson, W. Deng, C. L. M. J. Verlinde and S. I. Miller, *Nucleosides Nucleotides Nucleic Acids*, 2008, 27, 1282–1300.

(8) R. Kierzek, Nucleosides Nucleotides., 1985, 4, 641-649.

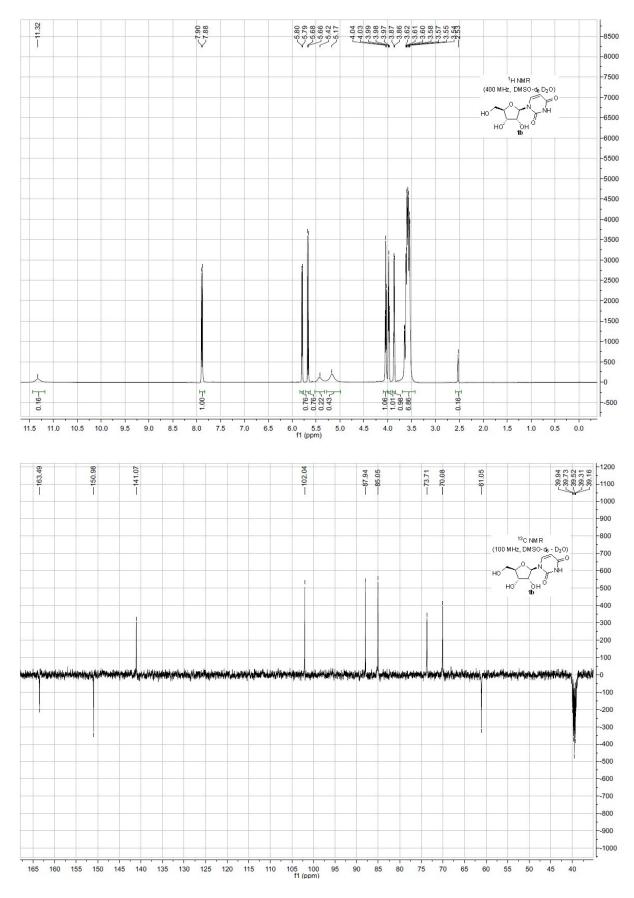
(9) X. Hu, M. T. Tierney and M. W. Grinstaff, Bioconjugate Chem., 2002, 13, 83-89.

(10) W. Bannwarth, Helv. Chim. Acta, 1988, 71, 1517-1527.

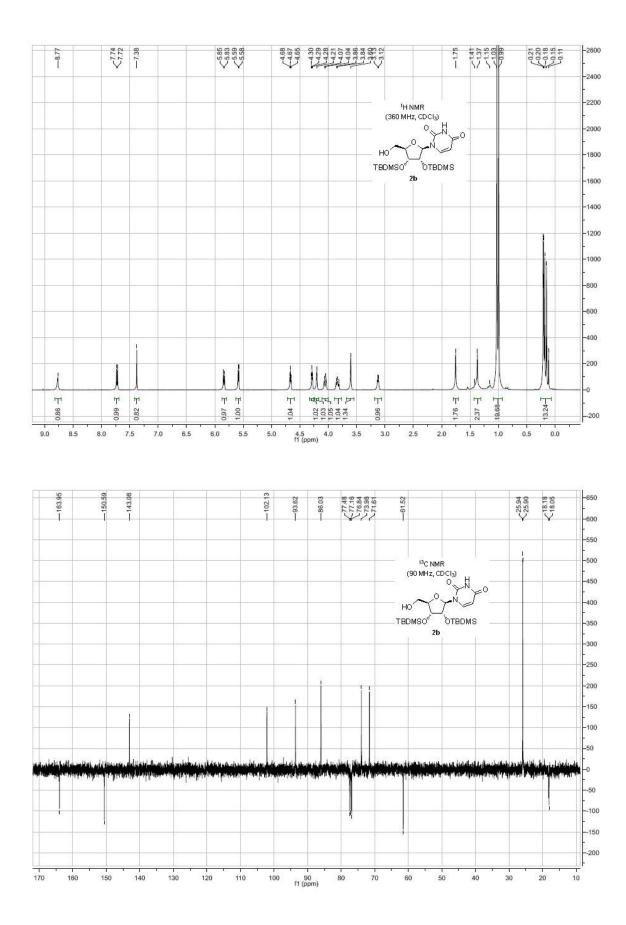
(11) A. Ates, A. Gautier, B. Leroy, J. M. Plancher, Y. Quesnel, J. C. Vanherck and I. E. Markó, *Tetrahedron*, 2003, **59**, 8989-8999.

