Mutagenicity of *N*-acyloxy-*N*-alkoxyamides as an indicator of DNA intercalation part 1: evidence for naphthalene as a DNA intercalator.

Tony. M. Banks, Samuel F. Clay, Stephen A. Glover** and Rhiannon R. Schumacher.

Chemistry Department, School of Science and Technology, University of New England, Armidale New South Wales 2351, Australia.

Supplementary Table . Data for linear QSAR Equation 3 and bilinear QSAR Equation 4

QSAR parameters Log P, pK_A , E_S^{-1} , E_S^{-2} , E_S^{-3} , I and Log(β P+1) for N-acyloxy-N-alkoxyamides 1

Structure ^a	$\mathbf{D}^1 \mathbf{D}^2 \mathbf{D}^3$	Experimental	LocD ^c	nK d	E le	E ^{2f}	${\rm E_S}^{\rm 3g}$	r h	$L_{og}(\beta \mathbf{P}_{\perp} 1)^{i}$
Suucture	к , к , к	LogTA100 ^b	Logi	pικ _A	$\mathbf{E}_{\mathbf{S}}$	\mathbf{L}_{s}		1	Log(pI +1)
1	Et, Me, Ph	2.49	1.54	4.76	0	0	0	0	-2.97223E-06
2	Pr, Me, Ph	2.53	2.02	4.76	0	0	0	0	-8.97594E-06
3	Oct, Me, Ph	2.88	4.11	4.76	0	0	0	0	-0.001102891
4	Pr ⁱ , Me, Ph	2.40	1.86	4.76	0	0	0	0	-6.20985E-06
5[14]	Bu, Me, Ph	2.50	2.44	4.76	0	0	0	0	-2.36087E-05
6	Bu, Me, (4-MeO)Ph	2.73	2.32	4.76	-0.55	0	0	0	-1.79092E-05
7	Bu, Me, (4-Ph)Ph	2.92	4.12	4.76	-2.41	0	0	0	-0.001128548
8	Bu, Me, (4-Me)Ph	2.48	2.93	4.76	-1.24	0	0	0	-7.29538E-05
9	Bu, Me, (4-Cl)Ph	2.54	3.00	4.76	-0.97	0	0	0	-8.5712E-05
10	Bu, Me, (4-Br)Ph	2.69	3.27	4.76	-1.16	0	0	0	-0.00015959
11	Bu, Me, (4-NO ₂)Ph	2.16	2.48	4.76	-1.76	0	0	0	-2.58864E-05
12	Bu, Me, (3-NO ₂)Ph	2.45	2.48	4.76	0	0	0	0	-2.58864E-05
13	Bu, Me, (4-Bu ^t)Ph	2.37	4.15	4.76	-2.78	0	0	0	-0.001209148
14	Bn, Me, Ph	2.63	2.93	4.76	0	0	0	0	-7.29538E-05
15	(4-MeO)Bn, Me, Ph	2.70	2.81	4.76	0	-0.55	0	0	-5.53422E-05
16	(4-PhO)Bn, Me, Ph	3.06	3.96	4.76	0	-0.55	0	0	-0.000781077
17	(4-Ph)Bn, Me, Ph	3.09	4.61	4.76	0	-2.41	0	0	-0.003478116
18	(4-Me)Bn, Me, Ph	2.78	3.42	4.76	0	-1.24	0	0	-0.000225409

