Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

# **Supporting Information**

# Cooperative FeCl<sub>3</sub>/DDQ System for the Regioselective Synthesis of 3-Arylindoles from β-Monosubstituted 2-Alkenylanilines

Su San Jang and So Won Youn\*

Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea.

# **Table of Contents**

| 1. | General Information                                                                                                  | S2                           |
|----|----------------------------------------------------------------------------------------------------------------------|------------------------------|
| 2. | General Procedure for the Preparation of N-Ts-2-Alkenylanilines 1                                                    | S2                           |
| 3. | General Procedure for the Fe(III)-Catalyzed Regioselective Synthesis of 3-Ary<br>β-Monosubstituted 2-Alkenylanilines | v <b>lindoles from</b><br>S7 |
| 4. | Full Data of Optimization Studies                                                                                    | S15                          |
| 5. | Mechanistic Studies                                                                                                  | S16                          |
| 6. | Proposed Mechanism                                                                                                   | S20                          |
| 7. | Copies of NMR Spectra                                                                                                | S21                          |

## **General Information**

Nuclear Magnetic Resonance spectra were recorded on 400 MHz instruments. Spectra were recorded in CDCl<sub>3</sub> solution referenced to TMS or solvent residual peak. High Resolution Mass Spectra were measured using EI at 70 eV. GC-MS spectra were recorded with EI ionization and an Elite-1 column (0.25 mm x 30 m, Film: 0.25  $\mu$ m). For control of the conversion and characterization of the products, the following method was used: The method starts with the injection temperature T<sub>0</sub> (50 °C), after holding this temperature for 5 min, the column is heated to the temperature T<sub>1</sub> (ramp, 300 °C, 10 °C/min) and hold for additional 10 min. Flash chromatography was performed on silica gel 230-400 mesh. All catalysts were purchased from Sigma-Aldrich or Strem and used as received. Unless otherwise noted, all commercially obtained reagents and solvents were used as received. Anhydrous DMF, toluene, ClCH<sub>2</sub>CH<sub>2</sub>Cl, and dioxane were purchased from Sigma-Aldrich in a SureSeal<sup>TM</sup> bottle and used as received. THF was distilled from sodium benzophenone ketyl immediately prior to use. *n*-Heptane and MeCN were distilled from CaH<sub>2</sub> immediately prior to use. Thin layer chromatograms (TLC) was visualized via UV.

Preparation and spectral data of substrates **1a-h**, **1r-s**, and products **2s**, **3t** are available in our previous report.<sup>1</sup>

#### General Procedure for the Preparation of N-Ts-2-Alkenylanilines 1



To a solution of 2-bromoaniline (2.7 g, 15.52 mmol, 1 equiv) in NEt<sub>3</sub> (15.0 mL, 1.0 M) were added  $Pd(OAc)_2$  (34.8 mg, 0.155 mmol, 1 mol%),  $P(o-Tol)_3$  (398.0 mg, 1.241 mmol, 8 mol%), and olefin (18.62 mmol, 1.2 equiv). After being stirred at 125 °C overnight, the reaction mixture was poured into water and then the product was extracted with  $CH_2Cl_2$  (three times). The combined organic layer was washed with brine, dried over MgSO<sub>4</sub>, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel to afford the corresponding 2-styrylaniline product.

To a solution of 2-styrylaniline (1 equiv) in pyridine (0.2 M) was added *p*-toluenesulfonyl chloride (1.1 equiv) at 0 °C. After being stirred at 25 °C for 2 hours, the reaction mixture was poured into water and then the product was extracted with  $CH_2Cl_2$  (three times), dried over MgSO<sub>4</sub>, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel to give the corresponding product **1**.

<sup>&</sup>lt;sup>1</sup> (a) Jang, Y. H.; Youn, S. W. Org. Lett. **2014**, *16*, 3720. (b) Youn, S. W.; Ko, T. Y.; Jang, M. J.; Jang, S. S. Adv. Synth. Catal. **2015**, *357*, 227. (c) Youn, S. W.; Lee, S. R. Org. Biomol. Chem. **2015**, *13*, 4652.

# (E)-4-Methyl-N-(4-methyl-2-(4-methylstyryl)phenyl)benzenesulfonamide (1i)



76% (step 1, step 1, using 2-bromo-4-methylaniline), 87% (step 2), a white solid (EtOAc : *n*-Hexane = 1:6 (step 1), 1:5 (step 2)), mp 134-135 °C.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.30 (s, 3H), 2.34 (s, 3H), 2.37 (s, 3H), 6.28 (s, 1H), 6.65 (d, *J* = 16.0 Hz, 1H), 6.74 (d, *J* = 16.0 Hz, 1H), 7.04 (d, *J* = 8.4 Hz, 1H), 7.14 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 1H), 7.28 (s, 1H), 7.59 (d, *J* = 8.0 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  21.1, 21.2, 21.4, 121.7, 126.5, 126.7, 127.1, 127.3, 128.9, 129.2, 129.5, 130.4, 131.4, 133.5, 134.0, 136.5, 137.0, 137.8, 143.7. MS (EI) *m/z* 377 (M<sup>+</sup>), 222, 207, 191, 178, 165, 152, 130, 115, 103, 91, 77, 65, 53.

Spectral data were consistent with data reported in the literature.<sup>2</sup>

#### (E)-N-(4-Methoxy-2-(2-methylstyryl)phenyl)-4-methylbenzenesulfonamide (1j)



In step 1, the requisite 2-vinylaniline was prepared from 2-iodo-4-methoxy-1-nitrobenzene following the method reported by Driver and co-workers.<sup>3</sup> In step 2: 79 %, (EtOAc : n-Hexane = 1:4), a white solid.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.31 (s, 3H), 2.33 (s, 3H), 3.84 (s, 3H), 6.24 (s, 1H), 6.60 (d, *J* = 16.0 Hz, 1H), 6.80 (dd, *J* = 2.6, 8.6 Hz, 1H), 7.01 (d, *J* = 15.6 Hz, 1H), 7.03 (d, *J* = 7.2 Hz, 1H), 7.15-7.21 (m, 6H), 7.24 (d, *J* = 8.8 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  19.8, 21.4, 55.4, 111.2, 113.5, 124.1, 125.4, 125.9, 126.0, 127.2, 127.9, 129.3, 129.5, 130.0, 130.3, 135.6, 135.7, 136.1, 136.5, 143.6, 158.7.

## (E)-4-Methyl-N-(4-methyl-2-(2-methylstyryl)phenyl)benzenesulfonamide (1k)



63% (step 1, using 2-bromo-4-methylaniline), 77% (step 2), a white solid (EtOAc : *n*-Hexane = 1:6 (step 1), 1:5 (step 2)), mp 139-140 °C.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.32 (s, 3H), 2.348 (s, 3H), 2.352 (s, 3H), 6.43 (br s, 1H), 6.64 (d, *J* = 16.0 Hz, 1H), 7.03 (d, *J* = 16.4 Hz, 1H), 7.06 (d, *J* = 8.8 Hz, 1H), 7.16-7.22 (m, 3H), 7.17 (d, *J* = 6.8 Hz, 2H), 7.23 (t, *J* = 8.0 Hz, 2H), 7.30 (s, 1H), 7.60 (d, *J* = 8.4 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)

<sup>&</sup>lt;sup>2</sup> Li, Y.-L.; Li, J.; Ma, A.-L.; Huang, Y.-N.; Deng J. J. Org. Chem. 2015, 80, 3841.

<sup>&</sup>lt;sup>3</sup> Shen, M.; Leslie, B. E.; Driver, T. G. Angew. Chem., Int. Ed. 2008, 47, 5056.

 $\delta$  19.8, 21.1, 21.4, 124.1, 125.4, 126.1, 126.9, 127.16, 127.24, 127.9, 129.2, 129.5, 129.6, 130.3, 130.6, 133.5, 135.7, 135.8, 136.7, 137.0, 143.7. MS (EI) *m*/*z* 377 (M<sup>+</sup>), 222, 207, 178, 165, 130, 115, 103, 91, 77, 65, 51.

