Synthesis and Characterization of Highly Strained Donor-Acceptor Nanohoop

J. M. Van Raden,^a E. R. Darzi^{a,} L. N. Zakharov^b, and R. Jasti^{*a}

^a Department of Chemistry and Biochemistry and Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States. Email: <u>rjasti@uoregon.edu</u>

^b CAMCOR – Center for Advanced Materials Characterization in Oregon, University of Oregon, Eugene, Oregon 97403, United States

Table of Contents

¹ H and ¹³ C NMR Spectra	S2
Optical and Electronic Characterization	
TD-DFT Data	S11
Computational Coordinates	S13
Crystallographic Data	
Notes and References	S20

NMR Spectra

Optical Data

Supplementary Figure S1: Beer-Lambert Plot of 8 at 342 nm (ϵ = 5.5 x 10⁴ M⁻¹ cm⁻¹)

Supplementary Figure S2: Beer-Lambert Plot of 9 at 343 nm (ϵ = 2.3 x 10⁴ M⁻¹ cm⁻¹)

Electrochemical Data

Supplementary Figure S3: Cyclic voltammogram of **8** in THF (0.1 M tetrabutylammonium hexfluorophoshate) with ferrocene/ferrocenium added as internal standard.

Supplementary Figure S4: Cyclic voltammogram of **9** in THF (0.1 M tetrabutylammonium hexfluorophoshate) with ferrocene/ferrocenium added as internal standard.

Supplementary Figure S5: Reduction wave of [6]CPP in THF (0.1 M tetrabutylammonium hexfluorophoshate) with ferrocene/ferrocenium added as internal standard.

Supplementary	Tuble 1	(1 =). Ele			mpeanas
Compound	[6]CPP	8	9	aza[8]CPP	N-methylaza[8]CPP
Reduction (V)	-2.13	-2.18	-1.42, -2.47, -2.72	-2.39	-1.49
Oxidation (V)	0.440	0.670	0.660	-	-

Supplementary Table 1 (T1). Electrochemical Data for Selected Compounds

TD-DFT Data

Optical Transitions using TD-DFT B3LYP/6-31g*

Supplementary Figure S6: TD-DFT (B3LYP/6-31g*) plot for 8 and 9

Energy	Wavelength	Osc.	Major contribs
(cm⁻¹)	(nm)	Strength	Major contribs
18166.96	550.4499	0.0003	HOMO->LUMO (99%)
26780.21	373.41	0.0023	H-1->LUMO (45%), HOMO->L+1 (53%)
27754.54	360.3015	0.0093	H-2->LUMO (56%), HOMO->L+2 (41%)
28894.21	346.0902	0.0523	HOMO->L+3 (80%)
29428.95	339.8014	0.7775	H-1->LUMO (40%), HOMO->L+1 (40%)
30469.42	328.1979	0.878	H-2->LUMO (34%), HOMO->L+2 (53%)
30846.89	324.1818	0.061	HOMO->L+4 (73%)
31771.2	314.7504	0.0202	H-4->LUMO (10%), HOMO->L+5 (65%)
32549.54	307.224	0.1062	H-6->LUMO (16%), H-5->LUMO (38%), H-4->LUMO (19%)
33802.93	295.8323	0.0033	H-6->LUMO (20%), H-3->LUMO (57%)
34111.84	293.1533	0.0058	H-2->L+1 (46%), H-1->L+1 (15%), H-1->L+2 (28%)
34239.28	292.0622	0.0061	H-6->LUMO (18%), H-4->LUMO (19%), HOMO->L+4 (11%), HOMO->L+6 (17%)

Supplementary Table 2 (T2): Major transitions for **8** determined by TD-DFT using B3LYP/6-31g^{*}

Energy	Wavelength	Osc. Strength	Major contribs
16154 59	619 0191	0.0223	HOMO->LUMO (97%)
22190.89	450.6355	0.0498	HOMO->L+1 (89%)
24221.8	412.8512	0.278	H-1->LUMO (91%)
26165.61	382.181	0.1353	H-2->LUMO (79%), HOMO->L+2 (16%)
27646.46	361.71	0.4701	H-2->LUMO (14%), H-1->L+1 (11%), HOMO->L+2 (72%)
29062.78	344.0827	0.2255	H-3->LUMO (10%), H-1->L+1 (30%), HOMO->L+3 (47%)
29405.56	340.0717	0.2205	H-3->LUMO (49%), H-1->L+1 (35%)
29635.43	337.4339	0.3963	H-3->LUMO (30%), H-1->L+1 (21%), HOMO->L+3 (43%)
30383.92	329.1214	0.0524	H-4->LUMO (79%)
31036.43	322.202	0.009	H-6->LUMO (19%), H-5->LUMO (57%)
31584.08	316.6152	0.0883	H-6->LUMO (15%), H-5->LUMO (18%), H-2->L+1 (58%)
31765.56	314.8064	0.0599	H-7->LUMO (25%), H-6->LUMO (41%), H-2->L+1 (18%)