19	(4-Cl)Bn, Me, Ph	2.76	3.49	4.76	0	-0.97	0	0	-0.000264821
20	(4-Br)Bn, Me, Ph	2.74	3.76	4.76	0	-1.16	0	0	-0.00049299
21	(4-Bu ^t)Bn, Me, Ph	2.60	4.64	4.76	0	-2.78	0	0	-0.003725805
22	Bn, Ph, Ph	3.22	4.83	4.20	0	0	0	0	-0.005757084
23	Bn, (4-MeO)Ph, Ph	3.06	4.70	4.31	0	0	-0.55	0	-0.004275088
24	Bn, (4-Ph)Ph, Ph	3.70	6.51	4.21	0	0	-2.41	0	-0.214500656
25	Bn, (4-Me)Ph, Ph	3.29	5.32	4.37	0	0	-1.24	0	-0.017550105
26	Bn, (4-Cl)Ph, Ph	3.12	5.39	3.99	0	0	-0.97	0	-0.020548011
27	Bn, (4-CHO)Ph, Ph	2.87	4.58	3.73	0	0	-1.01	0	-0.003246832
28	Bn, (4-CN)Ph, Ph	2.96	4.86	3.55	0	0	-0.51	0	-0.006165917
29	Bn, $(4-NO_2)$ Ph, Ph	2.69	4.86	3.42	0	0	-1.76	0	-0.006165917
30	Bn, (4-Bu ^t)Ph, Ph	3.20	6.54	4.35	0	0	-2.78	0	-0.226441169
31	Bn, (3-NO ₂)Bn, Ph	2.94	4.86	3.45	0	0	0	0	-0.006165917
32	Bn, (3-MeO)Bn, Ph	3.23	4.70	4.09	0	0	0	0	-0.004275088
33	-(CH ₂) ₆ -, Me, Ph	2.96	3.55	4.76	0	0	0	0	-0.000304041
34	Bu, Ph, Ph	2.70	4.34	4.20	0	0	0	0	-0.001871321
35	Bu, Me, Me	1.94	0.54	4.76	0	0	0	0	-2.97224E-07
36[15]	Bu, Ph, Me	2.65	2.44	4.20	0	0	0	0	-2.36087E-05
37	Bn, Me, Me	2.22	1.04	4.76	0	0	0	0	-9.39905E-07
38	Bn, Ph, Me	2.90	2.93	4.20	0	0	0	0	-7.29538E-05
39	(2,6-diMe)Bn, Me, Ph	3.04	3.91	4.76	0	0	0	0	-0.000696203
40	Bu, Me, (3,5-diMe)Ph	2.74	3.42	4.76	0	0	0	0	-0.000225409
41	Bn, Ph, (4-Bu ^t)Ph	3.50	6.54	4.20	-2.78	0	0	0	-0.226441169
42	(4-Bu ^t)Bn, Ph, Ph	3.05	6.54	4.20	0	-2.78	0	0	-0.226441169
43	(4-Bu ^t)Bn, Me, (4-Bu ^t)Ph	2.89	6.31	4.76	-2.78	-2.78	0	0	-0.147056222
44	2-Bu, Me, Ph	2.59	2.07	4.76	0	0	0	0	-1.00712E-05
45	Bu ^t , Me, Ph	2.47	2.34	4.76	0	0	0	0	-1.87532E-05
46	(2-Me)Bn, Me, Ph	2.71	3.42	4.76	0	0	0	0	-0.000225409
47	(3-Me)Bn, Me, Ph	2.86	3.42	4.76	0	0	0	0	-0.000225409
48	(3,5-diMe)Bn, Me, Ph	2.95	3.91	4.76	0	0	0	0	-0.000696203
49	Bu, (4-Me)Ph, Ph	2.91	4.83	4.37	0	0	-1.24	0	-0.005757084
50	Bu, (4-MeO)Ph, Ph	2.87	4.21	4.47	0	0	-0.55	0	-0.001388002
51[2]	Bu, Me, 2-Np	3.59	3.44	4.76	0	0	0	1	-0.00023603
52[3]	Bu, 2-Np, Me	3.64	3.44	4.16	0	0	0	1	-0.00023603
53[4]	Bu,2-NpCH ₂ , Me	3.4	3.38	4.24	0	0	0	1	-0.00020558
54[5]	Bu, 2-Np(CH ₂) ₂ , Me	3.46	3.8	4.57	0	0	0	1	-0.000540523
55[6]	1-NpCH ₂ , Me, Me	3.53	2.03	4.76	0	0	0	1	-9.18501E-06
56[7]	2-NpCH ₂ , Me, Me	3.57	2.03	4.76	0	0	0	1	-9.18501E-06
57[8]	$2-Np(CH_2)_2$, Me, Me	3.41	2.31	4.76	0	0	0	1	-1.75015E-05
58[9]	$2-Np(CH_2)_3$, Me, Me	3.48	2.73	4.76	0	0	0	1	-4.60322E-05
59	n-Hex, n-Pent, Ph	3.42	5.18	4.86	0	0	0	0	-0.012784286

