Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supplementary Information for

Abietane diterpenoids from Caryopteris incana (Thunb.) Miq.

Sen-Miao Zhao^a, Gui-Xin Chou^{*a}, Qing-Shan Yang^b, Wei Wang^a, Jian-Li Zhou^b

^aInstitute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210China ^bCollege of Pharmacy Anhui University of Traditional Chinese Medicine, Hefei 230031, China

Corresponding author: Tel: 86-21-50271706Fax: 86-21-50271708 E-mail: chouguixinzyb@126.com

Contents of Supplementary Information

No.	Contents	Pages
1.	S1. Detailed isolation procedures	7-8
2.	S2. X-ray crastal data forcaryopincaolide A~C (1~3)	8-10
3.	Figure S1. ¹³ C NMR spectrum of caryopincaolide A (1) in CDCl ₃ (100 MHz)	11
4.	Figure S2. ¹ H NMR spectrum of caryopincaolide A (1) in CDCl ₃ (400 MHz)	11
5.	Figure S3. HSQC spectrum of caryopincaolide A (1) in CDCl ₃	12
6.	Figure S4. HMBC spectrum of caryopincaolide A (1) in CDCl ₃	12
7.	Figure S5. NOESY spectrum of caryopincaolide A (1) in CDCl ₃	13
8.	Figure S6. ¹ H– ¹ H COSYspectrum of caryopincaolide A (1) in CDCl ₃	13
9.	Figure S7. HRESIMS spectrum of caryopincaolide A (1)	14
10.	Figure S8. IR spectrum of caryopincaolide A (1)	14
11.	Figure S9. ¹³ C NMR spectrum of caryopincaolide B (2) in CDCl ₃ (100 MHz)	15
12.	Figure S10. ¹ H NMR spectrum of caryopincaolide B (2) in CDCl ₃ (400 MHz)	15
13.	Figure S11. HSQC spectrum of caryopincaolide B (2) in CDCl ₃	16
14.	Figure S12. HMBC spectrum of caryopincaolide B (2) in CDCl ₃	16
15.	Figure S13. NOESY spectrum of caryopincaolide B (2) in CDCl ₃	17
16.	Figure S14. ¹ H– ¹ H COSYspectrum of caryopincaolide B (2) in CDCl ₃	17
17.	Figure S15. HRESIMS spectrum of caryopincaolide B (2)	18
18.	Figure S16. IR spectrum of caryopincaolide B (2)	18
19.	Figure S17. ¹³ C NMR spectrum of caryopincaolide C (3) in CD ₃ OD (150 MHz)	19
20.	Figure S18. ¹ H NMR spectrum of caryopincaolide C (3) in CD ₃ OD (600 MHz)	19
21.	Figure S19. HSQC spectrum of caryopincaolide C (3) in CD ₃ OD	20
22.	Figure S20. HMBC spectrum of caryopincaolide C (3) in CD ₃ OD	20
23.	Figure S21. NOESY spectrum of caryopincaolide C (3) in CD ₃ OD	21
24.	Figure S22. $^{1}H-^{1}H$ COSYspectrum of caryopincaolide C (3) in CD ₃ OD	21
25.	Figure S23. HRESIMS spectrum of caryopincaolide C (3)	22
26.	Figure S24. IR spectrum of caryopincaolide C (3)	22
27.	Figure S25. Calculated and Experimental ECD spectrum of caryopincaolide C (3)	22
28.	Figure S26. ¹³ C NMR spectrum of caryopincaolide D (4) in CD ₃ OD (150 MHz)	23
29.	Figure S27. ¹ H NMR spectrum of caryopincaolide D (4) in CD ₃ OD (600 MHz)	23
30.	Figure S28. HSQC spectrum of caryopincaolide D (4) in CD ₃ OD	24
31.	Figure S29. HMBC spectrum of caryopincaolide D (4) in CD ₃ OD	24
32.	Figure S30. NOESY spectrum of caryopincaolide D (4) in CD ₃ OD	25
33.	Figure S31. ¹ H– ¹ H COSY spectrum of caryopincaolide D (4) in CD ₃ OD	25
34.	Figure S32. HRESIMS spectrum of caryopincaolide D (4)	26
35.	Figure S33. IR spectrum of caryopincaolide D (4)	26
36.	Figure S34. HPLC Date of compound3 and 4	26
37.	Figure S35. ¹³ C NMR spectrum of caryopincaolide E (11) in CD ₃ OD (150 MHz)	27
38.	Figure S36. ¹ H NMR spectrum of caryopincaolideE (11) in CD ₃ OD (600 MHz)	27
39.	Figure S37. HSQC spectrum of caryopincaolide E (11) in CD ₃ OD	28
40.	Figure S38. HMBC spectrum of caryopincaolide E (11) inCD ₃ OD	28
41.	Figure S39. NOESY spectrum of caryopincaolide E (11) in CD ₃ OD	29
42.	Figure S40. HRESIMS spectrum of caryopincaolide E (11)in CD ₃ OD	29
43.	Figure S41. ¹³ C NMR spectrum of caryopincaolideF (12) in CD ₃ OD (150 MHz)	30
44	Figure S42. ¹ H NMR spectrum of caryopincaolide F (12) in CD ₃ OD (600 MHz)	30
45.	Figure S43. HSQC spectrum of caryopincaolide F (12) in CD ₃ OD	31

