Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Squaramide-Catalyzed Asymmetric Michael/Cyclization Tandem Reaction for Synthesis of Chiral Trifluoromethylated Hydroxyimino Tetrahydrobenzofuranones

Wei Liu, Xiaoyan Lai, Gaofeng Zha, Yan Xu, Panpan Sun, Tao Xia and Yongcun Shen*

Department of Pharmacy, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China

Content

1.	General information1
2.	General procedure for synthesis of trifluoromethylated nitroal-
	kenes 2 1
3.	General procedure for synthesis of racemic hydroxyimino tet-
	rahydrobenzofuranones rac- 3 2
4.	General procedure for synthesis of chiral hydroxyimino tetra-
	hydrobenzofuranones 32-10
5.	Copies of ¹ H, ¹³ C, ¹⁹ F NMR spectra and HPLC chromato-
	grams11-46
6.	X-ray crystal structure and data of 3bg 47-50

1. General information

Commercially available reagents were used without further purification. Solvents were treated prior to use according to the standard methods. Reactions were monitored by TLC, which was performed on glass-backed silica plates. Column chromatography was performed using silica gel (200 - 300 mesh) eluting with ethyl acetate and petroleum ether. Unless otherwise indicated, all ¹H NMR and ¹³C NMR spectra experiments were performed at room temperature using hexadeuterodimethyl sulfoxide as solvent, with TMS (tetramethylsilane) as internal standard. ¹H NMR spectra were recorded on 500MHz instrument, ¹³C NMR on 126 MHz instrument. ¹⁹F NMR spectra experiments were recorded on 471 MHz instrument, using $CDCl_3$ as solvent. The peak multiplicities of ¹H NMR spectra were abbreviated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Chemical shifts (δ) were reported in ppm. Coupling constants (J) were given in Hz. Enantiomeric excess was determined by HPLC analysis on chiral Daicel Chiralpak AD-H columns. The solvents of mobile phase used were hexane and isopropanol (sometimes ethanol if necessary). HRMS was measured by micrOTOF-Q III spectrometer. IR data were recorded by Fourier infrared spectrometer.

 General procedure for the synthesis of trifluoromethylated nitroalkenes 2¹

To a solution of the trifluoroacetophenone (1.0 eq.) in $MeNO_2$ (0.5 M) was added Et_3N (1.5 eq.). The mixture was stirred for overnight at room temperature. After diluted with ethyl acetate and washed successively with 1N HCl, water, and brine, the organic phase was separated and dried over anhydrous Na_2SO_4 . After filtration, the solvent was removed by rotary evaporation in reduced pressure to afford the corresponding nitroalcohol that was used in the following step without further purifica-

^{1 (}a) J. R. Gao, H. Wu, B. Xiang, W. B. Yu, L. Han and Y. X. Jia, *J. Am. Chem. Soc.*, 2013, **135**, 2983; (b) E. Martinelli, A. C. Vicini, M. Mancinelli, A. Mazzanti, P. Zani, L. Bernardi and M. Fochi, *Chem. Commun.*, 2015, **51**, 658.

tion.

To a solution of the obtained nitroalcohol in toluene (0.25 M) were added $SOCl_2$ (1.5 eq.) and pyridine (2.0 eq.) successively at 0 °C. The mixture was stirred at room temperature for 3h and then diluted with ethyl acetate. After washing with water and brine, the organic phase was separated and dried over anhydrous Na₂SO₄. The solvent was removed by rotary evaporation in reduced pressure and the residue was purified with column chromatography on silica gel, eluted with ethyl acetate/ petroleum ether 1:20 (v/v), to afford the trifluoromethylated nitroalkene.

3. General procedure for the synthesis of racemic hydroxyimino tetrahydrobenzofuranones rac- 3^2

To a solution of cyclohexanediones **1** (dimedone **1a**, 1,3-cyclohexane dione **1b**) (0.1mmol) and trifluoromethylated nitroalkenes **2** (0.1mmol) in DCM (1.0 mL) was added Et_3N (0.1 eq.). The mixture was stirred at room temperature until TLC indicated that the reactants were run out. After the reaction mixture was concentrated by rotary evaporation in reduced pressure, the crude residue was purified by column chromatography using ethyl acetate/petroleum ether 1:5 (v/v) to give rac-**3**.

4. General procedure for the synthesis of chiral hydroxyimino tetrahydrobenzofuranones **3**

^{2 (}a) G. H. Wang and C. Y. Yuan, *Heteroat. Chem.*, 1992, **3**, 521; (b) R. Q. Mei, X. Y. Xu, L. Peng, F. Wang, F. Tian and L. X. Wang, *Org. Biomol. Chem.*, 2013, **11**, 1286.