## (E)-N-(4-Chloro-2-(2-methylstyryl)phenyl)-4-methylbenzenesulfonamide (11)



42% (step 1, using 2-bromo-4-chloroaniline), 54% (step 2), a white solid (EtOAc : n-Hexane = 1:6 (step 1), 1:5 (step 2)), mp 155-156 °C.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.34 (s, 3H), 2.35 (s, 3H), 6.34 (br s, 1H), 6.53 (d, *J* = 15.6 Hz, 1H), 7.04 (d, *J* = 16.0 Hz, 1H), 7.16-7.23 (m, 7H), 7.33 (d, *J* = 8.4 Hz, 1H), 7.45 (d, *J* = 1.2 Hz, 1H), 7.60 (d, *J* = 8.4 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  19.8, 21.4, 122.6, 125.5, 126.2, 126.3, 127.1, 128.17, 128.21, 128.3, 129.7, 130.4, 130.9, 131.7, 132.7, 135.16, 135.20, 136.0, 136.2, 144.1. MS (EI) *m*/*z* 397 (M<sup>+</sup>), 242, 207, 178, 165, 151, 130, 115, 102, 91, 77, 65, 51.

## (E)-4-Methyl-N-(2-(2-methylstyryl)-4-nitrophenyl)benzenesulfonamide (1m)



38% (step 1, using 2-bromo-4-nitrolaniline), 32% (step 2), a yellow solid (Et<sub>2</sub>O : CH<sub>2</sub>Cl<sub>2</sub> : *n*-Hexane = 1:3:5 (step 1), EtOAc : *n*-Hexane = 1:6 (step 2)), mp 160-162 °C.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.38 (s, 6H), 6.72 (d, *J* = 16.0 Hz, 1H), 7.12 (s, 1H), 7.18-7.27 (m, 6H), 7.41 (d, *J* = 7.2 Hz, 1H), 7.62 (d, *J* = 8.8 Hz, 1H), 7.72 (d, *J* = 8.4 Hz, 2H), 8.08 (dd, *J* = 2.6, 8.6 Hz, 1H), 8.28 (d, *J* = 2.4 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  19.9, 21.6, 121.3, 122.0, 122.8, 123.4, 125.6, 126.3, 127.2, 129.0, 130.1, 130.7, 131.2, 134.0, 134.7, 135.9, 136.4, 139.4, 144.8, 144.9.

## (E)-4-Methyl-N-(5-methyl-2-(2-methylstyryl)phenyl)benzenesulfonamide (1n)



55% (step 1, using 2-bromo-5-methylaniline), 92% (step 2), a white solid (EtOAc : n-Hexane = 1:6 (step 1), 1:5 (step 2)), mp 111-112 °C.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.33 (s, 6H), 2.34 (s, 3H), 6.42 (s, 1H), 6.55 (d, *J* = 15.6 Hz, 1H), 6.99 (d, *J* = 16.0 Hz, 1H), 7.04 (d, *J* = 8.0 Hz, 1H), 7.14-7.21 (m, 6H), 7.24 (s, 1H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  19.8, 21.2, 21.4, 123.7, 125.3, 126.1, 126.4, 127.1, 127.2, 127.8, 127.9, 129.1, 129.6, 130.3, 130.4, 133.0, 135.7, 135.8, 136.7, 138.6, 143.8 . MS (EI) *m*/*z* 377 (M<sup>+</sup>), 222, 207, 178, 165, 130, 115, 103, 91, 77, 65, 51.

# (E)-N-(5-Chloro-2-(2-methylstyryl)phenyl)-4-methylbenzenesulfonamide (10)



42% (step 1, using 2-iodo-5-chloroaniline), 82% (step 2), a white solid (EtOAc : *n*-Hexane = 1:7 (step 1), 1:5 (step 2)), mp 153-155 °C.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.33 (s, 6H), 6.60 (d, *J* = 16.0 Hz, 1H), 6.72 (s, 1H), 7.02 (d, *J* = 16.0 Hz, 1H), 7.17-7.24 (m, 6H), 7.27 (d, *J* = 8.0 Hz, 1H), 7.40 (d, *J* = 8.4 Hz, 1H), 7.44 (d, *J* = 2.0 Hz, 1H), 7.64 (d, *J* = 8.4 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  19.8, 21.4, 122.6, 125.4, 125.9, 126.2, 126.9, 127.1, 127.6, 128.2, 129.7, 130.4, 130.5, 131.4, 133.5, 134.2, 135.3, 135.8, 136.2, 144.1. MS (EI) *m*/*z* 397 (M<sup>+</sup>), 242, 207, 178, 165, 151, 130, 115, 91, 77, 65, 51.

## (*E*)-4-Methyl-*N*-(2-(2-methylstyryl)-5-nitrophenyl)benzenesulfonamide (1p)



63% (step 1, using 2-bromo-5-nitroaniline), 86% (step 2), a yellow solid (EtOAc : *n*-Hexane = 1:5 (step 1), CH<sub>2</sub>Cl<sub>2</sub> : *n*-Hexane = 8:1 (step 2)), mp 195-196 °C.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.35 (s, 3H), 2.38 (s, 3H), 6.81 (d, *J* = 15.6 Hz, 1H), 6.83 (s, 1H), 7.18-7.27 (m, 6H), 7.38 (d, *J* = 7.6 Hz, 1H), 7.64 (d, *J* = 8.8 Hz, 1H), 7.69 (d, *J* = 8.4 Hz, 2H), 8.04 (dd, *J* = 2.0, 8.4 Hz, 1H), 8.20 (d, *J* = 2.0 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  19.8, 21.5, 120.4, 121.3, 121.9, 125.7, 126.4, 127.26, 127.28, 129.1, 130.0, 130.7, 133.9, 134.1, 134.7, 135.9, 136.4, 139.0, 144.7, 147.0.

## (E)-N-(2-Methoxy-6-(2-methylstyryl)phenyl)-4-methylbenzenesulfonamide (1q)



To a solution of the 2-methoxyaniline (411.0 mg, 3.337 mmol) in MeOH (10.1 mL, 0.33 M) was added (Boc)<sub>2</sub>O (1.0 ml, 4.005 mmol, 1.2 equiv). After being stirred at 100 °C for 4 h, the solvent was evaporated. The residue was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 times), dried over MgSO<sub>4</sub>, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:10) to give the corresponding product **A** (735.2 mg, 99 %) as a colorless liquid.<sup>4</sup>

<sup>&</sup>lt;sup>4</sup> Kondo, Y.; Kojima, S.; Sakamoto, T. J. Org. Chem. 1997, 62, 6507.

To a solution of **A** (663.6 mg, 2.972 mmol, 1 equiv) in dry Et<sub>2</sub>O (3.6 mL, 0.83 M) was added *t*BuLi (1.7 M solution in pentane, 3.8 ml, 6.539 mmol, 2.2 equiv) under an argon atmosphere at -20 °C. After 3 h, I<sub>2</sub> (313.0 mg, 2.467 mmol, 0.83 equiv) in dry Et<sub>2</sub>O (8.3 mL, 0.36 M) was added at -100 °C. The reaction mixture was slowly warmed up to room temperature and stirred for 12 h. After addition of sat. aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution (12 mL), the reaction mixture was extracted with Et<sub>2</sub>O (3 times). The combined organic layer was washed with brine, dried over MgSO<sub>4</sub>, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:7) to give the corresponding product **B** (435.1 mg, 42 %) as a yellow solid.<sup>4</sup>

To a solution of **B** (223.6 mg, 0.640 mmol, 1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (1.3 mL, 0.5 M) was added CF<sub>3</sub>CO<sub>2</sub>H (0.3 mL, 3.906 mmol, 6.1 equiv) at 0 °C. After being stirred at room temperature for 1.5 h, the volatiles were removed by evaporation and the residue was treated with sat. aq. NaHCO<sub>3</sub>. The mixture was extracted with Et<sub>2</sub>O (3 times) and the combined organic layer was washed with brine, dried over MgSO<sub>4</sub>, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:10) to give the corresponding product **C** (145.9 mg, 92 %) as a yellow liquid.<sup>5</sup>

To a solution of **C** (145.9 mg, 0.586 mmol, 1 equiv) in NEt<sub>3</sub> (0.6 mL, 1.0 M) were added Pd(OAc)<sub>2</sub> (1.3 mg, 0.006 mmol, 1 mol%), P(*o*-Tol)<sub>3</sub> (15.0 mg, 0.047 mmol, 8 mol%), and 2-methylstyrene (96  $\mu$ L, 0.733 mmol, 1.2 equiv). After being stirred at 125 °C for 16.5 h, the reaction mixture was poured into water and then the product was extracted with CH<sub>2</sub>Cl<sub>2</sub> (three times). The combined organic layer was washed with brine, dried over MgSO<sub>4</sub>, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:7) to give the corresponding product **D** (79.9 mg, 57 %) as a brown solid.