46.	Figure S44. HMBC spectrum of caryopincaolide F (12) inCD ₃ OD	31
47.	Figure S45. NOESY spectrum of caryopincaolide F (12) in CD ₃ OD	32
48.	Figure S46. HRESIMS spectrum of caryopincaolide F (12)in CD ₃ OD	32
49.	Figure S47. ¹³ C NMR spectrum of caryopincaolideG (16) in CD ₃ OD (150 MHz)	33
50.	Figure S48. ¹ H NMR spectrum of caryopincaolide G (16) in CD ₃ OD (600 MHz)	33
51.	Figure S49. HSQC spectrum of caryopincaolide G (16) in CD ₃ OD	34
52.	Figure S50. HMBC spectrum of caryopincaolide G (16) inCD ₃ OD	34
53.	Figure S51. NOESY spectrum of caryopincaolide G (16) in CD ₃ OD	35
54.	Figure S52. HRESIMS spectrum of caryopincaolide G (16)in CD ₃ OD	35
55.	Figure S53. ¹³ C NMR spectrum of caryopincaolideH (17) in CD ₃ OD (150 MHz)	36
56.	Figure S54. ¹ H NMR spectrum of caryopincaolide H (17) in CD ₃ OD (600 MHz)	36
57.	Figure S55. HSQC spectrum of caryopincaolide H (17) in CD ₃ OD	37
58.	Figure S56. HMBC spectrum of caryopincaolide H (17) inCD ₃ OD	37
59.	Figure S57. NOESY spectrum of caryopincaolide H (17) in CD ₃ OD	38
60.	Figure S58. HRESIMS spectrum of caryopincaolide H (17)in CD ₃ OD	38
61.	Figure S59. ¹³ C NMR spectrum of caryopincaolideI (18) in CD ₃ OD (150 MHz)	39
62.	Figure S60. ¹ H NMR spectrum of caryopincaolide I (18) in CD ₃ OD (600 MHz)	39
63.	Figure S61. HSQC spectrum of caryopincaolide I (18) in CD ₃ OD	40
64.	Figure S62. HMBC spectrum of caryopincaolide I (18) inCD ₃ OD	40
65.	Figure S63. NOESY spectrum of caryopincaolide I (18) in CD ₃ OD	41
66.	Figure S64. HRESIMS spectrum of caryopincaolide I (18)in CD ₃ OD	41
67.	Figure S65. ¹³ C NMR spectrum of caryopincaolideJ (19) in CD ₃ OD (150 MHz)	42
68.	Figure S66. ¹ H NMR spectrum of caryopincaolide J (19) in CD ₃ OD (600 MHz)	42
69.	Figure S67. HSQC spectrum of caryopincaolide J (19) in CD ₃ OD	43
70.	Figure S68. HMBC spectrum of caryopincaolide J (19) inCD ₃ OD	43
71.	Figure S69. NOESY spectrum of caryopincaolide J (19) in CD ₃ OD	44
72.	Figure S70. HRESIMS spectrum of caryopincaolide J (19)in CD ₃ OD	44
73.	Figure S71. ¹³ C NMR spectrum of caryopincaolideK (27) in CD ₃ OD (150 MHz)	45
74.	Figure S72. ¹ H NMR spectrum of caryopincaolide K (27) in CD ₃ OD (600 MHz)	45
75.	Figure S73. HSQC spectrum of caryopincaolide K (27) in CD ₃ OD	46
76.	Figure S74. HMBC spectrum of caryopincaolide K (27) inCD ₃ OD	46
77.	Figure S75. NOESY spectrum of caryopincaolide K (27) in CD ₃ OD	47
78.	Figure S76. HRESIMS spectrum of caryopincaolide K (27)in CD ₃ OD	47
79.	Figure S77. ¹³ C NMR spectrum of caryopincaolideL (28) in CD ₃ OD (150 MHz)	48
80.	Figure S78. ¹ H NMR spectrum of caryopincaolide L (28) in CD ₃ OD (600 MHz)	48
81.	Figure S79. HSQC spectrum of caryopincaolide L (28) in CD ₃ OD	49
82.	Figure S80. HMBC spectrum of caryopincaolide L(28) inCD ₃ OD	49
83.	Figure S81. HRESIMS spectrum of caryopincaolide L (28)in CD ₃ OD	50
84.	Figure S82. ¹³ C NMR spectrum of compoud5 in CDCl ₃ (100 MHz)	51
85.	Figure S83. ¹ H NMR spectrum of compoud 5 in CDCl ₃ (400 MHz)	51
86.	Figure S84. HSQC spectrum of compoud 5 in CDCl ₃	52
87.	Figure S85. HMBC spectrum of compoud 5 inCDCl ₃	52
88.	Figure S86. ¹³ C NMR spectrum of compoud6 in CDCl ₃ (100 MHz)	53
89.	Figure S87. ¹ H NMR spectrum of compoud 6 in CDCl ₃ (400 MHz)	53
90.	Figure S88. HSQC spectrum of compoud 6 in CDCl ₃	54
91.	Figure S89. HMBC spectrum of compoud 6 inCDCl ₃	54
92.	Figure S90. ¹³ C NMR spectrum of compoud7 in CDCl ₃ (100 MHz)	55
93.	Figure S91. ¹ H NMR spectrum of compoud 7 in CDCl ₃ (400 MHz)	55

94.	Figure S92. HSQC spectrum of compoud 7 in CDCl ₃	56
95.	Figure S93. HMBC spectrum of compoud 7 inCDCl ₃	56
96.	Figure S94. ¹³ C NMR spectrum of compoud8 in CDCl ₃ (150 MHz)	57
97.	Figure S95. ¹ H NMR spectrum of compoud 8 in CDCl ₃ (600 MHz)	57
98.	Figure S96. HSQC spectrum of compoud 8 in CDCl ₃	58
99.	Figure S97. HMBC spectrum of compoud 8 inCDCl ₃	58
100.	Figure S98. ¹³ C NMR spectrum of compoud9 in CDCl ₃ (100 MHz)	59
101.	Figure S99. ¹ H NMR spectrum of compoud 9 in CDCl ₃ (400 MHz)	59
102.	Figure S100. HSQC spectrum of compoud 9 in CDCl ₃	60
103.	Figure S101. HMBC spectrum of compoud 9 inCDCl ₃	60
104.	Figure S102. ¹³ C NMR spectrum of compoud10 in CDCl ₃ (150 MHz)	61
105.	Figure S103. ¹ H NMR spectrum of compoud 10 in CDCl ₃ (600 MHz)	61
106.	Figure S104. HSQC spectrum of compoud 10 in CDCl ₃	62
107.	Figure S105. HMBC spectrum of compoud 10 inCDCl ₃	62
108.	Figure S106. ¹³ C NMR spectrum of compoud13 in DMSO (100 MHz)	63
109.	Figure S107. ¹ H NMR spectrum of compoud 13 in DMSO (400 MHz)	63
110.	Figure S108. HSQC spectrum of compoud 13 in DMSO	64
111.	Figure S109. HMBC spectrum of compoud 13 inDMSO	64
112.	Figure S110. ¹³ C NMR spectrum of compoud14 in CDCl ₃ (150 MHz)	65
113.	Figure S111. ¹ H NMR spectrum of compoud 14 in CDCl ₃ (600 MHz)	65
114.	Figure S112. HSQC spectrum of compoud 14 in CDCl ₃	66
115.	Figure S113. HMBC spectrum of compoud 14 inCDCl ₃	66
116.	Figure S114. ¹³ C NMR spectrum of compoud15 in CD ₃ OD (150 MHz)	67
117.	Figure S115. ¹ H NMR spectrum of compoud 15 in CD ₃ OD (600 MHz)	67
118.	Figure S116. HSQC spectrum of compoud 15 in CD ₃ OD	68
119.	Figure S117. HMBC spectrum of compoud 15 inCD ₃ OD	68
120.	Figure S118. ¹³ C NMR spectrum of compoud20 in DMSO (100 MHz)	69
121.	Figure S119. ¹ H NMR spectrum of compoud 20 in DMSO (400 MHz)	69
122.	Figure S120. HSQC spectrum of compoud 20 in DMSO	70
123.	Figure S121. HMBC spectrum of compoud 20 inDMSO	70
124.	Figure S122. ¹³ C NMR spectrum of compoud21 in CD ₃ OD (150 MHz)	71
125.	Figure S123. ¹ H NMR spectrum of compoud 21 in CD ₃ OD (600 MHz)	71
126.	Figure S124. HSQC spectrum of compoud 21 in CD ₃ OD	72
127.	Figure S125. HMBC spectrum of compoud 21 inCD ₃ OD	72
128.	Figure S126. ¹³ C NMR spectrum of compoud22 in DMSO (100 MHz)	73
129.	Figure S127. ¹ H NMR spectrum of compoud 22 in DMSO (400 MHz)	73
130.	Figure S128. HSQC spectrum of compoud 22 in DMSO	74
131.	Figure S129. HMBC spectrum of compoud 22 inDMSO	74
132.	Figure S130. ¹³ C NMR spectrum of compoud23 in CDCl ₃ (100 MHz)	75
133.	Figure S131. ¹ H NMR spectrum of compoud 23 in CDCl ₃ (400 MHz)	75
134.	Figure S132. HSQC spectrum of compoud 23 in CDCl ₃	76
135.	Figure S133. HMBC spectrum of compoud 23 inCDCl ₃	76
136.	Figure S134. ¹³ C NMR spectrum of compoud24 in CDCl ₃ (100 MHz)	77
137.	Figure S135. ¹ H NMR spectrum of compoud 24 in CDCl ₃ (400 MHz)	77
138.	Figure S136. HSQC spectrum of compoud 24 in CDCl ₃	78
139.	Figure S137. HMBC spectrum of compoud 24 inCDCl ₃	78
140.	Figure S138. ¹³ C NMR spectrum of compoud25 in CDCl ₃ (100 MHz)	79
141.	Figure S139. ¹ H NMR spectrum of compoud 25 in CDCl ₃ (400 MHz)	79