60	n-Hept, n-Hex, Ph	3.25	6.02	4.78	0	0	0	0	-0.08159238
61	n-Oct, n-Hept, Ph	3.02	6.85	4.78	0	0	0	0	-0.379728413
62	n-Non, n-Oct, Ph	2.95	7.69	4.78	0	0	0	0	-1.0280498
63	n-Dec, n-Non, Ph	2.88	8.52	4.79	0	0	0	0	-1.821894515

^{*a*} Structures in [square brackets] correspond to those in the paper; Data for structures 1-58 used for Equations 3, 1-63 for Equation 4

^{*b*}LogTA100 = \log_{10} (revertants at 1µmol/plate);

^{*c*} Log *P* calculated according to Ghose-Crippen;

 d p K_{A} of the carboxylic acid corresponding to the acyloxyl group;

^eE_s¹ Taft steric parameter for *para* –substituent on a benzamide side chain;

 ${}^{f}E_{s}^{2}$ Taft steric parameter for *para* –substituent on a benzyloxyl side chain;

 ${}^{g}E_{s}^{3}$ Taft steric parameter for *para* –substituent on a benzoyloxyl side chain;

^{*h*} Indicator variable *I*=1 for naphthalene bearing mutagens (entries 51-58) otherwise 0;

^{*i*} Log β =-6.705

Regression analyses for Supplementary Table 1

Supplementary data for QSAR in Equation 3 (entries 1-58):

SUMMARY OUTPUT

Regression Statistics							
Multiple R	0.922063865						
R Square	0.850201771						
Adjusted R Square	0.83257845						
Standard Error	0.161997269						
Observations	58						

ANOVA

						Significance
	df		SS	MS	F	F
Regression		6	7.596278708	1.266046451	48.24299398	2.52224E-19
Residual		51	1.338398878	0.026243115		
Total		57	8.934677586			

		Standard						
	Coefficients	Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	1.117236054	0.412343627	2.709478168	0.009153984	0.289421699	1.94505041	0.289421699	1.94505041
LogP	0.261967633	0.026913102	9.733832623	3.20956E-13	0.207937327	0.315997939	0.207937327	0.315997939
pK _A	0.174888546	0.079324165	2.204732261	0.032009431	0.015638643	0.33413845	0.015638643	0.33413845
E_S^{-1}	0.124967737	0.0333362	3.748709701	0.00045455	0.058042524	0.19189295	0.058042524	0.19189295
E_s^2	0.135876125	0.038020244	3.573783632	0.000779782	0.059547302	0.212204948	0.059547302	0.212204948

Log TA100 = 0.26 (±0.03) Log P + 0.17 (±0.08) pK_A + 0.12 (±0.03) E_S⁻¹ + 0.14 (±0.04) E_S⁻² + 0.08 (±0.05) E_S⁻³ + 0.83 (±0.06) I + 1.12 (±0.41) n = 58, R² = 0.85, adj. R² = 0.83, s = 0.16, F = 48.2; LOO CV Q² = 0.85

Supplementary data for QSAR in Equation 4 (entries 1-63):

SUMMARY OUTPUT

Regression Statistics							
Multiple R	0.902272575						
R Square	0.814095799						
Adjusted R Square	0.790435264						
Standard Error	0.177690657						
Observations	63						