To a solution of **D** (79.0 mg, 0.330 mmol, 1 equiv) in pyridine (1.7 mL, 0.2 M) was added *p*-TsCl (89.9 mg, 0.462 mmol, 1.4 equiv) at 0 °C. After being stirred at 25 °C for 15 hours, the reaction mixture was poured into water and then the product was extracted with  $CH_2Cl_2$  (three times), dried over MgSO<sub>4</sub>, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:3) to give the corresponding product **1q** (93%, 120.6 mg, mp 112-113 °C) as a white solid.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.32 (s, 3H), 2.44 (s, 3H), 3.31 (s, 3H), 6.36 (s, 1H), 6.57 (d, *J* = 7.6 Hz, 1H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.17-7.22 (m, 4H), 7.32 (d, *J* = 16.4 Hz, 1H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.54 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 16.4 Hz, 1H), 7.64 (d, *J* = 7.2 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  19.9, 21.4, 55.0, 109.0, 117.8, 122.5, 126.1, 126.2, 126.3, 127.46, 127.51, 127.6, 128.0, 128.8, 130.1, 135.6, 136.4, 136.5, 137.4, 143.3, 154.4. MS (EI) *m*/*z* 393 (M<sup>+</sup>), 238, 223, 207, 194, 180, 165, 152, 132, 115, 104, 91, 77, 65, 51.

<sup>&</sup>lt;sup>5</sup> Lautens, M.; Tayama, E.; Herse, C. J. Am. Chem. Soc. **2005**, 127, 72.

# General Procedure for the Fe(III)-Catalyzed Regioselective Synthesis of 3-Arylindoles from β-Monosubstituted 2-Alkenylanilines

To a solution of  $1 (0.05 \sim 0.1 \text{ mmol}, 1 \text{ equiv})$  in ClCH<sub>2</sub>CH<sub>2</sub>Cl (1~2 mL, 0.05 M) in pressure tube were added FeCl<sub>3</sub>·6H<sub>2</sub>O (5~25 mol %) and DDQ (0.1~0.2 mmol, 2 equiv). The resulting mixture was stirred at 80 °C for the reported time under Ar atmosphere. After the reaction was completed, the reaction mixture was concentrated *in vacuo*. The residue was purified by column chromatography on silica gel to afford the corresponding product 2/3. All reactions were carried out 3-5 times repetitively and the average values of both yields and ratios are given.

# N-Ts-3-Phenylindole (2a) & N-Ts-2-Phenylindole (3a)



75% (**2a**:**3a** = 8:1), a white solid (EtOAc : *n*-Hexane = 1:5).

Signals corresponding to **2a**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.34 (s, 3H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.29 (t, *J* = 8.0 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 2H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.61 (d, *J* = 7.6 Hz, 2H), 7.70 (s, 1H), 7.79 (d, *J* = 8.8 Hz, 1H), 7.81 (d, *J* = 8.8 Hz, 2H), 8.06 (d, *J* = 8.8 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  21.5, 113.8, 120.4, 122.9, 123.5, 123.9, 124.9, 126.9, 127.51, 127.9, 128.9, 129.3, 129.9, 133.0, 135.2, 135.5, 145.0. MS (EI) *m/z* 347 (M<sup>+</sup>), 267, 192, 165, 139, 115, 91, 77, 65, 51.

Representative signals corresponding to **3a**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.28 (s, 3H), 6.55 (s, 1H), 7.04 (d, J = 8.4 Hz, 1H), 8.32 (d, J = 8.4 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  21.5, 113.6, 116.6, 120.7, 124.3, 124.7, 126.8, 127.46, 128.6, 129.2, 130.3, 130.5, 132.4, 134.6, 138.2, 142.1, 144.5. Spectral data of **2a** and **3a** were consistent with data reported in the literature.<sup>1</sup>

# N-Ts-3-(4-Methoxyphenyl)indole (2b)



32%, a white solid (EtOAc : *n*-Hexane = 1:5), mp 111-114 °C.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.34 (s, 3H), 3.87 (s, 3H), 7.01 (d, *J* = 8.8 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 7.28 (t, *J* = 7.4 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.63 (s, 1H), 7.74 (d, *J* = 7.6 Hz, 1H), 7.80 (d, *J* = 8.4 Hz, 2H), 8.05 (d, *J* = 8.4 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  21.6, 55.3, 113.8, 114.3, 120.4, 122.3, 123.4, 123.7, 124.8, 125.4, 126.8, 129.0, 129.5, 129.9, 135.2, 135.5, 144.9, 159.1.

Spectral data were consistent with data reported in the literature.<sup>1-2</sup>

# *N*-Ts-3-*p*-Tolylindole (2c)



57%, a white solid (EtOAc : *n*-Hexane = 1:5), mp 93-95 °C.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.33 (s, 3H), 2.41 (s, 3H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.25-7.28 (m, 3H), 7.35 (t, *J* = 7.8 Hz, 1H), 7.50 (d, *J* = 7.6 Hz, 2H), 7.66 (s, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 2H), 8.05 (d, *J* = 8.0 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  21.2, 21.5, 113.8, 120.4, 122.6, 123.4, 123.9, 124.8, 126.8, 127.7, 129.4, 129.6, 129.9, 130.1, 135.2, 135.5, 137.3, 144.9. MS (EI) *m/z* 361 (M<sup>+</sup>), 206, 178, 164, 152, 139, 115, 103, 91, 77, 65, 51.

Spectral data were consistent with data reported in the literature.<sup>1c, 2</sup>

## N-Ts-3-m-Tolylindole (2d) & N-Ts-2-m-Tolylindole (3d)



74% (**2d**:**3d** = 8:1), a white solid (EtOAc : *n*-Hexane = 1:5).

Signals corresponding to **2d**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.34 (s, 3H), 2.43 (s, 3H), 7.19 (d, J = 7.6 Hz, 1H), 7.23 (d, J = 8.4 Hz, 2H), 7.29 (t, J = 8.0 Hz, 1H), 7.35-7.38 (m, 2H), 7.39 (d, J = 7.2 Hz, 1H), 7.43 (s, 1H), 7.69 (s, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 8.4 Hz, 2H), 8.06 (d, J = 8.4 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  21.5, 21.6, 113.8, 120.5, 122.9, 123.5, 124.0, 124.8, 124.9, 126.9, 128.3, 128.5, 128.8, 129.3, 129.9, 132.9, 135.1, 135.5, 138.6, 145.0.

Representative signals corresponding to **3d**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.29 (s, 3H), 2.43 (s, 3H), 6.53 (s, 1H), 7.05 (d, *J* = 8.0 Hz, 2H), 8.31 (d, *J* = 8.8 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  21.4, 113.4, 116.6, 120.6, 124.2, 124.6, 126.8, 127.4, 129.1, 129.4, 131.0, 137.0.

HRMS (EI)  $[M]^+ m/z$  calcd for C<sub>22</sub>H<sub>19</sub>NO<sub>2</sub>S 361.1136, found 361.1139.