To a solution of cyclohexanediones **1** (0.2mmol) and trifluoromethylated nitroalkenes **2** (0.2mmol) in DCM (2.0 mL) was added catalyst **II** (0.1 eq.). The mixture was stirred at -10° C until TLC indicated that the reactants were run out. After the reaction mixture was concentrated by rotary evaporation in reduced pressure, the crude residue was purified by column chromatography using ethyl acetate/petroleum ether 1:5 (v/v) to give corresponding enantiomeric hydroxyimino tetrahydrobenzofuranones **3**.

(R,Z)-2-(hydroxyimino)-6,6-dimethyl-3-phenyl-3-(trifluoromethyl)-3,5,6,7 -tetrahydrobenzofuran-4(2H)-one (**3aa**): white solid, yield: 74%, ee: 84%.

HPLC (Chiralpak AD-H, Hexane/i-PrOH = 90/10, 1 mL/min, 254nm): t_{major} = 15.72 min, t_{minor} = 12.41 min. IR (KBr) v/cm⁻¹ : 3240, 2966, 1692, 1646, 1633, 1378. ¹H NMR (500MHz, DMSO-d₆) δ 11.39 (s, 1H), 7.49 (d, *J* = 7.6 Hz, 2H),

7.46 – 7.30 (m, 3H), 2.77 (dd, *J* = 45.1, 18.3 Hz, 2H), 2.36 (dd, *J* = 42.7, 15.9 Hz, 2H), 1.10 (d, *J* = 4.6 Hz, 6H). ¹³C NMR (126MHz, DMSO-d₆) δ 191.54, 175.53, 152.14, 134.04, 129.06, 129.01, 127.84, 124.85 (q, *J*_{C-F} = 284.8 Hz), 113.12, 59.44 (q, *J*_{C-F} = 30.2 Hz), 51.74, 36.51, 33.87, 28.49, 27.49. ¹⁹F NMR (471 MHz, CDCl₃) δ -68.14 (s, 3F). HRMS (ESI) Calculated for C₁₇H₁₆F₃NO₃ [M+Na]⁺: 362.0974, found: 362.1062.

(R,Z)-2-(hydroxyimino)-6,6-dimethyl-3-(m-tolyl)-3-(trifluoromethyl)-3,5,6, 7-tetrahydrobenzofuran-4(2H)-one (**3ab**): white solid, yield: 78%, ee:

81%. HPLC (Chiralpak AD-H, Hexane/i-PrOH = 90/10, 1 mL/min, 254nm): t_{major} = 13.89 min, t_{minor} = 10.17 min. IR (KBr) v/cm⁻¹: 3410, 3259, 2962, 2926, 1688, 1666, 1649,

⁶H 1633, 1608, 1375. ¹H NMR (500 MHz, DMSO-d₆) δ 11.40 (s, 1H), 7.32 – 7.24 (m, 3H), 7.19 (dd, *J* = 7.0, 0.6 Hz, 1H), 2.77 (dd, *J* = 52.8, 18.3 Hz, 2H), 2.34 (dd, *J* = 51.3, 15.9 Hz, 2H), 2.30 (s, 3H), 1.09 (d, *J* = 8.7 Hz, 6H). ¹³C NMR (126 MHz, DMSO-d₆) δ 191.50, 175.43, 152.21, 138.25, 134.05, 129.63, 128.95, 128.19, 124.98, 124.87 (q, *J*_{C-F} = 284.8 Hz), 113.21, 59.39 (q, *J*_{C-F} = 30.2 Hz), 51.75, 36.52, 33.90, 28.49, 27.49, 21.65. ¹⁹F NMR (471 MHz, CDCl₃) δ -67.94 (s, 3F). HRMS (ESI) Calculated for C₁₈H₁₈F₃NO₃ [M+Na]⁺: 376.1131, found: 376.1219.

(R,Z)-3-(3-fluorophenyl)-2-(hydroxyimino)-6,6-dimethyl-3-(trifluoromethy l)-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (**3ac**): white solid, yield: 70%,

ee: 77%. HPLC (Chiralpak AD-H, Hexane/i-PrOH = 90/10, 1 mL/min, 254nm): $t_{major} = 13.41 \text{ min}, t_{minor} = 11.14 \text{ min}.$ IR (KBr) v/cm⁻¹: 3250, 2961, 2921, 1692, 1646, 1633, 1377. ¹H NMR (500 MHz, DMSO-d₆) δ 11.50 (s, 1H),