142.	Figure S140. HSQC spectrum of compoud 25 in CDCl ₃	80
143.	Figure S141. HMBC spectrum of compoud 25 inCDCl ₃	80
144.	Figure S142. ¹³ C NMR spectrum of compoud26 in CDCl ₃ (100 MHz)	81
145.	Figure S143. ¹ H NMR spectrum of compoud 26 in CDCl ₃ (400 MHz)	81
146.	Figure S144. HSQC spectrum of compoud 26 in CDCl ₃	82
147.	Figure S145. HMBC spectrum of compoud 26 inCDCl ₃	82
148.	Figure S146. ¹³ C NMR spectrum of compoud29 in CD ₃ OD (150 MHz)	83
149.	Figure S147. ¹ H NMR spectrum of compoud 29 in CD ₃ OD (600 MHz)	83
150.	Figure S148. HSQC spectrum of compoud 29 in CD ₃ OD	84
151.	Figure S149. HMBC spectrum of compoud 29 inCD ₃ OD	84
152.	Figure S150. ¹³ C NMR spectrum of compoud30 in CDCl ₃ (100 MHz)	85
153.	Figure S151. ¹ H NMR spectrum of compoud 30 in CDCl ₃ (400 MHz)	85
154.	Figure S152. HSQC spectrum of compound 30 in CDCl ₃	86
155.	Figure S153. HMBC spectrum of compoud 30 inCDCl ₃	86
156.	Figure S154. ¹³ C NMR spectrum of compoud31 in CDCl ₃ (100 MHz)	87
157.	Figure S155. ¹ H NMR spectrum of compoud 31 in CDCl ₃ (400 MHz)	87
158.	Figure S156. HSQC spectrum of compound 31 in CDCl ₃	88
159.	Figure S157. HMBC spectrum of compoud 31 inCDCl ₃	88
160.	Figure S158. ¹³ C NMR spectrum of compoud32 in CDCl ₃ (100 MHz)	89
161.	Figure S159. ¹ H NMR spectrum of compoud 32 in CDCl ₃ (400 MHz)	89
162.	Figure S160. HSQC spectrum of compound 32 in CDCl ₃	90
163.	Figure S161. HMBC spectrum of compoud 32 inCDCl ₃	90
164.	Figure S162. ¹³ C NMR spectrum of compoud33 in CD ₃ OD (150 MHz)	91
165.	Figure S163. ¹ H NMR spectrum of compoud 33 in CD ₃ OD (600 MHz)	91
166.	Figure S164. HSQC spectrum of compoud 33 in CD ₃ OD	92
167.	Figure S165. HMBC spectrum of compoud 33 inCD ₃ OD	92
168.	Figure S166. ¹³ C NMR spectrum of compoud34 in CDCl ₃ (100 MHz)	93
169.	Figure S167. ¹ H NMR spectrum of compoud 34 in CDCl ₃ (400 MHz)	93
170.	Figure S168. HSQC spectrum of compound 34 in CDCl ₃	94
171.	Figure S169. HMBC spectrum of compoud 34 inCDCl ₃	94
172.	Figure S170. ¹³ C NMR spectrum of compoud35 in CDCl ₃ (150 MHz)	95
173.	Figure S171. ¹ H NMR spectrum of compoud 35 in CDCl ₃ (600 MHz)	95
174.	Figure S172. HSQC spectrum of compound 35 in CDCl ₃	96
175.	Figure S173. HMBC spectrum of compoud 35 inCDCl ₃	96
176.	Figure S174. ¹³ C NMR spectrum of compoud36 in CDCl ₃ (100 MHz)	97
177.	Figure S175. ¹ H NMR spectrum of compoud 36 in CDCl ₃ (400 MHz)	97
178.	Figure S176. HSQC spectrum of compound 36 in CDCl ₃	98
179.	Figure S177. HMBC spectrum of compoud 36 inCDCl ₃	98
180.	Figure S178. ¹³ C NMR spectrum of compoud38 in CDCl ₃ (100 MHz)	99
181.	Figure S179. ¹ H NMR spectrum of compoud 38 in CDCl ₃ (400 MHz)	99
182.	Figure S180. HSQC spectrum of compound 38 in CDCl ₃	100
183.	Figure S181. HMBC spectrum of compoud 38 inCDCl ₃	100.
184.	Figure S182. ¹³ C NMR spectrum of compoud39 in CDCl ₃ (100 MHz)	101
185.	Figure S183. ¹ H NMR spectrum of compoud 39 in CDCl ₃ (400 MHz)	101
186.	Figure S184. HSQC spectrum of compound 39 in CDCl ₃	102
187.	Figure S185. HMBC spectrum of compoud 39 inCDCl ₃	102
188.	Figure S186. ¹³ C NMR spectrum of compoud40 in CDCl ₃ (150 MHz)	103
189.	Figure S187. ¹ H NMR spectrum of compoud 40 in CDCl ₃ (600 MHz)	103

190.	Figure S188. HSQC spectrum of compound 40 in CDCl ₃	104.
191.	Figure S189. HMBC spectrum of compoud 40 inCDCl ₃	104
192.	S3. Bioassay	105-108
193.	S3.1 DPP-IV inhibitory assay	105
194.	Table S1. in vitro DPP-IV inhibition assay of compounds 1–40	105
195.	\$3.2 Cell viability assay and flow cytometry analysis	106-108
196.	Figure S190. Percentage of cell growth rate	106
197.	Figure S191. Apoptosis of Hey and A549 determined by Hoechst33342 Hoechst 33342/PI staining with 1	107
198.	Figure S192. Flow cytometry analysis of compound 1 induced apoptosis in A549 and Hey	108
199	Scheme S1. Plausible biogenetic pathways for 1-4	109