Spectral data of  $2d^{1c}$  and  $3d^{1}$  were consistent with data reported in the literature.

#### *N*-Ts-3-*o*-Tolylindole (2e) & *N*-Ts-2-*o*-Tolylindole (3e)



97% (**2e**:**3e** = 8:1), a pale yellow oil (EtOAc : *n*-Hexane = 1:5). Signals corresponding to **2e**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.21 (s, 3H), 2.34 (s, 3H), 7.20-7.35 (m, 9H), 7.53 (s, 1H), 7.80 (d, J = 8.0 Hz, 2H), 8.05 (d, J = 8.8 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  20.4, 21.6, 113.7, 120.7, 123.3, 123.4, 124.0, 124.7, 125.7, 126.8, 127.9, 129.8, 130.4, 130.5, 130.7, 131.9, 134.9, 135.1, 136.8, 144.9.

Representative signals corresponding to **3e**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.21 (s, 3H), 2.31 (s, 3H), 6.46 (s, 3H), 7.09 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 7.6 Hz, 1H), 8.32 (d, J = 8.4 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  20.5, 112.3, 115.7, 123.8, 124.5, 124.6, 126.9, 129.1, 129.3, 129.6, 130.8, 139.3, 144.6.

HRMS (EI)  $[M]^+ m/z$  calcd for C<sub>22</sub>H<sub>19</sub>NO<sub>2</sub>S 361.1136, found 361.1137.

Spectral data of  $2e^{1c}$  and  $3e^{1}$  were consistent with data reported in the literature.

#### *N*-Ts-3-(1-Naphthyl)indole (2f)



59%, a white solid (EtOAc : *n*-Hexane = 1:5), mp 38-43  $^{\circ}$ C.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 2.38 (s, 3H), 7.20 (t, J = 7.4 Hz, 1H), 7.27 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.4 Hz, 1H), 7.38 (t, J = 8.0 Hz, 2H), 7.49-7.56 (m, 3H), 7.73 (s, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.0 Hz, 2H), 7.90 (d, J = 7.6 Hz, 1H), 7.92 (d, J = 7.6 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 21.6, 113.8, 121.0, 122.6, 123.4, 124.8, 124.9, 125.4, 125.9, 126.0, 126.1, 126.9, 127.8, 128.4, 129.9, 130.3, 131.1, 132.1, 133.8, 135.0, 135.2, 145.0 (1 carbon is missing due to overlapping). HRMS (EI) [M]<sup>+</sup> m/z calcd for C<sub>25</sub>H<sub>19</sub>NO<sub>2</sub>S 397.1136, found 397.1135.

## *N*-Ts-2-(4-Nitrophenyl)indole (3g)



84%, a yellow solid (EtOAc : *n*-Hexane = 1:6), mp 170-172 °C.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.29 (s, 3H), 6.69 (s, 1H), 7.06 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 7.6 Hz, 2H), 7.30 (t, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 2H), 8.29 (d, *J* = 8.0 Hz, 3H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  21.5, 116.1, 116.8, 121.2, 122.9, 124.8, 125.9, 126.6, 129.4, 130.3, 130.7, 133.9, 138.8, 138.9, 139.6, 145.0, 147.6. MS (EI) *m*/*z* 392 (M<sup>+</sup>), 253, 237, 190, 178, 164, 155, 140, 91, 65.

Spectral data were consistent with data reported in the literature.<sup>1</sup>

## N-Ts-2-(3-(Trifluoromethyl)phenyl)indole (3h)



92%, a white solid (EtOAc : *n*-Hexane = 1:7), mp 57-60 °C.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.30 (s, 3H), 6.61 (s, 1H), 7.05 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.30 (t, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.57 (t, *J* = 7.8 Hz, 1H), 7.62 (s, 1H), 7.70 (d, *J* = 7.8 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 8.33 (d, *J* = 8.6 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  21.5, 114.4, 116.6, 121.0, 124.0 (q, *J* = 270.9 Hz), 124.5, 125.2 (q, *J* = 3.8 Hz), 125.3, 126.6, 126.7 (q, *J* = 3.8 Hz), 128.0, 129.4, 130.0 (q, *J* = 32.1 Hz), 130.2, 133.1, 134.0, 134.5, 138.4, 140.2, 145.0. EIMS *m*/*z* 415 (M<sup>+</sup>), 396, 350, 335, 276, 260, 240, 233, 220, 190, 165, 155, 139, 91, 65, 51.

Spectral data were consistent with data reported in the literature.<sup>1</sup>

# N-Ts-5-Methyl-3-p-tolylindole (2i)



48%, a yellow oil (EtOAc : *n*-Hexane = 1:6).

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.33 (s, 3H), 2.42 (s, 6H), 7.17 (d, *J* = 8.8 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 7.6 Hz, 2H), 7.48 (d, *J* = 7.6 Hz, 2H), 7.53 (s, 1H), 7.61 (s, 1H), 7.78 (d, *J* = 8.0 Hz, 2H), 7.92 (d, *J* = 8.8 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  21.2, 21.4, 21.5, 113.5, 120.3, 122.8, 123.8, 126.2, 126.8, 127.8, 129.5, 129.7, 129.8, 130.2, 133.1, 133.7, 135.2, 137.3, 144.8. HRMS (EI) [M]<sup>+</sup> *m*/*z* calcd for C<sub>23</sub>H<sub>21</sub>NO<sub>2</sub>S 375.1293, found 375.1294.

Spectral data were consistent with data reported in the literature.<sup>2</sup>

# *N*-Ts-5-Methoxy-3-*o*-tolylindole (2j) & *N*-Ts-5-Methoxy-2-*o*-tolylindole (3j)



79% (**2j**:**3j** = 20:1), a white solid (EtOAc : *n*-Hexane = 1:4), mp 124-125 °C.

Signals corresponding to **2j**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.21 (s, 3H), 2.35 (s, 3H), 3.74 (s, 3H), 6.74 (d, J = 1.6 Hz, 1H), 6.96 (dd, J = 1.8, 9.0 Hz, 1H), 7.23 (d, J = 8.4 Hz, 2H), 7.29-7.32 (m, 4H), 7.48 (s, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.94 (d, J = 8.8 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  20.4, 21.6, 55.6, 102.8, 113.9, 114.7, 123.6, 124.9, 125.8, 126.8, 127.9, 129.8, 130.4, 130.5, 131.7, 132.0, 135.1, 136.8, 144.8, 156.6 (1 carbon is missing due to overlapping).

Representative signals corresponding to **3j**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.24 (s, 3H), 2.32 (s, 3H), 3.85 (s, 3H), 6.40 (s, 1H), 7.09 (d, J = 8.4 Hz, 4H), 8.21 (d, J = 8.8 Hz, 1H).

HRMS (EI)  $[M]^+ m/z$  calcd for C<sub>23</sub>H<sub>21</sub>NO<sub>3</sub>S 391.1242, found 391.1244.

## N-Ts-5-Methyl-3-o-tolylindole (2k) & N-Ts-5-Methyl-2-o-tolylindole (3k)



80% (**2k**:**3k** = 10:1), a pale brown oil (EtOAc : *n*-Hexane = 1:6).

Signals corresponding to **2k**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.20 (s, 3H), 2.32 (s, 3H), 2.35 (s, 3H), 7.10 (s, 1H), 7.15 (d, J = 8.4 Hz, 1H), 7.20 (d, J = 8.0 Hz, 2H), 7.25-7.30 (m, 4H), 7.47 (s, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.93 (d, J = 8.8 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  20.39, 21.3, 21.5, 113.4, 120.4, 123.3, 124.2, 125.7, 126.1, 126.7, 127.8, 129.8, 130.4, 130.9, 132.0, 133.09, 133.14, 135.1, 136.8, 144.8 (1 carbon is missing due to overlapping).