Supplementary Table 3 (T3): Major transitions for 9 determined by TD-DFT using B3LYP/6-31g*

Computational Coordinates

aza[6]CPP 8

Dipole Moment (1.5265 D)

- C -2.86394 -1.38272 1.71711
- C -2.1312 -1.31944 0.52431
- C -1.54736 -0.08739 0.20026
- C -2.13223 1.10324 0.65213
- C -2.86512 1.04 1.84486
- C -2.94598 -0.20808 2.47692
- Н -3.2999 -2.29966 2.05495
- H -1.98482 -2.18602 -0.08599
- Н -1.98655 2.02944 0.1365
- H -3.30204 1.91584 2.2772
- C -0.19383 -0.04822 -0.53304
- C 0.45 1.178 -0.74703
- C 0.45085 -1.24473 -0.87441
- C 1.85089 1.17652 -0.7103
- Н -0.10254 2.08393 -0.88452
- C 1.85169 -1.24616 -0.83768
- Н -0.10107 -2.13163 -1.10616
- C 2.48004 -0.05098 -0.46286

2.41178 2.08123 -0.81865 Н Н 2.41316 -2.13418 -1.04027 3.79305 -0.09291 0.34057 С С 4.3565 -1.32615 0.6948 С 4.35579 1.0965 0.82264 С 5.02488 -1.39089 1.92472 Н 4.24094 -2.19239 0.07747 С 5.02431 1.0318 2.05249 Н 4.2396 2.02288 0.29998 С 5.06882 -0.21641 2.68788 Н 5.44049 -2.30866 2.28513 Н 5.43964 1.90673 2.50739 С 0.23098 -1.68211 7.41231 С 1.63183 -1.68359 7.44905 С 2.27565 -0.45738 7.23508 С 0.23018 0.74058 7.5397 С -0.39815 -0.4546 7.16488 Н -0.32993 -2.5868 7.52061 Н 2.1844 -2.5895 7.58652 Н -0.33131 1.62859 7.74225 С 3.62915 -0.4182 6.50176 С 4.21303 0.81385 6.17768 С 4.21407 -1.60883 6.04987 С 4.94576 0.87713 4.98485 Н 4.06669 1.68045 6.78799 С 4.94694 -1.54559 4.85711 Н 4.06843 -2.53503 6.56551 С 5.02782 -0.29751 4.22501 Н 5.38174 1.79408 4.64704

- H 5.38389 -2.42145 4.4248
- C -1.71114 -0.41266 6.36142
- C -2.27461 0.82057 6.00718
- C -2.2739 -1.60208 5.87934
- C -2.94301 0.8853 4.77723
- H -2.15909 1.68682 6.62449
- C -2.94244 -1.53738 4.64946
- H -2.15774 -2.52849 6.40199
- C -2.98696 -0.28918 4.01405
- H -3.35865 1.80307 4.41685
- Н -3.35779 -2.41233 4.19461
- N 1.63099 0.73914 7.57644

N-methylaza[6]CPP 9

Dipole Moment (10.2669 D)

С	-2.86341 -1.39325 1.70971
С	-2.14733 -1.40226 0.50468
С	-1.56979 -0.19161 0.09878
С	-2.14996 1.02374 0.48556
С	-2.86393 1.03272 1.6907
С	-2.93398 -0.17452 2.39845
н	-3.29465 -2.28768 2.10813
н	-2.00843 -2.30411 -0.0542
Н	-2.01394 1.9169 -0.08789
Н	-3.29494 1.93316 2.0759
С	-0.22639 -0.19189 -0.65335
С	0.40442 1.02261 -0.95353
С	0.42375 -1.40325 -0.92591
С	1.80504 1.03434 -0.93327
Н	-0.15725 1.91349 -1.14256
С	1.82528 -1.39142 -0.90525
Н	-0.12341 -2.30718 -1.09448
С	2.44691 -0.16938 -0.61415
Н	2.35706 1.93432 -1.10654
н	2.39228 -2.28603 -1.0574
С	3.76748 -0.14667 0.17724