ANOVA

	df	SS	MS	F	Significance F
Regression	7	7.604631675	1.086375954	34.40732886	6.82835E-18
Residual	55	1.736568325	0.03157397		
Total	62	9.3412			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	1.484559313	0.396839985	3.740951944	0.000439186	0.689274217	2.279844409	0.689274217	2.279844409
LogP	0.230836382	0.02381045	9.694751016	1.67405E-13	0.183119175	0.278553589	0.183119175	0.278553589
$Log(\beta P+1)$	0.651851424	0.12362435	5.272840064	2.32547E-06	0.404102692	0.899600155	0.404102692	0.899600155
pK _A	0.111078999	0.078360811	1.417532546	0.161967828	-0.045959573	0.268117572	-0.045959573	0.268117572
E_s^{-1}	0.085502071	0.033419717	2.558431952	0.013298028	0.018527463	0.15247668	0.018527463	0.15247668
E_s^2	0.086013203	0.036545126	2.353616263	0.022193027	0.012775134	0.159251272	0.012775134	0.159251272
E_{S}^{3}	0.009313227	0.049657727	0.187548395	0.851920877	-0.090203081	0.108829535	-0.090203081	0.108829535
Ι	0.846728441	0.070324683	12.0402738	4.78996E-17	0.705794627	0.987662255	0.705794627	0.987662255

 $LogTA100 = 0.23 (\pm 0.02) LogP - 0.65 (\pm 0.12) Log(\beta P + 1) + 0.11 (\pm 0.08) pK_A + 0.09 (\pm 0.03) E_S^{-1} + 0.09 (\pm 0.04) E_S^{-2} + 0.01 (\pm 0.05) E_S^{-3} + 0.85 (\pm 0.07) I + 1.48 (\pm 0.40)$ $Log\beta = -6.705, n = 63, R^2 = 0.81, adj, R^2 = 0.79, s = 0.18, F = 29.6; LOO CV Q^2 = 0.76$

Supplementary Experimental

Synthesis of alcohols 2-(2'-naphthyl)ethanol and 3-(2'-naphthyl)-1-propanol.

2-(2'-Naphthyl)ethanol

2-*Naphthylacetic acid*. 2-Bromomethylnaphthalene (20.0 g, 0.091 mol) and potassium cyanide (17.7 g, 0.271 mol) were stirred overnight with sodium carbonate (12.4 g, 0.117 mol) in 25% aqueous ethanol (120 ml), then refluxed for 2hr. The ethanol was removed under reduced pressure. 50 ml of water was added and the residue extracted with ether (3 x 50 ml) and concentrated under reduced pressure. The impure nitrile was acidified with concentrated hydrochloric acid (30 ml) and refluxed for 5 hours. Ammonia was added until basic and the solution decolourised with charcoal and filtered. After acidification with dilute HCl, 2-naphthylacetic acid (6.40 g, 38%) was filtered off as a white solid and used without further purification, mp 139-140 °C (lit.,¹ 138°C); v_{max} (CHCl₃)/cm⁻¹ 1710s (C=O); δ_{H} (300 MHz; CDCl₃) 3.84 (2H, s, CH₂CO₂H), 7.43 (1H, d, Ar-H), 7.49 (2H, m, Ar-H), 7.76 (1H, s, Ar-H), 7.78-7.87 (3H, m, Ar-H); δ_{C} (75 MHz; CDCl₃) 41.0 (t), 125.9 (d), 126.3 (d), 127.3 (d), 127.7 (d), 127.7 (d), 128.2 (d), 128.4 (d), 130.7 (s), 133.4 (s), 176.6 (s).