Representative signals corresponding to **3k**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.22 (s, 3H), 2.29 (s, 3H), 2.42 (s, 3H), 6.38 (s, 1H), 7.07 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.8 Hz, 2H), 8.19 (d, *J* = 8.8 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  20.44, 21.2, 112.2, 115.4, 120.6, 124.6, 125.9, 126.8, 129.0, 129.3, 129.6, 130.8.

HRMS (EI)  $[M]^+ m/z$  calcd for C<sub>23</sub>H<sub>21</sub>NO<sub>2</sub>S 375.1293, found 375.1296.

# N-Ts-5-Chloro-3-o-tolylindole (2l) & N-Ts-5-Chloro-2-o-tolylindole (3l)



91% (**2l**:**3l** = 11:1), a white solid (EtOAc : *n*-Hexane = 1:6).

Signals corresponding to **2l**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.20 (s, 3H), 2.36 (s, 3H), 7.24-7.31 (m, 8H), 7.53 (s, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.97 (d, J = 9.6 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  20.4, 21.6, 114.8, 120.3, 122.9, 125.0, 125.3, 125.9, 126.8, 128.2, 129.4, 130.0, 130.3, 130.6, 131.2, 132.0, 133.2, 134.8, 136.7, 145.3.

Representative signals corresponding to **3I**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.20 (s, 3H), 2.33 (s, 3H), 6.40 (s, 1H), 7.07 (d, *J* = 7.2 Hz, 2H), 7.11 (d, *J* = 7.6 Hz, 3H), 7.46 (s, 1H), 8.25 (d, *J* = 8.8 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  111.4, 116.7, 124.7, 126.9, 129.3, 129.7, 130.8, 139.2, 141.7, 145.0. HRMS (EI) [M]<sup>+</sup> *m*/*z* calcd for C<sub>22</sub>H<sub>18</sub>ClNO<sub>2</sub>S 395.0747, found 395.0748.

## N-Ts-5-Nitro-3-o-tolylindole (2m) & N-Ts-5-Nitro-2-o-tolylindole (3m)



100% (**2m**:**3m** = 8:1), a yellow solid (EtOAc : *n*-Hexane = 1:6).

Signals corresponding to **2m**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 2.22 (s, 3H), 2.39 (s, 3H), 7.27-7.36 (m, 6H), 7.69 (s, 1H), 7.84 (d, *J* = 8.0 Hz, 2H), 8.15 (d, *J* = 9.2 Hz, 1H), 8.24 (d, *J* = 9.2 Hz, 1H), 8.26 (s, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 20.4, 21.6, 113.9, 117.2, 120.0, 123.9, 126.1, 126.6, 126.9, 128.6, 130.2, 130.3, 130.4, 130.7, 130.8, 134.6, 136.7, 137.6, 144.4, 145.9.

Representative signals corresponding to **3m**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.14 (s, 3H), 2.36 (s, 3H), 6.60 (s, 1H), 7.07 (d, J = 7.2 Hz, 1H), 7.15 (d, J = 8.0 Hz, 2H), 8.43 (d, J = 2.0 Hz, 1H), 8.46 (d, J = 8.8 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  20.3, 111.8, 115.6, 116.8, 119.6, 124.8, 127.0, 129.66, 129.70, 130.9, 139.2, 145.6.

HRMS (EI)  $[M]^+ m/z$  calcd for C<sub>22</sub>H<sub>18</sub>N<sub>2</sub>O<sub>4</sub>S 406.0987, found 406.0987.

# *N*-Ts-6-Methyl-3-*o*-tolylindole (2n)



67%, a pale yellow oil (EtOAc : n-Hexane = 1:6).

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.21 (s, 3H), 2.36 (s, 3H), 2.49 (s, 3H), 7.05 (d, *J* = 8.4 Hz, 1H), 7.21-7.30 (m, 3H), 7.24 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 7.2 Hz, 2H), 7.45 (s, 1H), 7.79 (d, *J* = 8.0 Hz, 2H), 7.86 (s, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  20.4, 21.6, 21.9, 113.8, 120.3, 123.37, 123.43, 124.9, 125.7, 126.8, 127.8, 128.5, 129.8, 130.40, 130.43, 132.1, 134.9, 135.3, 136.8, 144.8 (1 carbon is missing due to overlapping).

HRMS (EI)  $[M]^+ m/z$  calcd for C<sub>23</sub>H<sub>21</sub>NO<sub>2</sub>S 375.1293, found 375.1292.

# N-Ts-6-Chloro-3-o-tolylindole (20) & N-Ts-6-Chloro-2-o-tolylindole (30)



96% (**20:30** = 10:1), a white solid (EtOAc : *n*-Hexane = 1:6).

Signals corresponding to **20**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 2.19 (s, 3H), 2.38 (s, 3H), 7.19-7.36 (m, 8H), 7.51 (s, 1H), 7.80 (d, *J* = 8.4 Hz, 2H), 8.08 (s, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 20.3, 21.6, 113.9, 121.5, 123.2, 124.1, 124.5, 125.8, 126.8, 128.1, 129.2, 130.0, 130.4, 130.5, 130.8, 131.4, 134.9, 135.2, 136.7, 145.3.

Representative signals corresponding to **30**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.17 (s, 3H), 2.34 (s, 3H), 6.42 (s, 1H), 7.06 (d, *J* = 7.6 Hz, 1H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 8.37 (s, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  111.6, 115.8, 121.3, 124.4, 124.7, 127.0, 129.3, 129.5, 129.6, 130.9, 131.5, 135.4, 139.3, 145.0.

HRMS (EI) [M]<sup>+</sup> *m*/*z* calcd for C<sub>22</sub>H<sub>18</sub>ClNO<sub>2</sub>S 395.0747, found 395.0743.

# *N*-Ts-6-Nitro-3-*o*-tolylindole (2p) & *N*-Ts-6-Nitro-2-*o*-tolylindole (3p)



98% (**2p**:**3p** = 8:1), a yellow solid (EtOAc : *n*-Hexane = 1:5).

Signals corresponding to **2p**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.20 (s, 3H), 2.39 (s, 3H), 7.27-7.35 (m, 4H), 7.31 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.4 Hz, 1H), 7.79 (s, 1H), 7.87 (d, J = 8.0 Hz, 2H), 8.12 (dd, J = 1.6, 8.4 Hz, 1H), 8.96 (d, J = 1.6 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  20.3, 21.6, 110.1. 118.6, 120.9, 123.1, 126.0, 127.0, 128.5, 128.8, 130.3, 130.4, 130.5, 130.7, 133.6, 134.5, 135.2, 136.7, 145.2, 145.9.

Representative signals corresponding to **3p**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.15 (s, 3H), 2.36 (s, 3H), 6.56 (s, 1H), 7.09 (d, J = 8.0 Hz, 1H), 7.15 (d, J = 7.6 Hz, 2H), 7.22 (d, J = 7.2 Hz, 1H), 7.60 (d, J = 8.8 Hz, 1H), 8.20 (dd, J = 1.6, 8.4 Hz, 1H), 9.27 (s, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  111.3, 111.9, 119.1, 120.6, 124.8, 127.2, 129.7, 129.8, 145.6.

HRMS (EI)  $[M]^+ m/z$  calcd for C<sub>22</sub>H<sub>18</sub>N<sub>2</sub>O<sub>4</sub>S 406.0987, found 406.0988.

## N-Ts-7-Methoxy-3-o-tolylindole (2q)



67%, a white solid (EtOAc : *n*-Hexane = 1:5), mp 104-105 °C.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.30 (s, 3H), 2.41 (s, 3H), 3.73 (s, 3H), 6.72 (d, *J* = 8.0 Hz, 1H), 6.96 (d, *J* = 8.0 Hz, 1H), 7.12 (t, *J* = 8.0 Hz, 1H), 7.28-7.38 (m, 4H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.80 (d, *J* = 7.6 Hz, 2H), 7.81 (s, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  20.5, 21.6, 55.5, 107.0, 113.2, 121.2, 124.0, 124.5, 125.7, 126.4, 127.3, 127.8, 129.3, 130.4, 130.7, 132.2, 133.5, 137.0, 137.3, 144.1, 147.5. HRMS (EI) [M]<sup>+</sup> *m*/*z* calcd for C<sub>23</sub>H<sub>21</sub>NO<sub>3</sub>S 391.1242, found 391.1243.