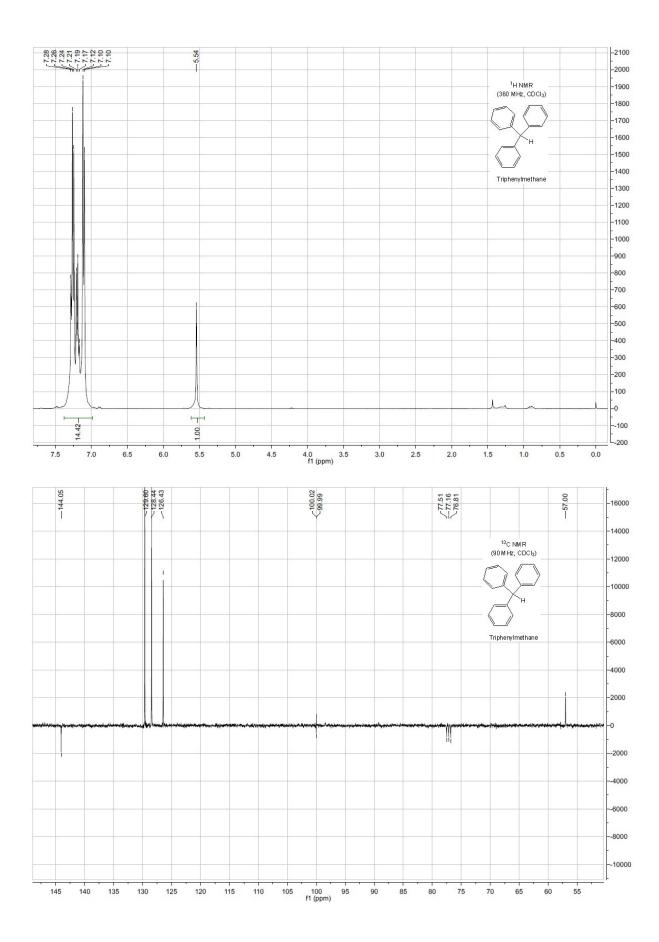
(12) R. Albert, K. Dax, R. Pleschko and A. Stutz, Carbohydr. Res., 1985, 137, 282-290.

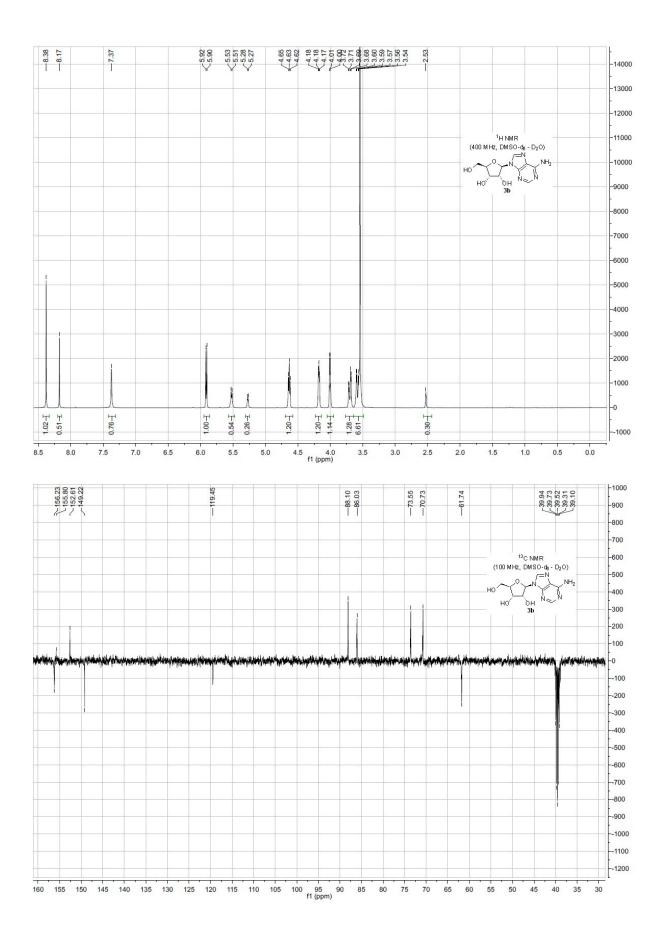
(13) R. E. Gramera, A. Park and R. L. Whistler, J. Org. Chem., 1963, 28, 3230-3231.