2-(2'-*Naphthyl*)*ethanol*. 2-Naphthylacetic acid (5 g, 0.0269 mole) in dry ether (125 ml) was added slowly to a 2 molar excess of lithium aluminium hydride (3.80 g, 0.0537 mole) in dry ether (25 ml) and refluxed overnight. The crude reaction mixture was cooled in ice and dilute HCl added. The ether layer was separated, washed with 10% Na₂CO₃ solution then water and dried with Na₂SO₄. Removal of the ether gave 2-(2'-naphthyl)ethanol (4.12 g, 89%) as a yellow oil which solidified on standing and this was used without further purification, mp 65-66 °C (lit.,² 66-67 °C); v_{max} (CHCl₃)/cm⁻¹ 3618br (OH), 1600s (C=C), 1044; δ_{H} (300 MHz; CDCl₃) 3.06 (2H, t, ArCH₂), 3.98 (2H, br, <u>CH₂OH)</u>, 7.39 (1H, d, Ar-H), 7.48 (2H, m, Ar-H), 7.71 (1H, s, Ar-H), 7.83 (3H, m, Ar-H); δ_{C} (75 MHz; CDCl₃) 39.4 (t), 63.5 (t), 125.5 (d), 126.1 (d), 127.4 (d), 127.5 (d), 127.7 (d), 128.2 (d), 128.3 (d), 132.3 (s), 133.6 (s), 136.0 (s).

3-(2'-Naphthyl)-1-propanol

3-(2'-Naphthyl) propenoic acid. A mixture containing 2-naphthaldehyde (10 g, 0.0640 mol), malonic acid (6.66 g, 0.06402 mol) and α -picoline (5.96 g, 0.06402 mol) was heated overnight at 70°C. The reaction mixture was treated with water (100 ml) and concentrated HCl (25 ml), heated to 100°C and filtered to remove unreacted 2-naphthaldehyde. The mixture was cooled and filtered. The crude solid was then dissolved in a minimum of boiling NaOH (5%) and Norit added. The mixture was

then filtered at 100°C and acidified with HCl, cooled and filtered to give 3-(2'-naphthyl)propenoic acid (10.83g 85%), mp 204-205 °C (lit.,³ 206 °C); v_{max} (CHCl₃)/cm⁻¹ 1686s (C=O), 1626s (C=C), 1288s; δ_{H} (300 MHz, CDCl₃) 6.58 (1H, d, Ar-CH=<u>CH</u>), 7.55 (2H, m, Ar-H), 7.72 (1H, d, Ar-H), 7.87-8.0 (5H, m, Ar-H, Ar-<u>CH</u>=CH); δ_{C} (75 MHz; CDCl₃) 117.2 (d), 123.5 (d), 126.8 (d), 127.5 (d), 127.8 (d), 128.7 (d), 128.8 (d), 130.4 (d), 131.6 (s), 133.3 (s), 134.5 (s), 147.1 (d), 171.0 (s).

3-(2'-Naphthyl)propanoic acid. A mixture of 5% palladium/carbon catalyst (300 mg) and methanol (250 ml) was stirred under hydrogen for 1 hour. 3-(2'-naphthyl)propenoic acid (10 g) was added and the mixture was stirred for 5 hours under hydrogen. Filtration and concentration yielded 3-(2' naphthyl)propanoic acid almost quantitatively, mp 130-131 °C (lit.,⁴ 135-136 °C); ν_{max} (CHCl₃)/cm⁻¹ 1710s (C=O); δ_{H} (300 MHz; CDCl₃) 2.81 (2H, t, ArCH₂<u>CH</u>₂), 3.16 (2H, t, ArCH₂), 7.37 (1H, d, Ar-H), 7.47 (2H, m, Ar-H), 7.68 (1H, s, Ar-H), 7.82 (3H, m, Ar-H); δ_{C} (75 MHz; CDCl₃) 30.8 (t), 35.4 (t), 125.5 (d), 126.1 (d), 126.5 (d), 126.9 (d), 127.5 (d), 127.6 (d), 128.2 (d), 132.2 (s), 133.6 (s), 137.6 (s), 178.5 (s).