# N-Ts-2-Phenylindoline (4a)

To a solution of the **1a** (20.0 mg, 0.06 mmol, 1 equiv) in ClCH<sub>2</sub>CH<sub>2</sub>Cl (1.1 mL, 0.05 M) was added Cu(OTf)<sub>2</sub> (4.1 mg, 0.012 mmol, 20 mol%). After being stirred at 120 °C for 36 h under Ar atmosphere, the reaction mixture was concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:8) to give the corresponding **4a** (17.2 mg, 86 %) as a white solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.36 (s, 3H), 2.88 (dd, *J* = 2.6, 16.2 Hz, 1H), 3.28 (dd, *J* = 10.0, 16.4 Hz, 1H), 5.33 (dd, *J* = 2.8, 10.0 Hz, 1H), 7.03-7.05 (m, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 7.23-7.32 (m,

6H), 7.54 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.0 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  21.5, 37.9, 64.8, 116.5, 124.5, 125.0, 126.0, 127.1, 127.6, 127.9, 128.6, 129.5, 131.2, 135.4, 141.9, 142.7, 143.8.

#### N-Ts-3-Phenylindoline (5a)



To a solution of **2a** (127.6 mg, 0.367 mmol, 1 equiv) in MeOH (7.3 mL, 0.05 M) was added Mg (134.6 mg, 5.509 mmol, 15 equiv). After being stirred at 50 °C for 6 h, the reaction mixture was poured into sat. aq. NH<sub>4</sub>Cl and then the product was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 times). The combined organic layer was washed with brine, dried over MgSO4, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:7) to give the **A** (58.6 mg, 83%) as a colorless solid.<sup>1a</sup>

To a solution **A** (57.6 mg, 0.298 mmol, 1 equiv) in CF<sub>3</sub>CO<sub>2</sub>H (0.7 mL, 0.43 M) was added Et<sub>3</sub>SiH (96  $\mu$ L, 0.596 mmol, 2 equiv) was added. After being stirred at 50 °C for 72 h, the reaction mixture was cooled to room temperature, diluted with water, brought to pH ~9 with a sat. aq. NaHCO<sub>3</sub>, and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 times). The combined organic layer was dried over MgSO<sub>4</sub> and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:4) to give the corresponding product **B** (37.6 mg, 65%) as a yellow liquid.<sup>6</sup>

To a solution of **B** (37.6 mg, 0.193 mmol, 1 equiv) in pyridine (1.0 mL, 0.2 M) was added *p*-TsCl (41.3 mg, 0.212 mmol, 1.1 equiv) at 0 °C. After being stirred at 25 °C for 0.5 hours, the reaction mixture was poured into water and then the product was extracted with  $CH_2Cl_2$  (three times), dried over MgSO<sub>4</sub>, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:4) to give the corresponding product **5a** (91%, 61.2 mg) as a white solid.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.41 (s, 3H), 3.78 (dd, *J* = 12.8, 16.0 Hz, 1H), 4.32-4.39 (m, 2H), 6.86-6.89 (m, 3H), 6.98 (t, *J* = 7.4 Hz, 1H), 7.20-7.28 (m, 6H), 7.70 (d, *J* = 7.6 Hz, 2H), 7.76 (d, *J* = 8.4 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  21.5, 46.2, 58.4, 114.9, 124.0, 125.6, 127.0, 127.4, 127.7, 128.3, 128.7, 129.7, 133.7, 134.8, 142.0, 142.4, 144.1.

Spectral data were consistent with data reported in the literature.<sup>7</sup>

<sup>&</sup>lt;sup>6</sup> Johnson, K. F.; Zeeland, R. V.; Stanley, L. M. Org. Lett. 2015, 15, 2798.

<sup>&</sup>lt;sup>7</sup> (a) Kuwano, R.; Kaneda, K.; Ito, T.; Sato, K.; Kurokawa, T.; Ito, Y. *Org. Lett.* 2004, *6*, 2213. (b) Kuwano, R.; Kashiwabara, M.; Sato, K.; Ito, T.; Kaneda, K.; Ito, Y. *Tetrahedron: Asymmetry* 2006, *17*, 521. (c) Pineschi, M.; Bertolini, F.; Crotti, P.; Macchia, F. *Org. Lett.* 2006, *8*, 2627. (d) Takeda, Y.; Ikeda, Y. Kuroda, A.; Tanaka, S.; Minakata, S. *J. Am. Chem. Soc.* 2014, *136*, 8544. (e) Soldi, C.; Lamb, K. L.; Squitieri, R. A.; González-López, M.; Maso, M. J.; Shaw. J. T. *J. Am. Chem. Soc.* 2014, *136*, 15142.

# **Full Data of Optimization Studies**

| lia                  | NHTs Ph Lewis aci<br>Oxidan<br>CICH <sub>2</sub> CH<br>120 | $\begin{array}{c} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $ |          |                |                           |  |
|----------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------|----------|----------------|---------------------------|--|
| Entry                | Lewis Acid                                                 | Oxidant                                                                             | Time (h) | Yield $(\%)^a$ | <b>2a:3a</b> <sup>b</sup> |  |
| 1                    | FeCl <sub>3</sub>                                          | DDQ                                                                                 | 6        | 91 (71)        | 7:1                       |  |
| 2                    | FeBr <sub>3</sub>                                          | DDQ                                                                                 | 5        | 90             | 1:7                       |  |
| 3                    | $Fe_2(SO_4)_3 \cdot xH_2O$                                 | DDQ                                                                                 | 7        | 100            | 0:1                       |  |
| 4                    | $FeSO_4 \cdot 7H_2O$                                       | DDQ                                                                                 | 0.5      | 100            | 1:7                       |  |
| 5                    | $Fe(NO_3)_2 \cdot 9H_2O$                                   | DDQ                                                                                 | 5        | 100            | 1:29                      |  |
| 6                    | FeCl <sub>2</sub>                                          | DDQ                                                                                 | 8        | 100            | 1:7                       |  |
| 7                    | Fe(OTf) <sub>2</sub>                                       | DDQ                                                                                 | 24       | 100            | 0:1                       |  |
| 8                    | InCl <sub>3</sub>                                          | DDQ                                                                                 | 24       | 100            | 2:1                       |  |
| 9                    | Sc(OTf) <sub>3</sub>                                       | DDQ                                                                                 | 24       | 81             | 1:2                       |  |
| 10                   | Yb(OTf) <sub>3</sub>                                       | DDQ                                                                                 | 24       | 94             | 1:8                       |  |
| 11                   | CuCl <sub>2</sub>                                          | DDQ                                                                                 | 24       | 100            | 1:24                      |  |
| 12                   | ZnCl <sub>2</sub>                                          | DDQ                                                                                 | 24       | 100            | 1:24                      |  |
| 13                   | SnCl <sub>2</sub>                                          | DDQ                                                                                 | 24       | 100            | 1:17                      |  |
| 14                   | Bi(OTf) <sub>3</sub>                                       | DDQ                                                                                 | 24       | 74             | 1:10                      |  |
| 15                   | MgCl <sub>2</sub>                                          | DDQ                                                                                 | 24       | 100            | 1:12                      |  |
| 16                   | Others <sup>c</sup>                                        | DDQ                                                                                 | 24       | 50-100         | 0:1                       |  |
| 17                   | FeCl <sub>3</sub>                                          | BQ                                                                                  | 24       | 10             | 2:1                       |  |
| 18                   | FeCl <sub>3</sub>                                          | Cu(OAc) <sub>2</sub>                                                                | 24       | 52             | 1:12                      |  |
| 19                   | FeCl <sub>3</sub>                                          | tBuOOtBu                                                                            | 24       | 40             | 1:1.4                     |  |
| $20^d$               | FeCl <sub>3</sub>                                          | DDQ                                                                                 | 7/24     | 100            | 1:4                       |  |
| $21^e$               | FeCl <sub>3</sub>                                          | DDQ                                                                                 | 24       | 46             | 1:1                       |  |
| 22 <sup>f</sup>      | FeCl <sub>3</sub>                                          | DDQ                                                                                 | 24       | 15-97          | 0:1                       |  |
| 23 <sup>g</sup>      | FeCl <sub>3</sub>                                          | DDQ                                                                                 | 4        | (72)           | 8:1                       |  |
| $24^{h}$             | FeCl <sub>3</sub>                                          | DDQ                                                                                 | 5        | (63)           | 9:1                       |  |
| 25 <sup>g, i</sup>   | FeCl <sub>3</sub>                                          | DDQ                                                                                 | 24       | (59)           | 7:1                       |  |
| 26 <sup>g</sup>      | FeCl3·6H2O                                                 | DDQ                                                                                 | 4        | (75)           | 8:1                       |  |
| 27 <sup>g, j</sup>   | -                                                          | DDQ                                                                                 | 24       | (30)           | 0:1                       |  |
| 28 <sup>g, j-k</sup> | FeCl <sub>3</sub> .6H <sub>2</sub> O                       | -                                                                                   | 24       | (7)            | 10:1                      |  |