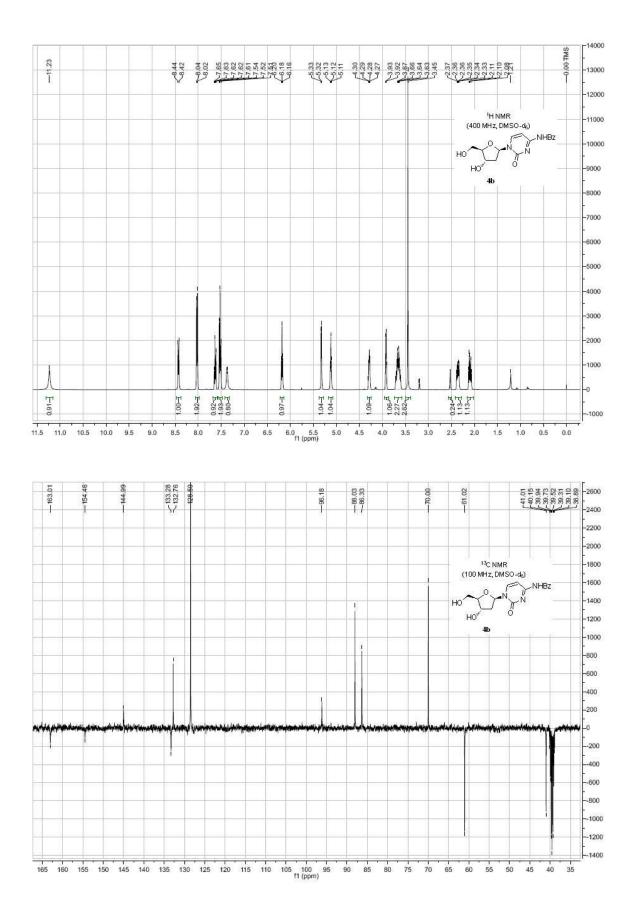

(14) M. Jana and A. K. Misra, J. Org. Chem., 2013, 78, 2680-2686.

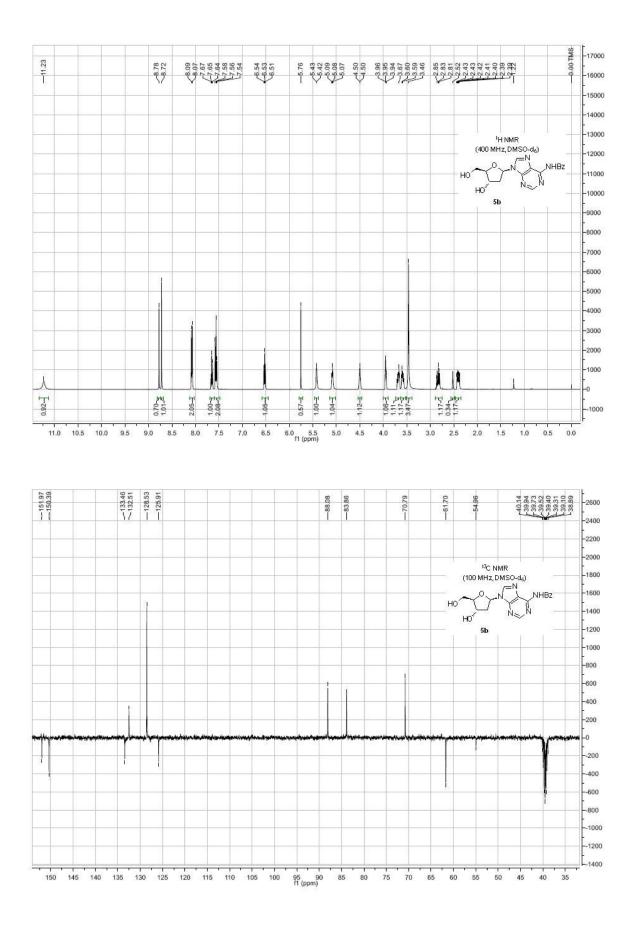
(15) T. Fujihira, G. Arakawa, H. Kamijo, T. Takido and M. Seno, J. Org. Chem., 2003, 22, 73-78.