7.54 – 7.43 (m, 1H), 7.39 – 7.22 (m, 3H), 2.77 (dd, *J* = 57.2, 18.3 Hz, 2H), 2.37 (dd, *J* = 62.1, 15.9 Hz, 2H), 1.08 (d, *J* = 9.2 Hz, 6H). ¹³C NMR (126 MHz, DMSO-d₆) δ 191.68, 176.13, 162.29 (d, *J*_{C-F} =244.4 Hz), 151.58, 136.24 (d, *J*_{C-F} =7.6 Hz), 131.21(d, *J*_{C-F} =8.8 Hz), 124.60 (q, *J*_{C-F} = 284.8 Hz), 124.14, 116.18 (d, *J*_{C-F} =20.2 Hz), 115.12 (d, *J*_{C-F} =23.9Hz), 112.60, 59.13 (q, *J*_{C-F} =31.5 Hz), 51.66, 36.52, 33.86, 28.62, 27.34. ¹⁹F NMR (471 MHz, CDCl₃) δ -68.38 (s, 3F), -111.41-111.46 (m, 1F). HRMS (ESI) Calculated for $C_{17}H_{15}F_4NO_3 [M+Na]^+$: 380.0880, found: 380.0938.

(R,Z)-3-(3,5-dimethylphenyl)-2-(hydroxyimino)-6,6-dimethyl-3-(trifluoro methyl)-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (**3ad**): white solid, yield:

69%, ee: 85%. HPLC (Chiralpak AD-H, Hexane/i-PrOH = 90/10, 1 mL/min, 254nm): $t_{major} = 10.96 \text{ min}$, $t_{minor} = 6.95 \text{ min}$. IR (KBr) v/cm⁻¹: 3409, 3235, 3160, 2960, 2922, 2849, 1697, 1657, 1634, 1602, 1467, 1377. ¹H NMR (500 MHz,

DMSO-d₆) δ 11.36 (s, 1H), 7.04 (d, J = 30.2 Hz, 3H), 2.76 (dd, J = 56.2, 18.3 Hz, 2H), 2.36 (dd, J = 54.9, 15.9 Hz, 2H), 2.26 (s, 6H), 1.10 (d, J = 11.4 Hz, 6H). ¹³C NMR (126 MHz, DMSO-d₆) δ 191.44, 175.31, 152.25, 138.07, 134.03, 130.34, 125.37, 124.86 (q, $J_{C-F} = 284.8$ Hz), 113.27, 59.32 (q, $J_{C-F} = 30.2$ Hz), 51.73, 36.49, 33.91, 28.46, 27.47, 21.53. ¹⁹F NMR (471 MHz, CDCl₃) δ -67.77 (s, 3F). HRMS (ESI) Calculated for C₁₉H₂₀F₃NO₃ [M+Na]⁺: 390.1287, found: 390.1330.

(R,Z)-2-(hydroxyimino)-6,6-dimethyl-3-(p-tolyl)-3-(trifluoromethyl)-3,5,6,

7-tetrahydrobenzofuran-4(2H)-one (**3ae**): white solid, yield: 75%, ee: 74%. HPLC (Chiralpak AD-H, Hexane/EtOH = 90/10, 1 mL/min, 254nm): t_{major} = 17.18 min, t_{minor} = 12.11 min. IR (KBr) v/cm⁻¹: 3444, 3231, 2962, 2929, 1693,

1645, 1631, 1377. ¹H NMR (500 MHz, DMSO-d₆) δ 11.36 (s, 1H), 7.37 (d, J

= 8.2 Hz, 2H), 7.21 (d, *J* = 8.2 Hz, 2H), 2.75 (dd, *J* = 42.5, 18.3 Hz, 2H), 2.35 (dd, *J* = 38.8, 15.9 Hz, 2H), 2.29 (s, 3H), 1.09 (d, *J* = 2.4 Hz, 6H). ¹³C NMR (126 MHz, DMSO-d₆) δ 191.53, 175.37, 152.20, 138.49, 131.06, 129.58, 127.74, 124.87 (q, *J*_{C-F} = 284.8 Hz), 113.20, 59.19 (q, *J*_{C-F} = 30.2 Hz), 51.76, 36.50, 33.87, 28.45, 27.52, 20.96. ¹⁹F NMR (471 MHz, CDCl₃) δ -68.30 (s, 3F). HRMS (ESI) Calculated for $C_{18}H_{18}F_3NO_3$ [M+Na]⁺: 376.1131, found: 376.1155.