С	4.35004 -1.34796 0.60319
С	4.31884 1.07783 0.57765
С	5.02999 -1.32613 1.8285
н	4.24037 -2.25293 0.04305
С	4.99755 1.09974 1.8031
н	4.18674 1.96771 -0.00181
С	5.06404 -0.10507 2.51557
н	5.4614 -2.21369 2.2421
н	5.40451 2.00715 2.19816
С	0.30894 -1.34054 7.39664
С	1.70448 -1.31851 7.41904
С	2.31517 -0.09725 7.10008
С	0.33951 1.07124 7.32066
С	-0.3133 -0.13913 7.05414
н	-0.2464 -2.23563 7.58418
н	2.27681 -2.1996 7.62212
н	-0.20937 1.97935 7.45844
С	3.65954 -0.08416 6.34912
С	4.21533 1.13417 5.93637
С	4.26341 -1.29126 5.97103
С	4.93764 1.13182 4.73614
н	4.05553 2.03704 6.48789
С	4.98398 -1.29344 4.76852
н	4.14067 -2.1838 6.54829
С	5.03629 -0.08835 4.05487
н	5.35358 2.03227 4.33487
н	5.43299 -2.18784 4.38996
С	-1.63821 -0.14029 6.26927
С	-2.19653 1.07166 5.84185

- C -2.21862 -1.35388 5.87625
- C -2.88519 1.06115 4.62217
- Н -2.06271 1.97607 6.39777
- C -2.90476 -1.36447 4.65362
- H -2.10307 -2.24448 6.45801
- C -2.95042 -0.15992 3.93836
- H -3.30035 1.9567 4.20945
- Н -3.33254 -2.26401 4.26292
- N 1.68268 1.06416 7.33758
- C 2.43858 2.30689 7.54937
- H 2.63009 2.43404 8.59443
- H 3.36731 2.25424 7.02048
- H 1.86862 3.13698 7.18758

Crystallographic Data

Diffraction intensities for Jasti29 were collected at 173 K on a Bruker Apex2 CCD diffractometer using CuK α radiation, λ = 1.54178 Å. Space group were determined based on systematic absences. Absorption correction was applied by SADABS². Structure was solved by direct methods and Fourier techniques and refined on F^2 using full matrix least-squares procedures. All non-H atoms were refined with anisotropic thermal parameters. H atoms in the structure were found on the residual density map and refined with isotropic thermal parameters. The molecule has -3 symmetry and the N atom in the structure is disordered over 24 possible positions. Thus the final refinement has been done based on the model where the N atom share four positions (C(2), C(3), C(4) and C(5)) with the C atoms of the CH groups. H atoms in the structure were found on the residual density map and refined with isotropic thermal parameters with occupation factors fixed at value of 0.95833 corresponding the above-mentioned disorder in the molecule. It should be also mentioned that a relatively large isolated peak (around 2.63 $e^{A^{-3}}$) there was on the residual density map. In the crystal structure the molecules form columns and these peak is located at the central line of such the column up and down from the average plane of the molecule. Solvent molecules were found in similar location in some of similar structures, but in this case we could not recognize any possible solvents used in the reactions and crystal grow. It was treated by SQUEEZE³; corrections of the X-ray data by SQUEEZE was 111 electron/cell, but a solvent has not been added in the formula of the compound. Another possible reason for the above-mentioned peak on the residual density could be also related to the fact that the disorder of the N atom in the structure could be more complicated. All calculations were performed by the Bruker SHELXL-2013 package⁴.

Crystallographic Data for **Aza[6]CPP (9)**: C₃₅H₂₃N, M = 457.54, 0.12 x 0.08 x 0.07 mm, T = 173(2) K, Trigonal, space group *R-3*, *a* = 19.3483(6) Å, *b* = 19.3483(6) Å, *c* = 6.2252(3) Å, *V* = 2018.22(13) Å³, *Z* = 3, *D*_c = 1.129 Mg/m³, μ (Cu) = 0.496 mm⁻¹, *F*(000) = 720, 2 ϑ _{max} = 132.5°, 5290 reflections, 789 independent reflections [R_{int} = 0.0867], R1 = 0.0422, wR2 = 0.0967 and GOF = 1.075 for 789 reflections (71 parameters) with I>2 σ (I), R1 = 0.0562, wR2 = 0.1013 and GOF = 1.075 for all reflections, max/min residual electron density +0.124/-0.196 eÅ⁻³.

Notes and References

- 1. Darzi, E. R.; Hirst, E. S.; Weber, C. D.; Zakharov, L. N.; Lonergan, M. C.; Jasti, R. ACS Cent. Sci. **2015**, *1*, 335-342.
- 2. G. M. Sheldrick, *Bruker/Siemens Area Detector Absorption Correction Program*, Bruker AXS, Madison, WI, 1998.
- 3. Van der Sluis, P. & Spek, A. L. (1990) Acta Cryst., Sect. A, A46, 194-201.
- 4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Full reference 18: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Wallingford CT, 2009.