(16) P. R. Sridhar, K. R. Prabhu and S. Chandrasekaran, *Eur. J. Org. Chem.*, 2004, 23, 4809-4815

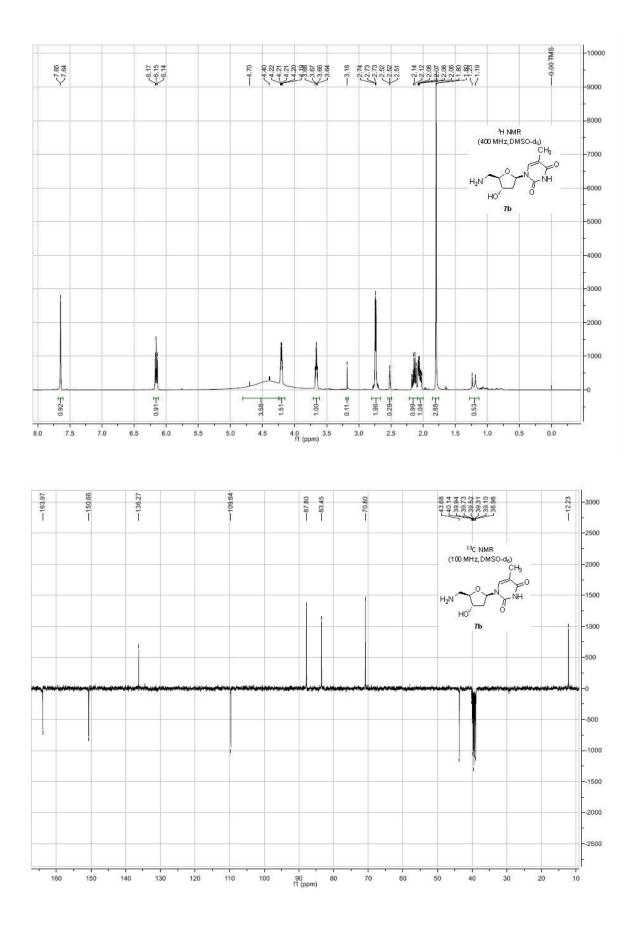

(17) I. Bereczki, S. Kéki, P. Herczegh and M. Zsuga, Carbohydr. Polym., 2008, 73, 1-7.

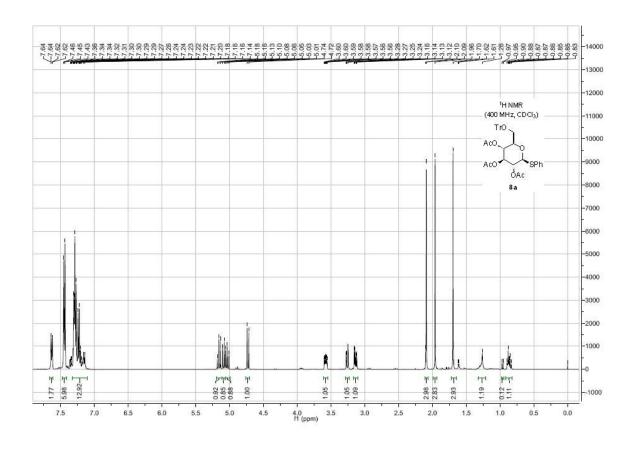

(18) T. M. Postma, M. Giraud and F. Albericio, Org. Lett., 2012, 14, 5468-5471.