(R,Z)-2-(hydroxyimino)-3-(4-methoxyphenyl)-6,6-dimethyl-3-(trifluorome thyl)-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (**3af**): white solid, yield:

65%, ee: 88%. HPLC(Chiralpak AD-H, Hexane/EtOH = 90/ 10, 1 mL/min, 254nm): t_{major} = 26.20 min, t_{minor} = 21.38 min. IR (KBr) v/cm⁻¹ : 3223, 2957, 2924, 2850, 1729, 1692, 1648, 1632, 1516, 1463, 1378. ¹H NMR (500 MHz, DMSO-d₆) δ 11.36 (s, 1H), 7.42 (d, *J* = 8.9 Hz, 2H),

6.98 – 6.92 (m, 2H), 3.75 (s, 3H), 2.74 (dd, *J* = 38.9, 18.3 Hz, 2H), 2.35 (dd, *J* = 36.4, 15.9 Hz, 2H), 1.08 (d, *J* = 2.7 Hz, 6H). ¹³C NMR (126 MHz, DMSO-d₆) δ 191.69, 175.36, 159.68, 152.21, 129.33, 125.64, 124.88 (q, *J*_{C-F} = 284.8 Hz), 114.38, 113.16, 58.91 (q, *J*_{C-F} = 30.2 Hz), 55.66, 51.82, 36.52, 33.85, 28.42, 27.54. ¹⁹F NMR (471 MHz, CDCl₃) δ -68.64 (s, 3F). HRMS (ESI) Calculated for $C_{18}H_{18}F_3NO_4$ [M+Na]⁺: 392.1080, found: 392.1074.

(R,Z)-3-(4-fluorophenyl)-2-(hydroxyimino)-6,6-dimethyl-3-(trifluoromethy l)-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (**3ag**): white solid, yield: 81%,

ee: 67%. HPLC (Chiralpak AD-H, Hexane/i-PrOH = 90/10, 1 mL/min, 254nm): t_{major} = 10.89 min, t_{minor} = 12.28 min. IR (KBr) v/cm⁻¹ : 3245, 2963, 1693, 1646, 1633, 1604, 1515, 1378. ¹H NMR (500 MHz, DMSO-d₆) δ 11.45 (s, 1H), 7.55 (dd, J = 8.9, 5.2 Hz, 2H), 7.32 – 7.22 (m, 2H), 2.76

(dd, *J* = 43.3, 18.3 Hz, 2H), 2.36 (dd, *J* = 43.9, 15.9 Hz, 2H), 1.08 (d, *J* = 5.2 Hz, 6H). ¹³C NMR (126 MHz, DMSO-d₆) δ 191.69, 175.80, 162.42(d, *J*_{C-F} = 247.0 Hz), 151.89, 130.34 (d, *J*_{C-F} = 8.8 Hz), 130.04 (d, *J*_{C-F} = 2.52 Hz), 124.73 (q, *J*_{C-F} = 284.8 Hz), 115.97 (d, *J*_{C-F} = 21.4 Hz), 112.85, 58.94 (q, *J*_{C-F} = 31.5 Hz), 51.73, 36.52, 33.85, 28.53, 27.44. ¹⁹F NMR (471 MHz, CDCl₃) δ

-68.67 (s, 3F), -112.81-112.87 (m, 1F). HRMS (ESI) Calculated for $C_{17}H_{15}F_4NO_3 [M+Na]^+$: 380.0880, found: 380.0851.

(R,Z)-3-(4-bromophenyl)-2-(hydroxyimino)-6,6-dimethyl-3-(trifluorometh yl)-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (**3ah**): white solid, yield: 75%,

Br CF₃ OH ee: 56%. HPLC (Chiralpak AD-H, Hexane/i-PrOH = 90/10, 1 mL/min, 254nm): t_{major} = 12.50 min, t_{minor} = 14.34 min. IR (KBr) v/cm⁻¹ : 3368, 2963, 2925, 1694, 1665, 1642, 1495, 1419, 1376. ¹H NMR (500 MHz, DMSO-d₆) δ 11.47 (s, 1H), 7.64 (d, *J* = 8.8 Hz, 2H), 7.44 (d, *J* = 8.6 Hz, 2H),

2.77 (dd, J = 41.3, 18.3 Hz, 2H), 2.35 (dd, J = 38.3, 15.9 Hz, 2H), 1.09 (d, J = 4.2 Hz, 6H). ¹³C NMR (126 MHz, DMSO-d₆) δ 191.59, 175.92, 151.71, 133.31, 132.07, 130.13, 124.64 (q, $J_{C-F} = 284.8$ Hz), 122.66, 112.70, 59.07 (q, $J_{C-F} = 30.2$ Hz), 51.66, 36.51, 33.88, 28.55, 27.44. ¹⁹F NMR (471 MHz, CDCl₃) δ -68.49 (s, 3F). HRMS (ESI) Calculated for C₁₇H₁₅BrF₃NO₃ [M+H]⁺: 418.0260, found: 418.0256.