<sup>*a*</sup> Yields were determined by <sup>1</sup>H NMR using trichloroethylene as an internal standard. Value in parentheses indicates an isolated yield. <sup>*b*</sup> Ratios of inseparable isomers were determined by <sup>1</sup>H NMR. <sup>*c*</sup> Other Lewis acids such as PdCl<sub>2</sub>, PtCl<sub>2</sub>, AuCl, RuCl<sub>3</sub>, AgOTf, and AlCl<sub>3</sub>. <sup>*d*</sup> In *n*-heptane or MeCN, respectively. <sup>*e*</sup> In toluene. <sup>*f*</sup> In other solvents such as CH<sub>3</sub>CCl<sub>3</sub>, 1,4-dioxane, *t*BuOH, and DMF. <sup>*s*</sup> At 80 °C. <sup>*h*</sup> At 60 °C. <sup>*i*</sup> Using 1 equiv DDQ. <sup>*j*</sup> **1a** was recovered in 43-46% yield. <sup>*k*</sup> *N*-Ts-2-Phenylindoline (**4a**) was obtained in 40% yield.

# **Mechanistic Studies**

## 1) With Radical Scavenger



<sup>a</sup> 10 mol % FeCl<sub>3</sub>·6H<sub>2</sub>O and 2 equiv DDQ in CICH<sub>2</sub>CH<sub>2</sub>CI (0.05 M) at 80 °C.

## 3,5-Di-tert-butyl-4-hydroxybenzaldehyde

9%, a yellow solid (EtOAc : *n*-Hexane = 1:7).

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.48 (s, 18H), 5.85 (s, 1H), 7.73 (s, 2H), 9.85 (s, 1H). Spectral data were consistent with data reported in the literature.<sup>1a, 8</sup>

## 2,6-Di-tert-butyl-4-((2-phenyl-1-tosylindolin-3-yl)methyl)phenol

40%, a brown oil (EtOAc : *n*-Hexane = 1:7).

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 1.42 (s, 18H), 1.94 (dd, J = 10.2, 13.6 Hz, 1H), 2.32 (t, J = 6.4 Hz, 1H), 2.37 (s, 3H), 3.20 (dd, J = 6.8, 7.6 Hz, 1H), 4.93 (s, 1H), 5.14 (s, 1H), 6.69 (s, 2H), 6.75 (d, J = 7.6 Hz, 1H), 6.90-6.91 (m, 2H), 6.99 (t, J = 7.4 Hz, 1H), 7.15-7.17 (m, 3H), 7.24 (d, J = 8.0 Hz, 2H), 7.30 (t, J = 7.6 Hz, 1H), 7.66 (d, J = 8.0 Hz, 2H), 7.84 (d, J = 8.0 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 21.6, 30.3, 34.3, 43.0, 53.5, 69.6, 116.0, 124.1, 125.4, 125.5, 125.7, 127.18, 127.22, 128.3, 128.4, 128.5, 129.5, 134.0, 135.4, 136.1, 141.7, 142.7, 144.0, 152.5. HRMS (EI) [M]<sup>+</sup> m/z calcd for C<sub>36</sub>H<sub>41</sub>NO<sub>3</sub>S 567.2807, found 567.2809.

## 2) Reactivity of Terminal Alkenes



<sup>&</sup>lt;sup>8</sup> Ozanne, A.; Pouységu, L.; Depernet, D.; François, B.; Quideau, S. Org. Lett. 2003, 5, 2903.

#### 3) Stability of Indole Products 2 & 3 Under the Standard Reactions Conditions



 $^a$  10 mol % FeCl\_3·6H\_2O and 2 equiv DDQ in CICH\_2CH\_2CI (0.05 M) at 80  $^{\rm o}C.$ 

## 4) Crossover Experiments



<sup>a</sup> 10 mol % FeCl<sub>3</sub>·6H<sub>2</sub>O and 2 equiv DDQ in CICH<sub>2</sub>CH<sub>2</sub>Cl (0.05 M) at 80 °C.

#### 5) Reaction of Possible Intermediates



| Reaction                          |          | < Reaction of <b>4a</b>     | < Re        | < Reaction of <b>5a</b> > |                |            |  |
|-----------------------------------|----------|-----------------------------|-------------|---------------------------|----------------|------------|--|
| Conditions <sup>a</sup>           | t (h)    | : (h) 2a+3a (2a:3a)  4a     |             | t (h)                     | only <b>2a</b> | 5a         |  |
| Fe <sup>3+</sup> + DDQ            | 4<br>24  | 28% (1.4:1)<br>28% (2.8:1)  | 21%<br>4%   | 1                         | 100%           | 0%         |  |
| only Fe <sup>3+</sup><br>only DDQ | 24<br>24 | 0%<br>88% (only <b>3a</b> ) | 100%<br>10% | 24<br>1                   | 0%<br>100%     | 100%<br>0% |  |

<sup>a</sup> In CICH<sub>2</sub>CH<sub>2</sub>CI (0.05 M) at 80 °C (Fe<sup>3+</sup> = 10 mol % FeCl<sub>3</sub>•6H<sub>2</sub>O, DDQ = 2 equiv DDQ).

# 6) Effects of Fe(III) Loading

| $R^{2} \xrightarrow{\text{Fe(III) cat.}}_{\text{NHTs}} \xrightarrow{\text{Fe(III) cat.}}_{\text{CICH}_{2}\text{CH}_{2}\text{CI}} \xrightarrow{R^{2}}_{\text{Ts}} \xrightarrow{R^{1}}_{\text{Ts}} + \xrightarrow{R^{2}}_{\text{Ts}} \xrightarrow{R^{1}}_{\text{Ts}}$ |      |            |        |                                                                        |       |            |                    |                                                              |      |            |                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|--------|------------------------------------------------------------------------|-------|------------|--------------------|--------------------------------------------------------------|------|------------|--------------------|
| $R^1 = Ph, R^2 = H(1a)$                                                                                                                                                                                                                                             |      |            |        | $R^1 = 2$ -MeC <sub>6</sub> H <sub>4</sub> , $R^2 =$ MeO ( <b>1j</b> ) |       |            |                    | $R^1 = 2$ -MeC <sub>6</sub> H <sub>4</sub> , $R^2 = Cl$ (11) |      |            |                    |
| FeCl <sub>3</sub>                                                                                                                                                                                                                                                   | Time | Yield      | 29.39b | FeCl <sub>3</sub> .6H <sub>2</sub> O                                   | Time  | Yield      | 2i·3i <sup>b</sup> | FeCl <sub>3</sub> ·6H <sub>2</sub> O                         | Time | Yield      | 21·31 <sup>b</sup> |
| (mol %)                                                                                                                                                                                                                                                             | (h)  | $(\%)^{a}$ | 2a.5a  | (mol %)                                                                | (min) | $(\%)^{a}$ | <b>_</b> J.0J      | (mol %)                                                      | (h)  | $(\%)^{a}$ | 21.01              |
| 2                                                                                                                                                                                                                                                                   | 24   | 75         | 5:1    | 3                                                                      | 30    | 98         | 6:1                | 5                                                            | 24   | 91         | 2:1                |
| 5                                                                                                                                                                                                                                                                   | 24   | 74         | 6:1    | 10                                                                     | 10    | 78         | 13:1               | 10                                                           | 6    | 94         | 9:1                |
| 10                                                                                                                                                                                                                                                                  | 4    | 72         | 8:1    | 15                                                                     | 10    | 79         | 20:1               | 15                                                           | 2    | 92         | 10:1               |
| 15                                                                                                                                                                                                                                                                  | 2    | 48         | 27:1   | 20                                                                     | 5     | 55         | 53:1               | 20                                                           | 1    | 91         | 11:1               |
| 20                                                                                                                                                                                                                                                                  | 1    | 34         | 1:0    |                                                                        |       |            |                    | 25                                                           | 0.5  | 86         | 11:1               |