3-(2'-Naphthyl)-1-propanol. 3-(2'-Naphthyl)propanoic acid (10 g, 0.05 mole) in dry ether (250 ml) was added slowly to a 2 molar excess of lithium aluminium hydride (3.80 g, 0.10 mole) in dry ether (50 ml) and refluxed overnight. The crude reaction mixture was cooled in ice and dilute HCl added. The ether layer was separated, washed with 10% Na₂CO₃ solution then water and dried with Na₂SO₄. Removal of the ether gave 3-(2'-naphthyl)-1-propanol (8.56 g, 92%) as a yellow oil which solidified upon standing was used without further purification, mp 31-32 °C (lit.,⁵ 33 °C); v_{max} (CHCl₃)/cm⁻¹ 3625br (OH), 1600m (C=C), 1507m, 1040s; δ_{H} (300 MHz; CDCl₃) 2.02 (2H, qui, OCH₂CH₂), 2.91 (2H, t, ArCH₂), 3.73 (2H, t, OCH₂), 7.38 (1H, d, Ar-H), 7.47 (2H, m, Ar-H), 7.67 (1H, s, Ar-H), 7.82 (3H, m, Ar-H); δ_{C} (75 MHz; CDCl₃) 32.2 (t), 34.1 (t), 62.2 (t), 125.2 (d), 126.0 (d), 126.4 (d), 127.4 (d), 127.6 (d), 128.0 (d), 132.1 (s), 133.7 (s), 139.3 (s).

Synthesis alkyl bromides

Method 1. The alkyl bromides were prepared from the appropriate alcohols by refluxing with HBr- H_2SO_4 in ether. The mixtures were washed with conc. HCl, H_2O , 10% aq. Na₂CO₃, H_2O and extracted with DCM. Concentration *in vacuo* provided the alkyl bromides in good yield (>90%) and high purity (¹H, ¹³C NMR).

Method 2. Alkyl Bromides were prepared from the appropriate arylmethyl compound by refluxing with a slight excess of *N*-bromosuccinimde in carbon tetrachloride for a period of 4-16 hours. The

mixture was filtered to remove succinimide and the solvent removed *in vacuo*. The bromides were produced in good yields with high purity and generally used without further purification.

1-Bromomethylnaphthalene (method 2). 1-Methylnaphthalene (10 g, 0.0602 mol) was dissolved in carbon tetrachloride (70 ml) and to this was added *N*-bromosuccinimde (12.5 g, 0.0702 mol) and benzoyl peroxide (0.5 g) and the mixture heated under reflux for 16 hr. The reaction was cooled in ice and the solid succinimide removed via filtration. The solvent was removed under reduced pressure, affording the title compound as a heavy oil which was used without further purification (9.4g 64%). $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 5.01 (2H, s, CH₂Br), 7.45 (1H, t, Ar-H), 7.59 (2H, m, Ar-H), 7.68 (1H, t, Ar-H), 7.89 (1H, d, Ar-H), 7.94 (1H, d, Ar-H), 8.23 (1H, d, Ar-H); $\delta_{\rm C}(75 \text{ MHz CDCl}_3)$ 31.8 (t), 123.8 (d), 125.5 (d), 126.3 (d), 126.7 (d), 127.7 (d), 128.9 (d), 129.8 (d), 131.1 (s), 133.3 (s), 134.1 (s).

2-Bromomethylnaphthalene (method 2). 2-Methylnaphthalene (10.00 g, 0.0602 mol) was dissolved in carbon tetrachloride (70 ml) and to this was added *N*-bromosuccinimde (12.5 g, 0.0702 mol) and benzoyl peroxide (0.5 g) and the mixture heated under reflux for 16 hr. The reaction was cooled in ice and the solid succinimide removed via filtration. The solvent was removed under reduced pressure and the title compound solidified on cooling. Recrystallisation from ethanol afforded pure 2-bromomethylnaphthalene (10.6 g 72%). m.p. 55°C (lit⁶ m.p. 56°C); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 4.69 (2H, m, <u>CH₂CH₂Br), 7.52 (3H, m, Ar-H), 7.84 (4H, m, Ar-H); $\delta_{\rm C}(75 \text{ MHz CDCl}_3)$ 34.0 (t), 126.5 (d), 126.6 (d), 126.8 (d), 127.7 (d), 127.9 (d), 128.0 (d), 128.8 (d), 133.1 (s), 133.2 (s), 135.1 (s).</u>