(R,Z)-2-(hydroxyimino)-6,6-dimethyl-3-(trifluoromethyl)-3-(4-(trifluorome thyl)phenyl)-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (**3ai**): white solid,

yield: 66%, ee: 72%. HPLC (Chiralpak AD-H, Hexane/i-PrOH = 92/8, 1 mL/min, 254nm): t_{major} = 9.67 min, t_{minor} = 12.54 min. IR (KBr) v/cm⁻¹ : 3392, 2967, 2919, 2849, 1692, 1665, 1643, 1619, 1469, 1419, 1378, 1326. ¹H NMR (500 MHz, DMSO-d₆) δ 11.57 (s, 1H), 7.81 (d, J =

8.5 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H), 2.79 (dd, J = 42.2, 18.3 Hz, 2H), 2.35 (dd, J = 38.3, 16.0 Hz, 2H), 1.09 (d, J = 5.2 Hz, 6H). ¹³C NMR (126 MHz, DMSO-d₆) δ 191.53, 176.17, 151.66, 138.42, 129.57 (q, $J_{C-F} = 32.8$ Hz), 128.87, 126.09 (q, $J_{C-F} = 3.8$ Hz), 124.63 (q, $J_{C-F} = 284.8$ Hz), 124.34 (q, $J_{C-F} = 273.4$ Hz), 112.64, 59.28 (q, $J_{C-F} = 30.2$ Hz), 51.56, 36.49, 33.90, 28.58, 27.42. ¹⁹F NMR (471 MHz, CDCl₃) δ -63.01 (s, 3F), -68.26 (s, 3F). HRMS (ESI) Calculated for C₁₈H₁₅F₆NO₃ [M+Na]⁺: 430.0848, found: 430.0788.

(R,Z)-2-(hydroxyimino)-3-phenyl-3-(trifluoromethyl)-3,5,6,7-tetrahydrobe nzofuran-4(2H)-one (**3ba**): white solid, yield: 77%, ee: 71%. HPLC (Chiralpak AD-H, Hexane/i-PrOH = 90/10, 1 mL/min, 254nm): t_{major} = 17.92

min, $t_{minor} = 20.61$ min. IR (KBr) v/cm^{-1} : 3268, 2972, 2934, 2891, 1689, 1644, 1631, 1585, 1500, 1451, 1423, 1374. ¹H NMR (500 MHz, DMSO-d₆) δ 11.29 (s, 1H), 7.50 (d, J = 7.6 Hz, 2H), 7.42 - 7.34 (m, 3H), 2.83 (t, J = 6.2 Hz, 2H), 2.41 (t, J = 6.6Hz, 2H), 2.09 (m, 2H). ¹³C NMR (126 MHz, DMSO-d₆) δ

191.96, 176.73, 152.02, 134.11, 129.01, 128.93, 127.87, 124.82 (q, J_{C-F} = 284.8 Hz), 114.11, 59.52 (q, J_{C-F} =30.2 Hz), 37.75, 23.40, 20.79. ¹⁹F NMR (471 MHz, CDCl₃) δ -68.08 (s, 3F). HRMS (ESI) Calculated for C₁₅H₁₂F₃NO₃ [M+Na]⁺: 334.0661, found: 334.0596.

(R,Z)-2-(hydroxyimino)-3-(m-tolyl)-3-(trifluoromethyl)-3,5,6,7-tetrahydro benzofuran-4(2H)-one (**3bb**): white solid, yield: 73%, ee: 86%. HPLC

(Chiralpak AD-H, Hexane/i-PrOH = 90/10, 1 mL/min, 254nm): t_{major} = 17.85 min, t_{minor} = 16.05 min. IR (KBr) v/cm⁻¹: 3229, 2920, 2850, 1698, 1646, 1627, 1466, 1382. ¹H NMR (500 MHz, DMSO-d₆) δ 11.33 (s, 1H), 7.28 (d, J =

5.1 Hz, 3H), 7.18 (d, J = 3.0 Hz, 1H), 2.83 (t, J = 6.2 Hz, 2H), 2.40 (t, J = 6.5 Hz, 2H), 2.30 (s, 3H), 2.08 (m, 2H). ¹³C NMR (126 MHz, DMSO-d₆) δ 191.94, 176.64, 152.08, 138.19, 134.08, 129.56, 128.89, 128.18, 125.02, 124.83 (q, $J_{C-F} = 284.8$ Hz), 114.17, 59.45 (q, $J_{C-F} = 30.2$ Hz), 37.75, 23.39, 21.65, 20.80. ¹⁹F NMR (471 MHz, CDCl₃) δ -67.92 (s, 3F). HRMS (ESI) Calculated for C₁₆H₁₄F₃NO₃ [M+Na]⁺: 348.0818, found: 348.0738.