<sup>a</sup> Isolated yield. <sup>b</sup> Determined by <sup>1</sup>H NMR.



Figure S1. Plot of Yield and Ratio of 2 and 3 versus the Amount of  $Fe^{3+}$  Catalyst Used

# 7) Analysis of the Reaction Mixture During the Reaction of 1

| R <sup>1</sup> FeCl <sub>3</sub> ·6H <sub>2</sub> O (10 mol<br>DDQ (2 equiv) |                         |                               |                                  |                                  | %)               |                                                                         | R <sup>1</sup> +                 |                                  | ∕∕−R¹   |
|------------------------------------------------------------------------------|-------------------------|-------------------------------|----------------------------------|----------------------------------|------------------|-------------------------------------------------------------------------|----------------------------------|----------------------------------|---------|
| $R^{2}$                                                                      | R <sup>2</sup> NHTs     |                               |                                  | 1 <sub>2</sub> ℃l, 80 ℃          | 2 R <sup>2</sup> |                                                                         | 2 N                              |                                  |         |
|                                                                              | 1                       |                               |                                  |                                  |                  | 2                                                                       | IS                               | 3                                | .s<br>_ |
|                                                                              | $R^1 = Ph, R^2 = H(1a)$ |                               |                                  |                                  |                  | $R^1 = 2$ -MeC <sub>6</sub> H <sub>4</sub> , $R^2 = NO_2$ ( <b>1p</b> ) |                                  |                                  |         |
|                                                                              | Time<br>(h)             | <b>1a</b><br>(%) <sup>a</sup> | <b>2a+3a</b><br>(%) <sup>a</sup> | <b>2a:3a</b> <sup><i>a</i></sup> | Time<br>(h)      | <b>1p</b><br>(%) <sup>a</sup>                                           | <b>2p+3p</b><br>(%) <sup>a</sup> | <b>2p:3p</b> <sup><i>a</i></sup> | _       |
|                                                                              | 0.5                     | 19                            | 81                               | 4.8:1                            | 0.5              | 80                                                                      | 20                               | 9.0:1                            |         |
|                                                                              | 1                       | 8                             | 93                               | 4.8:1                            | 1                | 58                                                                      | 42                               | 7.0:1                            |         |
|                                                                              | 1.5                     | -                             | 100                              | 5.3:1                            | 2                | 38                                                                      | 62                               | 8.2:1                            |         |
|                                                                              | 2                       | -                             | 100                              | 5.7:1                            | 4                | 17                                                                      | 83                               | 7.8:1                            |         |
|                                                                              | 3                       | -                             | 100                              | 6.8:1                            | 6                | 9                                                                       | 91                               | 7.2:1                            |         |
|                                                                              | 4                       | -                             | 100                              | 8.1:1                            | 9                | 3                                                                       | 97                               | 7.2:1                            |         |
|                                                                              |                         |                               |                                  |                                  | 12               | -                                                                       | 100                              | 7.2:1                            |         |

<sup>a</sup> Determined by <sup>1</sup>H NMR.



Figure S2. Plot of Yield and Ratio of 2 and 3 versus Time

# **Proposed Mechanism**<sup>9</sup>



<sup>&</sup>lt;sup>9</sup> For the related ionic mechanism, see: (a) Liu, N.; Mao, L.-L.; Yang, B.; Yang, S.-D. *Chem. Commun.* 2014, *50*, 10879.
(b) Shimizu, M.; Itou, H.; Miura, M. *J. Am. Chem. Soc.* 2005, *127*, 3296. For the related radical mechanism, see: (c) Kshirsagar, U. A.; Regev, C.; Parnes, R.; Pappo, D. *Org. Lett.* 2013, *15*, 3174.

# **Copies of NMR Spectra**

# (*E*)-4-Methyl-*N*-(4-methyl-2-(4-methylstyryl)phenyl)benzenesulfonamide (1i)



(*E*)-*N*-(4-Methoxy-2-(2-methylstyryl)phenyl)-4-methylbenzenesulfonamide (1j)



(*E*)-4-Methyl-*N*-(4-methyl-2-(2-methylstyryl)phenyl)benzenesulfonamide (1k)



(E)-N-(4-Chloro-2-(2-methylstyryl)phenyl)-4-methylbenzenesulfonamide (11)



(E)-4-Methyl-N-(2-(2-methylstyryl)-4-nitrophenyl)benzenesulfonamide (1m)



(*E*)-4-Methyl-*N*-(5-methyl-2-(2-methylstyryl)phenyl)benzenesulfonamide (1n)



# (E)-N-(5-Chloro-2-(2-methylstyryl)phenyl)-4-methylbenzenesulfonamide (10)



S27

(E)-4-Methyl-N-(2-(2-methylstyryl)-5-nitrophenyl)benzenesulfonamide (1p)



(E)-N-(2-Methoxy-6-(2-methylstyryl)phenyl)-4-methylbenzenesulfonamide (1q)



# *N*-Ts-3-Phenylindole (2a) & *N*-Ts-2-Phenylindole (3a)



# *N*-Ts-3-(4-Methoxyphenyl)indole (2b)







# *N*-Ts-3-*m*-Tolylindole (2d) & *N*-Ts-2-*m*-Tolylindole (3d)



# *N*-Ts-3-*o*-Tolylindole (2e) & *N*-Ts-2-*o*-Tolylindole (3e)





# *N*-Ts-2-(4-Nitrophenyl)indole (3g)



# *N*-Ts-2-(3-(Trifluoromethyl)phenyl)indole (3h)



# N-Ts-5-Methyl-3-p-tolylindole (2i)







*N*-Ts-5-Methyl-3-*o*-tolylindole (2k) & *N*-Ts-5-Methyl-2-*o*-tolylindole (3k)



N-Ts-5-Chloro-3-o-tolylindole (21) & N-Ts-5-Chloro-2-o-tolylindole (31)



N-Ts-5-Nitro-3-o-tolylindole (2m) & N-Ts-5-Nitro-2-o-tolylindole (3m)



# *N*-Ts-6-Methyl-3-*o*-tolylindole (2n)





*N*-Ts-6-Chloro-3-*o*-tolylindole (20) & *N*-Ts-6-Chloro-2-*o*-tolylindole (30)



*N*-Ts-6-Nitro-3-*o*-tolylindole (2p) & *N*-Ts-6-Nitro-2-*o*-tolylindole (3p)



# *N*-Ts-7-Methoxy-3-*o*-tolylindole (2q)



# *N*-Ts-2-Phenylindoline (4a)



# *N*-Ts-3-Phenylindoline (5a)



# 3,5-Di-tert-butyl-4-hydroxybenzaldehyde



# 2,6-Di-tert-butyl-4-((2-phenyl-1-tosylindolin-3-yl)methyl)phenol