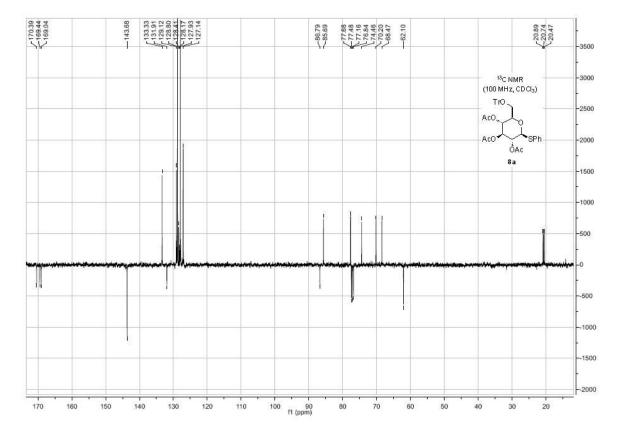


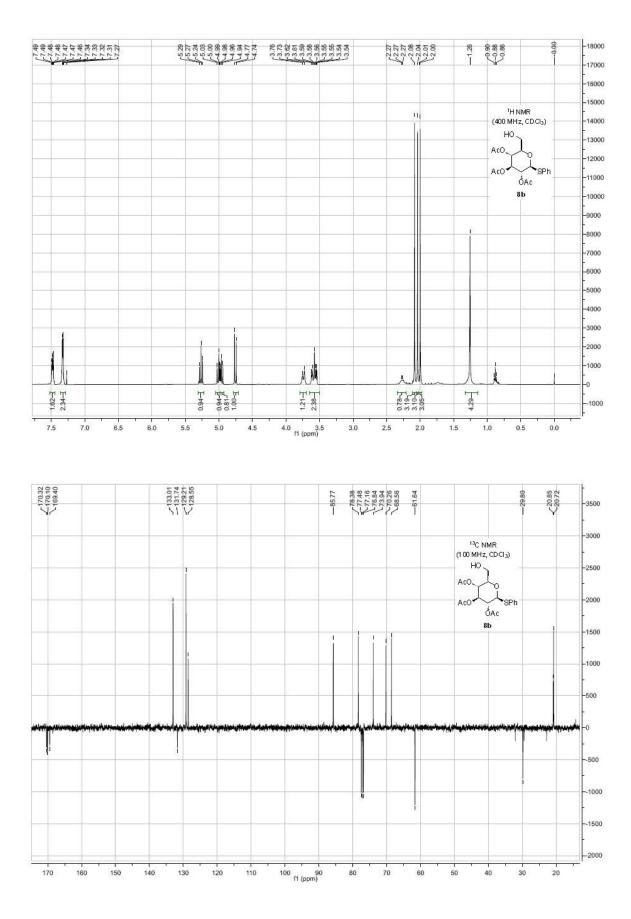

¹H and ¹³C NMR spectra of the compounds

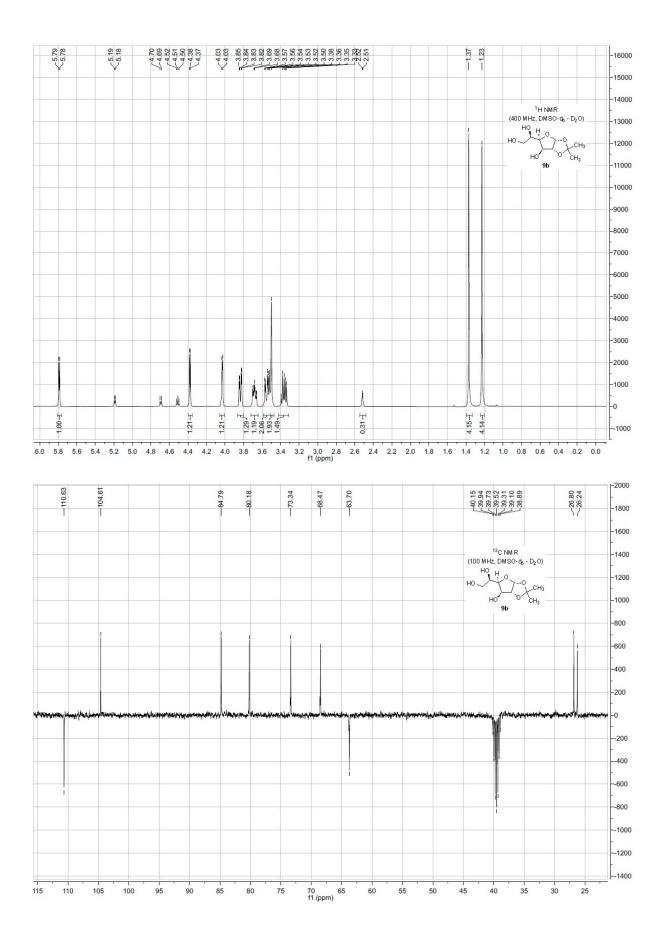