(R,Z)-3-(3-fluorophenyl)-2-(hydroxyimino)-3-(trifluoromethyl)-3,5,6,7-tetr ahydrobenzofuran-4(2H)-one (**3bc**): white solid, yield: 73%, ee: 78%.

HPLC (Chiralpak AD-H, Hexane/EtOH = 90/10, 1 mL/min, 254nm): t_{major} = 25.32 min, t_{minor} = 12.40 min. IR (KBr) v/cm⁻¹: 3259, 2953, 2922, 2848, 1692, 1650, 1631, 1591, 1493, 1449, 1374. ¹H NMR (500 MHz, DMSO-d₆) δ 11.46 (s,

1H), 7.51 – 7.45 (m, 1H), 7.36 (dd, J = 21.0, 9.5 Hz, 2H), 7.26 (td, J = 8.4, 2.4 Hz, 1H), 2.84 (t, J = 6.2 Hz, 2H), 2.42 (t, J = 6.5Hz, 2H), 2.09 (m, 2H). ¹³C NMR (126 MHz, DMSO-d₆) δ 192.11, 177.34, 162.29 (d, $J_{C-F} = 244.4$ Hz), 151.54, 136.34 (d, $J_{C-F} = 7.6$ Hz), 131.10 (d, $J_{C-F} = 7.6$ Hz), 124.58 (q, $J_{C-F} = 284.8$ Hz), 124.17, 116.08 (d, $J_{C-F} = 20.2$ Hz), 115.21 (d, $J_{C-F} = 23.9$ Hz), 113.59, 59.21 (q, $J_{C-F} = 30.2$ Hz), 37.68, 23.44, 20.71. ¹⁹F NMR (471 MHz, CDCl₃) δ -68.31 (s, 3F), -111.47-111.53 (m, 1F). HRMS (ESI) Calculated for $C_{15}H_{11}F_4NO_3$ [M+Na]⁺: 352.0567, found: 352.0476.

(R,Z)-3-(3,5-dimethylphenyl)-2-(hydroxyimino)-3-(trifluoromethyl)-3,5,6, 7-tetrahydrobenzofuran-4(2H)-one (3bd): white solid, yield: 65%, ee:

85%. HPLC (Chiralpak AD-H, Hexane/i-PrOH = 90/10, 1 mL/min, 254nm): t_{major} = 18.36 min, t_{minor} = 11.52 min. IR (KBr) v/cm⁻¹: 3370, 2960, 2920, 2848, 1703, 1663, 1634, 1605, 1376. ¹H NMR (500 MHz, DMSO-d₆) δ 11.31 (s, 1H),

7.07 (s, 2H), 6.99 (s, 1H), 2.87 – 2.80 (m, 2H), 2.40 (t, J = 6.5 Hz, 2H), 2.25 (s, 6H), 2.14 – 2.02 (m, 2H). ¹³C NMR (126 MHz, DMSO-d₆) δ 191.89, 176.52, 152.12, 138.00, 134.05, 130.29, 125.39, 124.84 (q, J_{C-F} = 284.8 Hz), 114.25, 59.39 (q, J_{C-F} =30.2 Hz), 37.76, 23.38, 21.54, 20.79. ¹⁹F NMR (471 MHz, CDCl₃) δ -67.79 (s, 3F). HRMS (ESI) Calculated for C₁₇H₁₆F₃NO₃ [M+Na]⁺: 362.0974, found: 362.0888.

(R,Z)-2-(hydroxyimino)-3-(p-tolyl)-3-(trifluoromethyl)-3,5,6,7-tetrahydrob enzofuran-4(2H)-one (3be): white solid, yield: 69%, ee: 87%. HPLC (Chi-

ralpak AD-H, Hexane/i-PrOH = 90/10, 1 mL/min, 254nm): $t_{major} = 15.12 \text{ min}, t_{minor} = 20.13 \text{ min}. \text{ IR (KBr) } \text{v/cm}^{-1}: 3265,$ 2921, 2848, 1692, 1647, 1632, 1374. ¹H NMR (500 MHz, ^οΗ DMSO-d₆) δ 11.31 (s, 1H), 7.37 (d, J = 8.2 Hz, 2H), 7.19 (d, J = 8.2 Hz, 2H), 2.82 (t, J = 6.2 Hz, 2H), 2.39 (dt, J = 8.3, 4.5 Hz, 2H), 2.28 (s, 3H), 2.07 (tt, J = 21.0, 7.3 Hz, 2H). ¹³C NMR (126 MHz, DMSO-d₆) δ 191.97, 176.58, 152.09, 138.40, 131.13, 129.53, 127.78, 124.71 (q, J_{C-F} = 284.8 Hz), 114.19, 59.27 (g, J_{C-F} =30.2 Hz), 37.78, 23.38, 20.97, 20.80. ¹⁹F NMR

(471 MHz, CDCl₃) δ -68.23 (s, 3F). HRMS (ESI) Calculated for C₁₆H₁₄F₃NO₃ [M+Na]⁺: 348.0818, found: 348.0739.