S1.Detailed isolation procedures

General Experimental procedures

Infrared spectra were measured on a PerkinElmer FT-IR spectrometer. CD spectra were performedusing aJASCO J-815 spectrometer. Melting points were carried out on an BUCHI Melting pointB-540. Bruker AV-400 andBruker AV- 500 were used for 1D and 2D NMR spectra with TMS as internal standard. HRESIMS data were performed on a LCQ DECA XP Plus ESI-MS mass spectrometer. Column chromatography (CC): silica gel (200–300 mesh; Qingdao Marine Chemical Factory, China). TLC was conducted on silica gel GF254 plates (Qingdao Marine Chemical Factory, China) and Sephadex LH-20 (Amersham Pharmacia Biotech) were carried out with column chromatography. Semipreparative HPLC were performed on a Agilent 1260 series instrument equipped with a Shiseido Capcellpak Prep C18 ODS column (250×20 mm, 5µm, flow rate: 16mL/min).

Plant Material

The plants of *Caryopteris incana* (Thunb.) Miq. were collected from Hexian County of Anhui Province, People's Republic of China, in September 2012. The identification of plant material was verified by Qingshan Yang. A voucher specimen (No.20120915-1) hasbeen deposited in Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201203, China.

Extraction and Isolation

The dried and powdered plants of *Caryopteris incana* (Thunb.) Miq. (19.5kg) were extracted with EtOH (70 L \times 4) at room temperature, the solvent was evaporated under reduced pressure. The crude extract was dissolved inhot water (10L, 60°C) and partitioned with PE and EtOAc to get the PE and EtOAc phases.

ThePE phase (234g) dissolved in CH_2Cl_2 , and subjected to column chromatography over silica gel with PE/EtOAc as eluent (from PE to PE/EtOAc (3/1)) to afford 8 fractions (I–VIII).

Fraction II (16.2 g) was further chromatographed over silica gel with PE/EtOAc(10/1) as eluent to provided Compounds **6** (16.2 mg) and 7(10.6 mg). Compounds **5** (8.6 mg), **23** (5.3 mg), **24** (7.1 mg)were isolated from Fraction III (17.4g) through silicagel CC with PE/EtOAc (10/1 to 5/1) and were further purified by gel permeation chromatography on Sephadex LH–20 in MeOH/CH₂Cl₂(3/1). Fraction IV(23.6g) was subjected to repeated silica gel CC with PE/EtOAc (10/1 to 3/1) to yield compounds**22** (37.0 mg), **30** (44.5 mg). Fraction V (28.9g) was further chromatographed on a Sephadex LH-20 column using CH₂Cl₂/MeOH eluent (CH₂Cl₂/MeOH(1/3)) to afford V-1~V-8,subfraction V-4(3.7g)was chromatographed on a Sephadex LH-20 column using MeOH eluent to get themixture of compounds **9** and **10**, followed by Pre-HPLC to afford compound **9** (17.9mg) and compound **10**(6.2mg),subfraction V-6(2.3g) was chromatographed on a Sephadex LH-20 column using MeOH eluent, followed by Pre-HPLC to afford compound **1** (12.3mg);Fraction VI (38.5 g) was further subjected to column chromatography over silica gel with PE/EtOAc as eluent (from PE/EtOAc(8/1) to EtOAc) to afford 6 fractions (VI-1~VI-6),subfraction VI-5 (2.2g) chromatographed on a Sephadex LH-20 column using MeOH eluent to get the mixture of compound **35** and **39**, followed by Pre-HPLC to afford compound **35** (24.0mg) and compound **39**(38.2mg); Subfraction VI-6(6.2g) was chromatographed on a Sephadex LH-20 column using MeOH eluent to get the mixture of compound **36** (42.1mg).

The EtOAc phase (355g) dissolved in CH₂Cl₂, and subjected to column chromatography over silica gel with CH₂Cl₂/MeOH as eluent (from CH₂Cl₂ to MeOH) to afford 16 fractions (I–XVI). Fraction III (25.2 g) was chromatographed on a Sephadex LH-20 column using MeOH to afford V-1~V-5, subfraction V-3(7.5g) was further subjected to column chromatography over silica gel with CH₂Cl₂/MeOH as eluent (from CH₂Cl₂/MeOH (15/1) to CH₂Cl₂/MeOH (8/1)) to provided Compounds **13** (162.7 mg) and **20**(240.5 mg).Fraction IV (15.2 g) was repeated chromatographed on a Sephadex LH-20 column using MeOH, followed by Pre- HPLC to get compound **8** (25.3mg), **36** (8.1mg) and **36** (11.9mg).

Fraction V (12.6 g)was chromatographed on a Sephadex LH-20 column using MeOH to afford V-1~V-8, subfraction V-4(1.5g) subjected by Pre- HPLC to get compound **25** (12.3mg),**26** (13.0mg) and **34** (77.5mg).Fraction VI (19.3 g) was subjected to repeated silica gel CC with $CH_2Cl_2/MeOH$ (10/1 to 5/1) to yield compounds **38** (9.0 mg), **40**(6.7 mg).Fraction VII (26.1 g)was repeated chromatographed on a Sephadex LH-20 column using MeOH to afford V-1~V-10, VI-5 (4.1g) chromatographed on a Sephadex LH-20 column using MeOH to get the mixture of compounds **11**, **12**, **14**, **15**, followed by Pre-HPLC to afford compound **11**(9.0mg), **12**(7.2mg), **14**(12.0mg), **15**(7.7mg).

Fraction VIII (34.5 g)was chromatographed on a Sephadex LH-20 column using MeOH to afford V-1~V-8, subfraction V-2(3.8g)was further subjected to column chromatography over silica gel with $CH_2Cl_2/MeOH$ as eluent (from $CH_2Cl_2/MeOH$ (8/1) to $CH_2Cl_2/MeOH$ (4/1)) to provided Compounds27(8.2mg); subfraction V-5(5.6g)was chromatographed on a Sephadex LH-20 column using MeOH eluent, followed by Pre-HPLC to afford compound 16(12.0mg) and17(10.0mg).

Fraction IX (33.2 g) was further chromatographed on a silica gel column using $CH_2Cl_2/MeOH$ eluent (from CH_2Cl_2 to $CH_2Cl_2/MeOH$ (1/5)) to afford IX -1~IX -10, subfraction IX-4 (3.3g) was chromatographed on a Sephadex LH-20 column using MeOH eluent, followed by Pre- HPLC to get compound **18** (8.2mg), **19** (7.0mg)and compound **21** (15.8mg); Subfraction IX-8 (5.3g) was chromatographed on a Sephadex LH-20 column using MeOH eluent, followed by Pre- HPLC to get compound **3** (55.2mg) and compound **4** (65.8mg).