2-(2'-Naphthyl)ethyl bromide (method 1). 2-(2'-Naphthyl)ethyl alcohol (2.0 g, 0.012 mol) was added to 45 ml conc. HBr and refluxed for 3 hr. 2-(2'-Naphthyl)ethyl bromide was extracted with chloroform (3 x 30 ml) and successively washed with conc. HCl, H₂O and 10% Na₂CO₃. Drying over Na₂SO₄ and concentration under reduced pressure afforded 2-(2'-Naphthyl)ethyl bromide which was used without further purification (2.23 g, 82%). m.p. 62°C (lit ⁷m.p. 64-65°C) $\delta_{\rm H}$ (300 MHz, CDCl₃) 3.36 (2H, t, ArCH₂), 3.69 (2H, t, CH₂Br), 7.36 (1H, d, Ar-H), 7.49 (2H, m, Ar-H), 7.70 (1H, s, Ar-H), 7.78-7.87 (3H, m, Ar-H); $\delta_{\rm C}$ (75 MHz CDCl₃) 32.8 (t), 39.6 (t), 125.7 (d), 126.2 (d), 126.9 (d), 127.6 (d), 127.7 (d), 128.3 (d), 132.5 (s), 133.5 (s), 136.3 (s).

3-(2'-Naphthyl)-1-propyl bromide (method 1). 3-(2'-Naphthyl)-1-propyl alcohol (1.21 g, 6.5 mmol) was added to 40ml conc. HBr and refluxed for 4 hours. 3-(2'-Naphthyl)-1-propyl bromide was extracted with chloroform (3 x 25 ml) and successively washed with conc. HCl, H₂O and 10% Na₂CO₃. Drying over Na₂SO₄ and concentration under reduced pressure afforded 3-(2'-naphthyl)-1-

propyl bromide (1.46 g, 90%) as a brown oil and this was used without further purification. $\delta_{H}(300 \text{ MHz}, \text{CDCl}_{3})$ 2.29 (2H, qui, $\text{CH}_2\text{CH}_2\text{CH}_2$), 2.98 (2H, t, ArCH_2), 3.46 (2H, t, CH_2O), 7.35 (1H, d, Ar-H), 7.48 (2H, m, Ar-H), 7.68 (1H, s, Ar-H), 7.76-7.85 (3H, m, Ar-H); $\delta_C(75 \text{ MHz} \text{ CDCl}_3)$ 33.1 (t), 34.1 (t), 125.4 (d), 126.1 (d), 126.8 (d), 127.2 (d), 127.5 (d), 127.6 (d), 128.2 (d), 132.2 (s), 133.6 (s), 138.0 (s).

DNA Sequence plasmid pBR322:

A partial sequence of the 375 base pair *EcoRI* to *BamHI* fragment of plasmid pBR322 DNA used in DNA damage studies is presented below.⁸

GCTTTAATGCGGTAGTTTATCACAGTTAAATTGCTAACGCAGTCA3'-CGAAATTACGCCATCAAATAGTGTCAATTTAACGATTGCGTCAGT	GGCAC
3'-CGAAATTACG CCATCAAATA GTGTCAATTT AACGATTGCG TCAGT	
	CCGTG
81 91 101 111 121	
CGTGTATGAA ATCTAACAAT GCGCTCATCG TCATCCTCGG CACCG	FCACC
GCACATACTT TAGATTGTTA CGCGAGTAGC AGTAGGAGCC GTGGC	AGTGG
131 141 151 161	
CTGGATGCTG TAGGCATAGG CTTGGGTTAT GCCGGTACTG	
GACCTACGAC ATCCGTATCC GAACCCAATA CGGCCATGAC-5'	