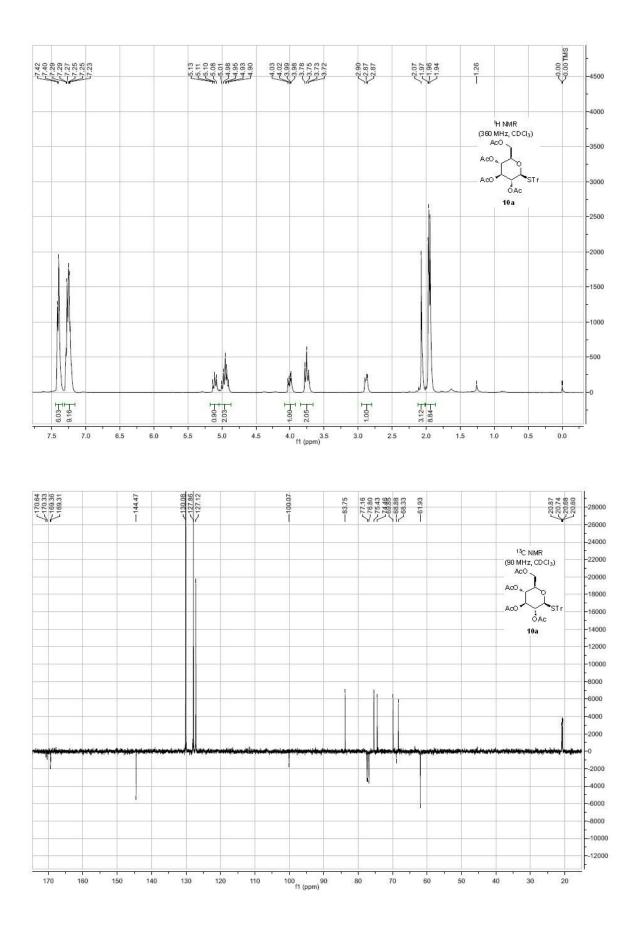


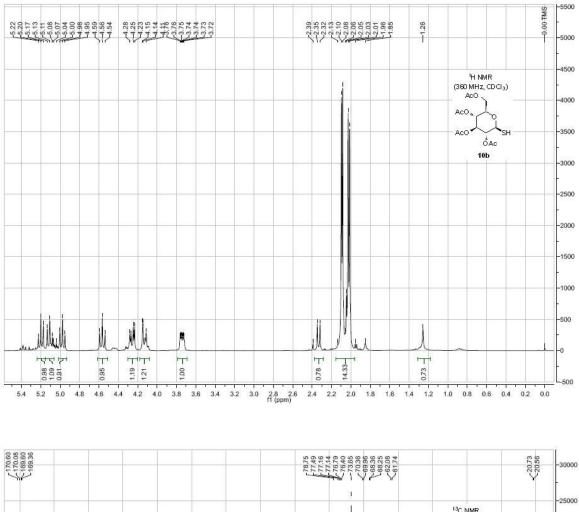


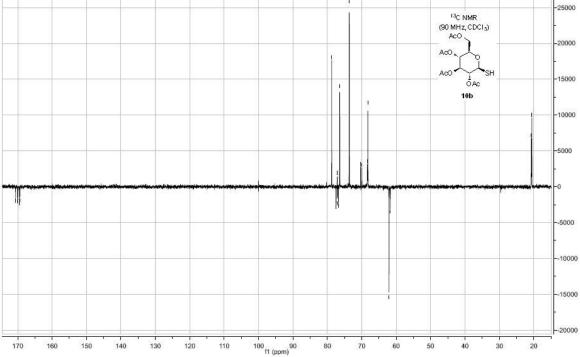


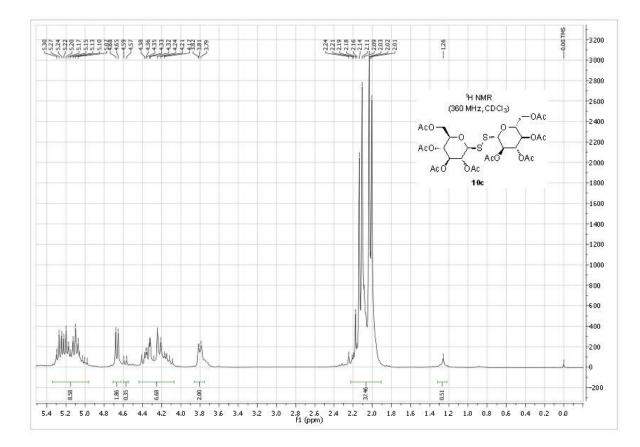