Fraction X (53.2 g) was further chromatographed on a silica gel column using $CH_2Cl_2/MeOH$ eluent (from CH_2Cl_2 to $CH_2Cl_2/MeOH$ (1/3)) to afford IX -1~ IX -6, subfraction IX-2 (5.3g)was chromatographed on a Sephadex LH-20 column using MeOH eluent, followed by Pre- HPLC to get compound **28** (6.6mg), **29** (6.8mg), **31** (5.8mg), **32** (8.5mg), **33** (9.7mg).

S2. X-ray crastal data for caryopincaolide A~C (1~3)

Crystal data and structure refinement for caryopincaolide A (1).

Identification code	cu_dm13699_0m					
Empirical formula	$C_{20}H_{24}O_3$					
Formula weight		312.39				
Temperature		140(2) K				
Wavelength		1.54178 Å				
Crystal system		Monoclinic				
Space group		P 21				
Unit cell dimensions		a = 12.38710(10) Å	a= 90°.			
		b = 10.73400(10) Å	b= 103.68°.			
		c = 12.86660(10) Å	g = 90°.			
Volume		1662.25(2) Å3				
Z		4				
Density (calculated)		1.248 Mg/m3				
Absorption coefficient		0.656 mm-1				
F(000)		672				
Crystal size		0.230 x 0.080 x 0.050 mm3				
Theta range for data colle	ction	3.672 to 69.722°.				
Index ranges		-14<=h<=14, -10<=k<=12, -15<=l<=15				
Reflections collected		12075				
Independent reflections		4834 [R(int) = 0.0286]				
Data / restraints / paramet	ers	4834 / 1 / 427				
Goodness-of-fit on F2		0.947				
Final R indices [I>2sigma	(I)]	R1 = 0.0368, WR2 = 0.0991				
R indices (all data)		R1 = 0.0375, wR2 = 0.1004				
Absolute structure parame	eter	-0.02(8)				
Extinction coefficient		n/a				
Largest diff. peak and hole	e	0.419 and -0.302 e.Å-3				

Identification code	cu_dm13690_0m			
Empirical formula	C19 H26 O4			
Formula weight	318.40			
Temperature	140(2) K			
Wavelength	1.54178 Å			
Crystal system	Monoclinic			
Space group	P 21			
Unit cell dimensions	a = 9.7007(2) Å	= 90°.		
	b = 6.22280(10) Å	= 101.8700(10)°.		
	c = 13.9225(3) Å	= 90°.		
Volume	822.47(3) Å ³			
Ζ	2			
Density (calculated)	1.286 Mg/m ³			
Absorption coefficient	0.715 mm ⁻¹			
F(000)	344			
Crystal size	0.300 x 0.080 x 0.020 mm ³			
Theta range for data collection	3.244 to 69.346°.			
Index ranges	-11<=h<=11, -7<=k<=5, -16<=l<	=16		
Reflections collected	6186			
Independent reflections	2318 [R(int) = 0.1364]			
Completeness to theta = 67.679°	98.1 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.7532 and 0.6055			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	2318 / 1 / 212			
Goodness-of-fit on F ²	1.104			
Final R indices [I>2sigma(I)]	R1 = 0.0836, w $R2 = 0.2171$			
R indices (all data)	R1 = 0.0851, $wR2 = 0.2190$			
Absolute structure parameter	0.2(5)			
Extinction coefficient	nt n/a			
Largest diff. peak and hole	0.404 and -0.496 e.Å ⁻³			

Identification code	cu_dm14215_0m				
Empirical formula	C20 H26 O5				
Formula weight	346.41				
Temperature	130 K				
Wavelength	1.54178 Å				
Crystal system	Triclinic				
Space group	P 1				
Unit cell dimensions	a = 11.9342(11) Å	= 106.111(5)°.			
	b = 12.3874(11) Å	= 92.693(5)°.			
	c = 13.3401(13) Å	= 95.261(6)°.			
Volume	1881.3(3) Å ³				
Ζ	4				
Density (calculated)	1.223 Mg/m ³				
Absorption coefficient	0.709 mm ⁻¹				
F(000)	744				
Crystal size	0.2 x 0.05 x 0.03 mm ³				
Theta range for data collection	3.458 to 67.498°.				
Index ranges	-11<=h<=14, -14<=k<=14, -15<=l<=15				
Reflections collected	15264				
Independent reflections	8863 [R(int) = 0.0521]				
Completeness to theta = 67.679°	93.6 %				
Absorption correction	Semi-empirical from equivalents				
Max. and min. transmission	0.7533 and 0.4824				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	8863 / 3 / 920				
Goodness-of-fit on F^2	1.012				
Final R indices [I>2sigma(I)]	R1 = 0.0662, wR2 = 0.1770				
R indices (all data)	R1 = 0.0838, w $R2 = 0.2030$				
Absolute structure parameter	-0.1(2)				
Extinction coefficient	n/a				
Largest diff. peak and hole	0.370 and -0.378 e.Å ⁻³				

Crystallographic datafor the structure of 1~3 have been deposited in the Cambridge Crystallographic Data Centre(deposition numbers CCDC 1401888 for 1, 1401889 for 2,1401890 for 3). Copies of the data can be obtained free of charge onapplication to the director from the CCDC 12 Union Road, Cambridge CB2 1EZ, UK [fax(+44)1223-336-003 or e-mail: deposit@ccdc.cam.ac.uk] or viawww.ccdc.cam.ac.uk/conts/retrieving.html

Figure S2. ¹H NMR spectrum of caryopincaolide A (1) in CDCl₃ (400 MHz)

ΟН BŘÍ ppru -Time Time INSTRUM PROBID POLIMICS TO 20 4 • 40 03 04 031 036 036 036 60 80 100 120 CPNLN [1 CPNLN [2 CPNLN [2 CPNLN [2 CP12 CP12 CP13 CP13 CP14 P16 P16 ٠ 140 20.00 N 1000.00 11212 160 180 100.6127552 Mile 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm :**

Figure S3. HSQC spectrum of caryopincaolide A (1) in CDCl₃

Figure S4. HMBC spectrum of caryopincaolide A (1) in CDCl₃

Figure S5. NOESY spectrum of caryopincaolide A (1) in CDCl₃

Figure S7. HRESIMS spectrum of caryopincaolide A (1)

Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula
311.1641	311.1647	-0.6	-1.9	9.5	524.1	0.357	69.97	C20 H23 O3
	311.1623	1.8	5.8	6.5	524.9	1.203	30.03	C18 H24 O3 Na

ОН 118-115-110-105-100-1587 95 1980.22cm-1 2162.77cm-1 1510. %T 1638.03cm 90-2955.11cm-1 85-3379.08cm-1 1244.02cm-1 1222.07cm-1 1222.07cm-1 1170.06cm-80-620.30cm-1 609.78cm-1 75-1444.21cm-1 70_ 68 4000 983.4 m-1 1777.81cm-1 3500 3000 2500 2000 1500 1000 600 cm-1