Dose response plots for mutagens 2-9 in S. typhimurium TA100:

Figure S1. Dose-response (circles) for a) *N*-acetoxy-*N*-butoxy-2-naphthamide **2**, b) *N*-butoxy-*N*-2-naphthoyloxyacetamide **3**, c) *N*-acetoxy-*N*-(1-naphthylmethoxy)acetamide **6** and d) *N*-acetoxy-*N*-(2-naphthylmethoxy)acetamide **7** along with standard *N*-acetoxy-*N*-butoxybenzamide **14** (triangles) in *S. typhimurium* TA100; data from Table 2.

Figure S2. Dose-response (circles) for a) *N*-acetoxy-*N*-(2-(2'-naphthyl)ethoxy)acetamide 8 and b) *N*-acetoxy-*N*-(3-(2'-naphthyl)propyloxy)acetamide 9 along with standard *N*-acetoxy-*N*-butoxybenzamide 14 (triangles) in *S. typhimurium* TA100; data from Table 3.

Figure S3. Dose-response (circles) for a) *N*-butoxy-*N*-(2-naphthylacetoxy)acetamide **4** and b) *N*-butoxy-*N*-(3-(2-naphthyl)propanoyloxy)acetamide **5** along with standard *N*-acetoxy-*N*-butoxybenzamide **14** (triangles) in *S. typhimurium* TA100; data from Table 4.

Dose response plots for mutagens in *S. typhimurium* TA98 (data from Table 6):

Figure S4. Mutagenic activity of *N*-acetoxy-*N*-butoxy-2-naphthamide **2**, a) test A, b) test B, c) test C in *S. typhimurium* TA98.

Figure S5. Test set D - Dose-response (circles) for a) *N*-acetoxy-*N*-butoxybenzamide **14** and b) *N*-benzoyloxy-*N*-butoxyacetamide **15** along with standard *N*-acetoxy-*N*-butoxy-2-naphthamide **2** (triangles) in *S. typhimurium* TA98

Figure S6. Test set E - Dose-response (circles) for a) *N*-butoxy-*N*-ethoxy-2-naphthamide **16** and b) *N*-butoxy-*N*-(2-naphthoyloxy)acetamide **3** along with standard *N*-acetoxy-*N*-butoxy-2-naphthamide **2** (triangles) in *S. typhimurium* TA98

Figure S7. Test set F – Dose-response (circles) for a) *N*-acetoxy-*N*-(1-naphthylmethoxy)acetamide **6**, b) *N*-acetoxy-*N*-(2-naphthylmethoxy)acetamide **7** and c) *N*-butoxy-*N*-methyl-2-naphthamide **17** along with standard *N*-acetoxy-*N*-butoxy-2-naphthamide **2** (triangles) in *Salmonella typhimurium* TA98

References

- 1 H. Gilman and J. E. Kirby, J. Am. Chem. Soc., 1929, **51**, 3475.
- 2 W. Davies and Q. N. Porter, J. Chem. Soc., 1956, 2609.
- 3 E. Koepp and F. Voegtle, *Synthesis*, 1977, 177.
- 4 J. C. Westfahl, J. Am. Chem. Soc., 1954, **76**, 1076.
- 5 O. Tsuge, M. Nishinohara and M. Tashiro, Bull. Chem. Soc. Jpn., 1963, 36, 1477.
- 6 J. B. Shoesmith and H. Rubli, J. Chem. Soc., 1927, 3098.
- 7 Beilstein Handbuch der Organische Chemie, 1979, **5**, *IV*, 1708.
- 8 T. M. Banks, A. M. Bonin, S. A. Glover and A. S. Prakash, *Org. Biomol. Chem.*, 2003, **1**, 2238