(R,Z)-2-(hydroxyimino)-3-(4-methoxyphenyl)-3-(trifluoromethyl)-3,5,6,7-t

etrahydrobenzofuran-4(2H)-one (3bf): white solid, yield: 66%, ee: 89%. HPLC (Chiralpak AD-H, Hexane/i-PrOH/EtOH = 89/8.3/2.7, 1 mL/min, 254nm): t_{maior} = 21.11 min, t_{minor} = 33.84 min. IR (KBr) v/cm⁻¹: 3394, 3055, 2920, 2849, 1701, 1667, 1636, 1609, 1520, 1372. ¹H NMR (500 MHz, DMSO-d₆) δ 11.32 (s, 1H), 7.43 (d, *J* = 8.8 Hz, 2H), 6.94 (d, *J* = 9.0 Hz, 2H), 3.75 (s, 3H), 2.89 – 2.73 (m, 2H), 2.46 – 2.32 (m, 2H), 2.19 – 2.00 (m, 2H). ¹³C NMR (126 MHz, DMSO-d₆) δ 192.10, 176.55, 159.63, 152.07, 129.37, 125.73, 124.86 (q, *J*_{C-F} = 284.8 Hz), 114.31, 114.16, 59.00 (q, *J*_{C-F} = 30.2 Hz), 55.66, 37.83, 23.40, 20.79. ¹⁹F NMR (471 MHz, CDCl₃) δ -68.57 (s, 3F). HRMS (ESI) Calculated for C₁₆H₁₄F₃NO₄ [M+Na]⁺: 364.0767, found: 364.0685.

(R,Z)-3-(4-fluorophenyl)-2-(hydroxyimino)-3-(trifluoromethyl)-3,5,6,7-tetr ahydrobenzofuran-4(2H)-one (**3bg**): white solid, yield: 70%, ee: 88%.

HPLC (Chiralpak AD-H, Hexane/i-PrOH = 90/10, 1 mL/min, 254nm): t_{major} = 13.65 min, t_{minor} = 16.36 min. IR (KBr) v/cm⁻¹: 3281, 2957, 2922, 2851, 1691, 1648, 1632, 1606, 1515, 1457, 1419, 1375. ¹H NMR (500 MHz, DMSO-d₆) δ 11.41 (s, 1H), 7.68 – 7.46 (m, 2H), 7.32 – 7.20 (m, 2H), 2.83 (t, *J* = 6.1Hz, 2H), 2.41 (m, 2H), 2.08 (m, 2H). ¹³C NMR (126 MHz, DMSO-d₆) δ 192.11, 177.00, 163.38 (d, J_{C-F} =247.0 Hz), 151.80, 130.39 (d, J_{C-F} =8.8 Hz), 130.14 (d, J_{C-F} =3.8 Hz), 124.71 (q, J_{C-F} = 284.8 Hz), 115.87 (d, J_{C-F} =22.7 Hz), 113.85, 59.02 (q, J_{C-F} =30.2 Hz), 37.75, 23.42, 20.74. ¹⁹F NMR (471 MHz, CDCl₃) δ -68.60 (s, 3F), -112.84-112.90 (m, 1F). HRMS (ESI) Calculated for C₁₅H₁₁F₄NO₃ [M+Na]⁺: 352.0567, found: 352.0478.

(R,Z)-3-(4-bromophenyl)-2-(hydroxyimino)-3-(trifluoromethyl)-3,5,6,7-tet rahydrobenzofuran-4(2H)-one (**3bh**): white solid, yield: 78%, ee: 58%.