Figure S10. ¹H NMR spectrum of caryopincaolide B (2) in CDCl₃ (400 MHz)

Figure S11. HSQC spectrum of caryopincaolide B (2) in CDCl₃

Figure S12. HMBC spectrum of caryopincaolide B (2) in CDCl₃

Figure S14. ¹H-¹H COSYspectrum of caryopincaolide B (2) in CDCl₃

FigureS15. HRESIMS spectrum of caryopincaolide B (2)

201401 100

1: TOF MS ES+ 4.58e5

20140102_L-2(+) 4 (0.097) Cm (3.8)			1: TOF MS ES+					
100 01 01 01 01 01 01 01 01 01 01 01 01			341.174 341.1744 341.174 341.					
0 67 0200 94 0533 ⁹³ 0581 135. 80 80 100 120	2790 148.02.43 195.0660 223.8669 251.1665 27.3 140 160 100 200 220 240 260	1865 ^{291.1967} 382.3072 280 300 320 340	42.1771 373.1993 352.2201 374.2025 360 380 400	419,1157 441,3006 48 420 440 460	505.2433 505.7480 516.2484 5.2272.504.2422 508.7492 51 480 500 520 520 520 5	4.2271 579.5368 ^{591.40}	179 14/2	
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula
319.1922	319.1923	-0.1	-0.3	11.5	417.0	1.804	16.46	C20 H23 N4
	319.1931	-0.9	-2.8	0.5	418.8	3.580	2.79	C7 H24 N10 O3 Na
	319.1909	1.3	4.1	6.5	416.9	1.624	19.71	C19 H27 O4
	319.1941	-1.9	-6.0	-1.5	418.4	3.163	4.23	C8 H27 N6 O7
	319.1899	2.3	7.2	8.5	417.1	1.919	14.68	C18 H24 N4 Na
	319.1955	-3.3	-10.3	3.5	418.4	3.201	4.07	C9 H23 N10 O3
	319.1957	-3.5	-11.0	-0.5	418.0	2.765	6.30	C11 H28 N4 O5 Na
	319.1885	3.7	11.6	3.5	417.1	1.854	15.66	C17 H28 O4 Na
	319.1882	4.0	12.5	7.5	417.5	2.292	10.10	C15 H23 N6 O2
	319.1971	-4.9	-15.4	4.5	418.0	2.812	6.01	C12 H24 N8 O Na

Figure S16. IR spectrum of caryopincaolide B (2)

Figure S17. ¹³C NMR spectrum of caryopincaolide C (3) in CD₃OD (150 MHz)

Figure S18. ¹H NMR spectrum of caryopincaolide C (3) in CD₃OD (600 MHz)

2.5

2.0

21

1.5

1.0

3.0

5.0

4.5

4.0

3.5

Figure S23.HRESIMS spectrum of caryopincaolide C (3)

Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf (%) Formula
345.1698	345.1702	-0.4	-1.2	8.5	248.8	0.000	100.00	C20 H25 O5
	345.1679	1.9	5.5	0.5	265.9	17.080	0.00	С15 Н30 О6 К

Figure S25. Calculated and Experimental ECD spectrum of caryopincaolide C (3)

22

Figure S27. ¹H NMR spectrum of caryopincaolide D (4) in CD₃OD (150 MHz)

Figure S32. HRESIMS spectrum of caryopincaolide D (4)

Figure S33. IR spectrum of caryopincaolide D (4)

Figure S34.HPLC Date of compound 3 and 4 with different peak time in same HPLC condition

$(^{18}C MeOH : water = 65 : 35)$

26

Figure S36. ¹H NMR spectrum of caryopincaolide E (11) in CD₃OD (600 MHz)

Figure S38. HMBC spectrum of caryopincaolide E (11) in CD₃OD

lxc-73-pos 8 (0	.108) Cm (8:9)						1:	TOF MS ES+
¹⁰⁰]	343.	1554						2.54e6
1								
*								
		344.1587						
		245 4 525						
136.1139	211.5683 301.1425	408.0	851 533.20	09 68	5.3016 ^{709.26}	04 _{_739.220}	9 875.8489,900).8801963.7189
0- 4-7-1-4-1- 100	200 300	400	500	600	700	80	900	
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula
343.1554	343.1559	-0.5	-1.5	14.5	608.5	2.679	6.87	C21 H19 N4 O
	343.1545	0.9	2.6	9.5	606.0	0.168	84.55	C20 H23 O5
	343.1577	-2.3	-6.7	1.5	613.4	7.557	0.05	C9 H23 N6 O8
	343.1519	3.5	10.2	10.5	609.2	3.388	3.38	C16 H19 N6 O3
	343.1591	-3.7	-10.8	6.5	613.1	7.283	0.07	C10 H19 N10 O4
	343.1505	4.9	14.3	5.5	609.5	3.722	2.42	C15 H23 N2 O7
	343.1604	-5.0	-14.6	0.5	611.6	5.767	0.31	C13 H27 O10
	343.1618	-6.4	-18.7	5.5	610.4	4.573	1.03	C14 H23 N4 O6
	343.1487	6.7	19.5	18.5	610.1	4.324	1.33	C27 H19

Figure S42. ¹H NMR spectrum of caryopincaolide F (12) in CD₃OD (600 MHz)

Figure S44. HMBC spectrum of caryopincaolide F (12) in CD₃OD

Figure S4	6. HRESIMS	spectrum o	f carvo	pincaolide	F (12) in CI	D ₃ OD
		opeen ann o		pineactiae	- (,	- 30

Figure S47. ¹³C NMR spectrum of caryopincaolide G (16) in CD₃OD (150 MHz)

Figure S48. ¹H NMR spectrum of caryopincaolide G (16) in CD₃OD (600 MHz)

Figure S50. HMBC spectrum of caryopincaolide G (16) in CD₃OD

Figure S53. ¹³C NMR spectrum of caryopincaolide H (17) in CD₃OD (150 MHz)

Figure S54. ¹H NMR spectrum of caryopincaolide H (17) in CD₃OD (600 MHz)

Figure S55. HSQC spectrum of caryopincaolide H (17) in CD₃OD

Figure S56. HMBC spectrum of caryopincaolide H (17) in CD₃OD

37

Figure S60. ¹H NMR spectrum of caryopincaolide I (18) in CD₃OD (600 MHz)