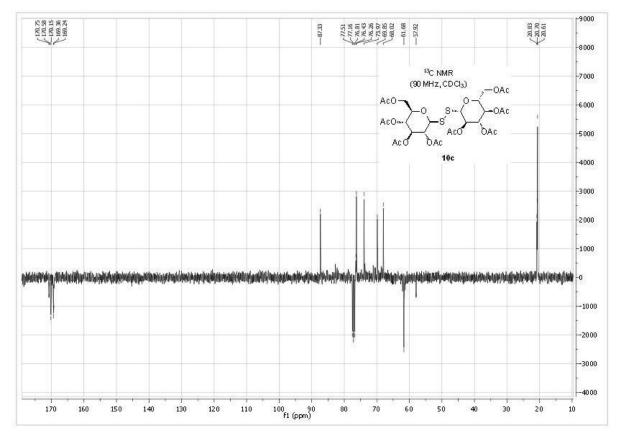


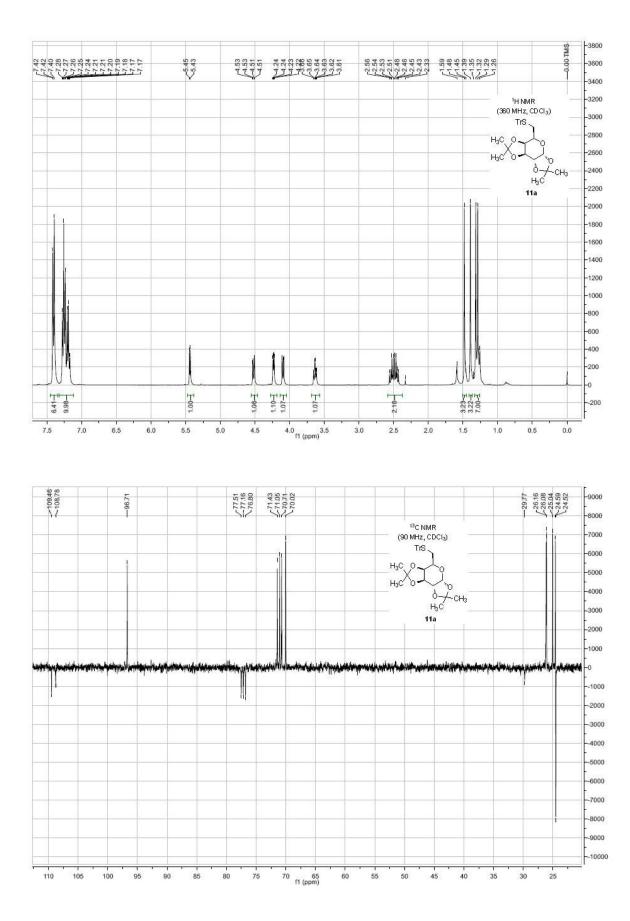


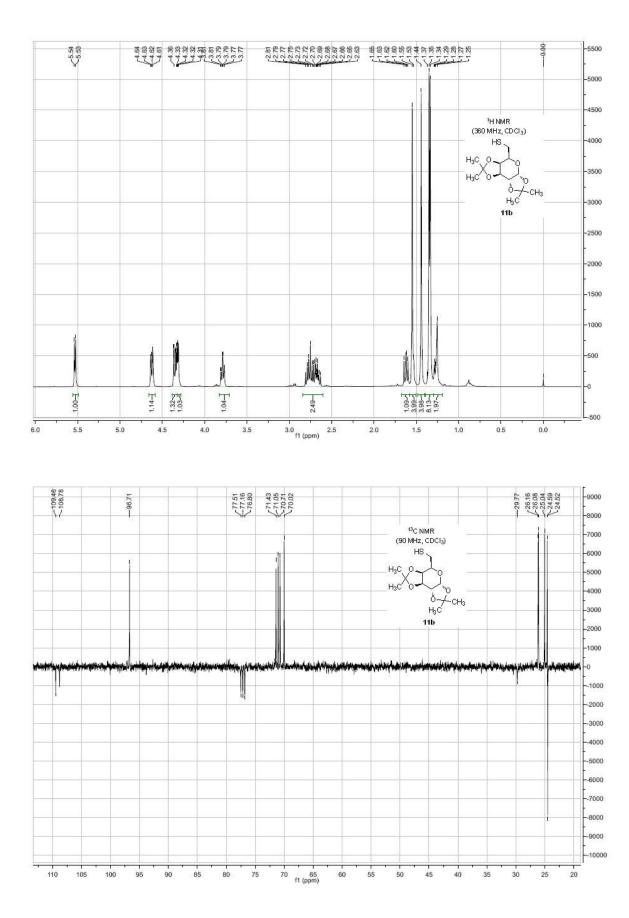


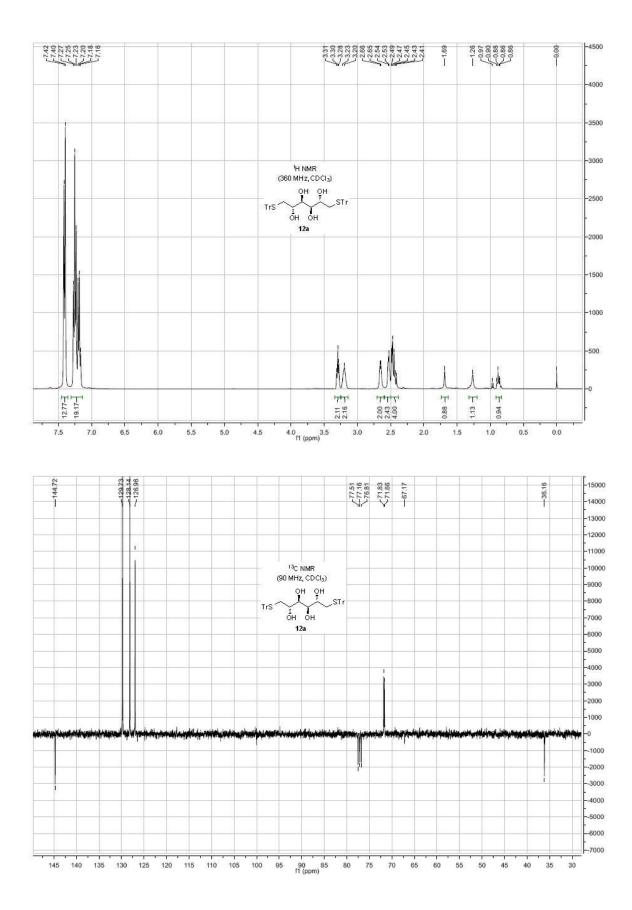


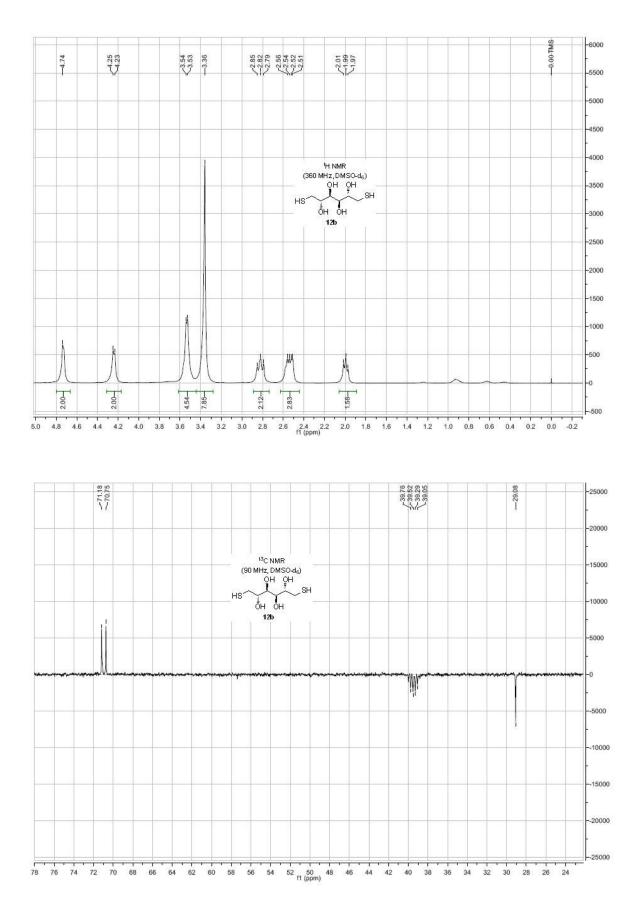