HPLC (Chiralpak AD-H, Hexane/i-PrOH = 90/10, 1 mL/min, 254nm): t_{major} = 15.51 min, t_{minor} = 17.53 min. IR (KBr) v/cm⁻¹: 3291, 2956, 2922, 2850, 1687, 1652, 1631, 1495, 1373. ¹H NMR (500 MHz, DMSO-d₆) δ 11.43 (s, 1H), 7.62 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 2.83 (t, J = 6.1 Hz, 2H), 2.46 – 2.33 (m, 2H), 2.17 – 2.00 (m, 2H). ¹³C NMR (126 MHz, DMSO-d₆) δ 191.99, 177.10, 151.61, 133.39, 131.95, 130.17, 124.59 (q, $J_{C-F} = 284.8$ Hz), 122.54, 113.68, 59.13 (q, $J_{C-F} = 30.2$ Hz), 37.65, 23.39, 20.72. ¹⁹F NMR (471 MHz, CDCl₃) δ -68.41 (s, 3F). HRMS (ESI) Calculated for C₁₅H₁₁BrF₃NO₃ [M+Na]⁺: 411.9767, found: 411.9676. (R,Z)-2-(hydroxyimino)-3-(trifluoromethyl)-3-(4-(trifluoromethyl)phenyl)-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (**3bi**): yellow solid, yield: 68%,

ee: 65%. HPLC (Chiralpak AD-H, Hexane/i-PrOH = 95/5, 1 mL/min): t_{major} = 22.29 min, t_{minor} = 25.47 min. IR (KBr) v/cm⁻¹: 3388, 2925, 2852, 1694, 1654, 1636, 1457, 1419, 1378. ¹H NMR (500 MHz, DMSO-d₆) δ 11.48 (d, *J* = 1.2 Hz, 1H), 7.79 (d, *J* = 8.5 Hz, 2H), 7.73 (d, *J* = 8.3 Hz, 2H), 2.85 (t, *J* = 6.1 Hz, 2H), 2.46 – 2.34 (m, 2H), 2.09 (m, 2H). ¹³C NMR (126 MHz, DMSO-d₆) δ 192.02, 177.42, 151.65, 138.57, 129.54 (q, *J*_{C-F} =32.8 Hz), 128.95, 126.01 (q, *J*_{C-F} =3.8 Hz), 124.64 (q, *J*_{C-F} =284.8 Hz), 124.39 (q, *J*_{C-F} =272.2 Hz), 113.69, 59.40 (q, *J*_{C-F} =30.2 Hz), 37.61, 23.44, 20.77. ¹⁹F NMR (471 MHz, CDCl₃) δ -63.00 (s, 3F), -68.20 (s, 3F). HRMS (ESI) Calculated for C₁₆H₁₁F₆NO₃ [M+Na]⁺: 402.0535, found: 402.0467.

5. Copies of ¹H, ¹³C, ¹⁹F NMR spectra and HPLC chromatograms

6. X-ray crystal structure and data of 3bg

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 160103a THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 160103a

Bond precision: C-C = 0.0036 A Wavelength=1.54178

Cell: a=8.7967(4) b=9.2428(4) c=17.2636(8)

alpha=90 beta=90 gamma=90

Temperature: 293 K

Calculated Reported

Volume 1403.64(11) 1403.64(11)

Space group P 21 21 21 P2(1)2(1)2(

Hall group P 2ac 2ab?

Moiety formula C15 H11 F4 N O3?

Sum formula C15 H11 F4 N O3 C15 H11 F4 N O3

Mr 329.25 329.25

Dx,g cm-3 1.558 1.558 Z 4 4 Mu (mm-1) 1.263 1.263

F000 672.0 672.0

F000' 674.88

h,k,lmax 10,10,20 10,10,20

Nref 2477[1447] 2477

Tmin,Tmax 0.618,0.668 0.619,0.688

Tmin' 0.560

Correction method= # Reported T Limits: Tmin=0.619 Tmax=0.688

AbsCorr = MULTI-SCAN

Data completeness= 1.71/1.00 Theta(max)= 66.450

R(reflections)= 0.0370(2166) wR2(reflections)= 0.0924(2477)

S = 1.075 Npar= 210

The following ALERTS were generated. Each ALERT has the format

test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level C

PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax < 18) 6.89 Note PLAT934_ALERT_3_C Number of (lobs-lcalc)/SigmaW > 10 Outliers 1 Check Alert level G

10 ALERT level G = General information/check it is not something unexpected

3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

1 ALERT type 2 Indicator that the structure model may be wrong or deficient

3 ALERT type 3 Indicator that the structure quality may be low

3 ALERT type 4 Improvement, methodology, query or suggestion

2 ALERT type 5 Informative message, check

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

start Validation Reply Form

_vrf_PLAT089_160103a;

PROBLEM: Poor Data / Parameter Ratio (Zmax < 18) 6.89 Note RESPONSE: ...;

_vrf_PLAT934_160103a;

PROBLEM: Number of (Iobs-Icalc)/SigmaW > 10 Outliers 1 Check

RESPONSE: ...;

end Validation Reply Form

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs

submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit

to Acta

Crystallographica Section C or *E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to

CIF submission.

PLATON version of 19/11/2015; check.def file version of 17/11/2015

Datablock 160103a - ellipsoid plot