Figure S61. HSQC spectrum of caryopincaolide I (18) in CD₃OD

Figure S62. HMBC spectrum of caryopincaolide I (18) in CD₃OD

Figure S63. NOESY spectrum of caryopincaolide I (18) in CD₃OD

Figure S64. HRESIMS spectrum of caryopincaolide I (18) in CD₃OD

lxc-81-pos 7 (0.	097) Cm (5:9)							1: TOF MS ES+
100-	341.1	400						2.3066
»- ·	-	421420						
	321.1140	361.1059						
136.1140	301.1422	377.10	008 446.15	12_519.13	93	699.2233	731.2103	870.8098 963.2545
100	200 300	400	50	0	600	700	800	900 1000
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)) Formula
341.1400	341.1402	-0.2	-0.6	15.5	645.7	1.531	21.63	C21 H17 N4 O
	341.1389	1.1	3.2	10.5	644.7	0.578	56.08	C20 H21 O5
	341.1381	1.9	5.6	-1.5	650.6	6.518	0.15	C4 H21 N8 O10
	341.1421	-2.1	-6.2	2.5	649.3	5.155	0.58	C9 H21 N6 O8
	341.1434	-3.4	-10.0	7.5	649.1	4.973	0.69	C10 H17 N10 O4
	341.1362	3.8	11.1	11.5	646.7	2.554	7.78	C16 H17 N6 O3
	341.1448	-4.8	-14.1	1.5	647.9	3.822	2.19	C13 H25 O10
	341.1349	5.1	14.9	6.5	646.8	2.698	6.73	C15 H21 N2 O7
	341.1461	-6.1	-17.9	6.5	647.3	3.177	4.17	C14 H21 N4 O6

Figure S65. ¹³C NMR spectrum of caryopincaolide J (19) in CD₃OD (150 MHz)

Figure S66. ¹H NMR spectrum of caryopincaolide J (19) in CD₃OD (600 MHz)

Figure S68. HMBC spectrum of caryopincaolide J (19) in CD₃OD

Figure S71. ¹³C NMR spectrum of caryopincaolide K (27) in CD₃OD (150 MHz)

Figure S72. ¹H NMR spectrum of caryopincaolide K (27) in CD₃OD (600 MHz)

Figure S74. HMBC spectrum of caryopincaolide K (27) in CD₃OD

Figure S75. NOESY spectrum of caryopincaolide K (27) in CD₃OD

Figure S77. ¹³C NMR spectrum of caryopincaolide L (28) in CD₃OD (150 MHz)

Figure S78. ¹H NMR spectrum of caryopincaolide L (28) in CD₃OD (600 MHz)

Figure S80. HMBC spectrum of caryopincaolide L (28) in CD₃OD

Figure S81. HRESIMS spectrum of caryopincaolide L (28) in CD₃OD

Figure S83. ¹H NMR spectrum of compound 5 in CDCl₃ (400 MHz)

Figure S85. HMBC spectrum of compound 5 in CDCl₃

Figure S87. ¹H NMR spectrum of compound **6** in CDCl₃ (400 MHz)

Figure S89. HMBC spectrum of compound 6 in CDCl₃

Figure S91. ¹H NMR spectrum of compound 7 in CDCl₃ (400 MHz)

Figure S92. HSQC spectrum of compound 7 in CDCl₃

Figure S93. HMBC spectrum of compound 7 in CDCl₃

Figure S95. ¹H NMR spectrum of compound **8** in CDCl₃ (600 MHz)

Figure S97. HMBC spectrum of compound 8 in CDCl₃

Figure S99. ¹H NMR spectrum of compound **9** in CDCl₃ (400 MHz)

Figure S101. HMBC spectrum of compound 9 in CDCl₃

Figure S105. HMBC spectrum of compound 10 in CDCl₃

Figure S107. ¹H NMR spectrum of compound 13 in DMSO (400 MHz)

Figure S109. HMBC spectrum of compound 13 in DMSO

Figure S111. ¹H NMR spectrum of compound 14 in CDCl₃ (600 MHz)

Figure S113. HMBC spectrum of compound 14 in CDCl₃

Figure S115. ¹H NMR spectrum of compound **15** in CD₃OD (600 MHz)

Figure S117. HMBC spectrum of compound 15 in CD₃OD

Figure S119. ¹H NMR spectrum of compound 20 in DMSO (400 MHz)

Figure S121. HMBC spectrum of compound 20 in DMSO

Figure S123. ¹H NMR spectrum of compound 21 in CD₃OD (600 MHz)

Figure S125. HMBC spectrum of compound 21 in CD₃OD

Figure S126. ¹³C NMR spectrum of compound 22 in DMSO (100 MHz)

Figure S127. ¹H NMR spectrum of compound 22 in DMSO (400 MHz)

Figure S129. HMBC spectrum of compound 22 in DMSO

Figure S131. ¹H NMR spectrum of compound 23 in CDCl₃ (400 MHz)

Figure S133. HMBC spectrum of compound 23 in CDCl₃

Figure S135. ¹H NMR spectrum of compound 24 in CDCl₃ (400 MHz)

Figure S136. HSQC spectrum of compound 24 inCDCl₃

Figure S137. HMBC spectrum of compound 24 in CDCl₃

Figure S139. ¹H NMR spectrum of compound 25 in CDCl₃ (400 MHz)

Figure S141. HMBC spectrum of compound 25 in CDCl₃

Figure S143. ¹H NMR spectrum of compound 26 in CDCl₃ (400 MHz)

Figure S145. HMBC spectrum of compound 26 inCDCl₃

Figure S147. ¹H NMR spectrum of compound 29 in CD₃OD (600 MHz)

Figure S149. HMBC spectrum of compound 29 in CD₃OD

Figure S151. ¹H NMR spectrum of compound **30** in CDCl₃ (400 MHz)

Figure S152. HSQC spectrum of compound 30 in CDCl₃

Figure S153. HMBC spectrum of compound 30 in CDCl₃

Figure S155. ¹H NMR spectrum of compound **31** in CDCl₃ (400 MHz)

Figure S156. HSQC spectrum of compound 31 in CDCl₃

Figure S157. HMBC spectrum of compound 31 in CDCl₃

Figure S159. ¹H NMR spectrum of compound 32 in CDCl₃ (400 MHz)

Figure S161. HMBC spectrum of compound 32 in CDCl₃

Figure S163. ¹H NMR spectrum of compound 33 in CD₃OD(150 MHz)

Figure S165. HMBC spectrum of compound 33 in CD₃OD

Figure S167. ¹H NMR spectrum of compound 34 in CDCl₃ (400 MHz)

Figure S169. HMBC spectrum of compound 34 in CDCl₃

Figure S171. ¹H NMR spectrum of compound 35 in CDCl₃ (600 MHz)

Figure S173. HMBC spectrum of compound 35 in CD₃OD

Figure S175. ¹H NMR spectrum of compound **36** in CDCl₃ (400 MHz)

Figure S177. HMBC spectrum of compound 36 inCDCl₃

Figure S179. ¹H NMR spectrum of compound 38 in CDCl₃ (400 MHz)

Figure S181. HMBC spectrum of compound 38 in CDCl₃

Figure S183. ¹H NMR spectrum of compound **39** in CDCl₃(400 MHz)

Figure S184. HSQC spectrum of compound 39 in CDCl₃

Figure S185. HMBC spectrum of compound 39 in CDCl₃

Figure S187. ¹H NMR spectrum of compound 40 in CDCl₃ (600 MHz)