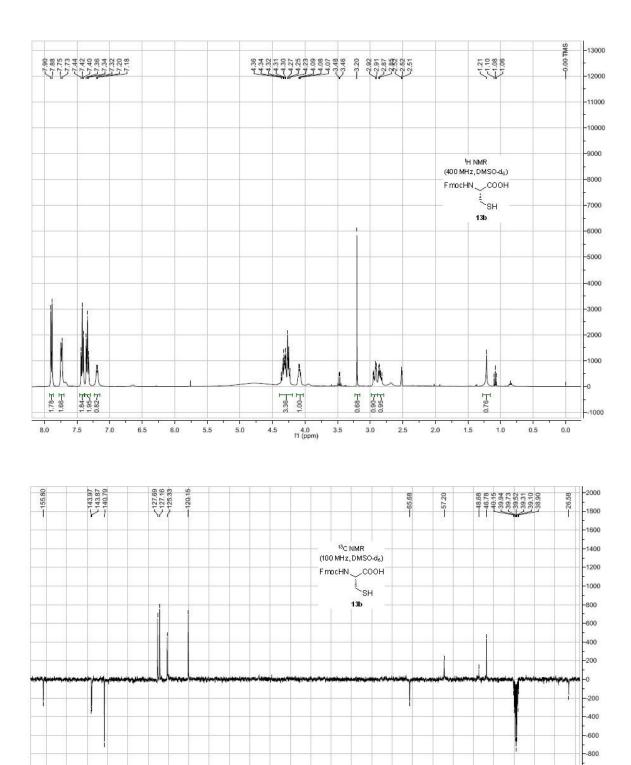












S28

155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 11(ppm) --1000 --1200 --1400 --1600 --1800

25