Figure S189. HMBC spectrum of compound 40 in CDCl₃

S3. Bioassay S3.1 DPP-IV inhibitory assay

Dipeptidyl peptidase IV(DPP-IV, Lot: SLBP1407V), Substrate (Gly-Pro-p-nitroaniline hydrochloride, Gly-Pro-pNA, Lot: 12BN6311V), Tris-(hydroxymethyl) aminomethaneand sodium nitrite (Lot: 20130502) were from Shanghai Major Bio Technologies Co., Ltd. (Shanghai, China), DPP IV inhibitors standards: diprotin A (IIe-Pro-IIe, Lot: 065K1584V), Sitagliptin phosphate(Lot: 2-MIC-14-1), were purchased from Sigma-Aldrich (Deisen-hofen, Germany).DMSO and hydrochloric acid were analytical grade purchased from SinopharmChemical Reagent Co., Ltd. (Shanghai, China). Ultra-pure water wasprepared by a Synergy system (Millipore, Schwalbach, Germany).water bath (SC-15, Shanghai Bilon Instruments Co.,Ltd.), electronic analytical balance (BP211D, METTLER TOLEDO, Germany), microplate reader (ELx800, Bio-Tek Instruments,USA).

Compounds 1~40 were prepared from the chemical study of *Caryopteris incana* (Thunb.) Miq.

Diprotin A and sitagliptin phosphate was diluted to various concentrations (20.0, 50.0, 100.0, 200.0, 500.0 µM) using Tris-HCl(1 U/L,70 mM, pH 8.2).

Each sample was diluted to various concentrations (1.0, 5.0, 10.0, 20.0, 50.0mM) using DMSO.

50µL of DPP-IV enzyme diluted with Tris-HCl buffer (1 U/L,70 mM, pH 8.2) was pipetted 50 µL into clear microplate wells.Subsequently, 2µLTris-HCl buffer or Standard and sample solutions wereadded and incubated at 37°C for 10 min,then 100 µL of chromogenic substrate Gly-Pro-pNA (456 µM) was added into each welland incubated at 37°C for 30 min. The absorbance was measured t 405 nm using a microplate reader.

Each sample was analysed in triplicate, and the absorbance values were normalized to sample blanks in which DPPIV was replaced with Tris-HCl buffer (1 U/L,70 mM, pH 8.2) The negative control (no DPP-IV activity) and positive control (DPP-IV activity with no inhibitor) were prepared by using Tris-HCl instead of the sample and DPP-IV solution and instead of the sample, respectively. The DPP-IV inhibitory result showed in Table S1

No	$IC_{50}(\mu M)$	No	$IC_{50}(\mu M)$	No	$IC_{50}(\mu M)$
1	-	15	-	29	115.9
2	-	16	-	30	228.9
3	54.2	17	>300	31	-
4	222.9	18	>300	32	-
5	>300	19	>300	33	>300
6	-	20	-	34	-
7	-	21	>300	35	-
8	-	22	-	36	>300
9	-	23	>300	37	-
10	-	24	-	38	>300
11	>300	25	-	39	-
12	>300	26	>300	40	178.3
13	>300	27	-	Diprotin A	2.3
14	-	28	168.7	sitagliptin	5.4

Table S1in vitro DPP-IV inhibitionassay of compounds 1-40

S3.2 Cell viability assay and flow cytometry analysis

Cells

All cells were maintained in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum, 4 mM L-glutamine, 100 IU penicillin, and 100 mg/ml streptomycin at 37° C in a humidified incubator containing 5% CO₂.

Cell Viability Assay

Cell viability was assessed by MTT.Cells were seeded on 24-well plates at a density of 5×103 cells per well. A549 cells were treated by DMEM plus 2% fetal bovine serum with fractions obtained by column chromatography over silica gel (2, 5, 10, 20, 50, 100, 200µg/mL); All cells were treated by DMEM plus 2% fetal bovine serum with compound **1**, **3** and **4** (0.1, 0.2, 0.5, 2.0, 5.0 µmol/L for A549 cells, 2, 5, 10, 20, 50 µmol/L for the others) and Compound **2**(10, 20, 50, 100, 200µmol/L) for 24h, Then, cells were incubated with MTT (1 mg/mL) for 4 h. The cells viability was assessed at 490 nm absorbance using a 24-well plate reader (Biotek, VT, USA). The viability was calculated as viability (%) = (A490, sample– A490, blank) / (A490, control – A490, blank) × 100

The percentage of cell growth rate was calculated as follows (Figure S190):

Figure S190. Percentage of cell growth rate

Hoechst 33258/PI Staining.

Cells (5 × 104/well) were seeded in 6-well plates with DMEM plus 2% fetal bovine serum with compound 1 (0,5,10 μ mol/L) for 24h. After incubation for 24 h, the cells were fixed with 1mL of 4% paraformaldehyde for 20 min. Then, the cells were incubated in 1mLPBS containing 10 μ mol/L Hoechst 33258 at 37 °C for 30min and observed using fluorescence microscopy (Olympus, Tokyo, Japan) at×400 magnification. Using appropriate filters to examine and compare Hoechst 33342 and PI fluorescence staining in the same cells.

The apoptosis of A549 and Hey under Hoechst 33342 / PI double staining showed as Figure S191

Figure S191. Apoptosis of Hey and A549 determined by Hoechst33342 Hoechst 33342/PI staining with 1

caryopincaolide A (10µM) Apoptosis of Hey by Hoechst 33342/PI

staining with compound 1

blank control

blank control + DMSO

caryopincaolide A (5µM)

caryopincaolide A (10µM) Apoptosis of A549 by Hoechst 33342/PI

staining with compound 1

Flow Cytometry Analysis

A549 and Hey cells were treated by DMEM plus 2% fetal bovine serum with compound 1 (0, 5, 10 µmol/L) for 24h. Cells were collected after 48 h. The first stained with Alexa Fluro 488 annexin V and propidium iodide (PI) in room temperature for 15 minutes, and analyzed by FACScan (Beckman Coulter, FL, USA). The stainings were carried out using Alexa fluor 488 annexin V/dead cell apoptosis Kit (Invitrogen) according to the manufacture. Detection and quantification of apoptotic cells were obtained by flow cytometry analysis software (Cell Lab Quanta Analysis, Beckman Coulter). The result of Flow Cytometry Analysis showed asFigure S37 (Q1: mechanical injury cells; Q2: death or non-viable apoptotic cells; Q3: living cells; Q4 viable apoptotic cell. The Stimulation of compound 1 to A549 and Hey increased the proportion of cells in Q2 and Q4, which showed compound 1 induced apoptosis in Hey and A-549 cells.)

Figure S192. Flow Cytometry Analysis of compound 1 induced apoptosis in A549 and Hey

Flow Cytometry Analysis of compound 1 induced apoptosis in A549

Flow Cytometry Analysis of compound 1 induced apoptosis in Hey
Scheme S1. Plausible biogenetic pathways for 1-4

caryopteron B

