Supporting information for

Palladium-Catalyzed Paraformaldehyde Insertion: A Three-Component Synthesis of Benzofurans
Xiufang Cheng, ${ }^{a}$ Yi Peng, ${ }^{a}$ Jun Wu^{a} and Guo-Jun Deng ${ }^{\mathrm{a}}$ *
${ }^{\text {a }}$ Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; Fax: (+86)-731-58292251; e-mail: gjdeng@ xtu.edu.cn

Table of Contents

1. General information 2
2. Substrate preparation 2-3
3. General experimental procedure 3
4. Characterization data of products 3-15
5. References 15-16
6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of products 17-41

General information:

All experiments were carried out under an atmosphere of air. Flash column chromatography was performed over silica gel $48-75 \mu \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker-AV (400 and 100 MHz , respectively) instrument internally referenced to SiMe_{4} or chloroform signals. MS analyses were performed on an Agilent 5975 GC-MS instrument (EI). The new compounds were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, MS and HRMS. The structures of known compounds were further corroborated by comparing their ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR data and MS data with those of literature. The substrates $\mathbf{1 c}, \mathbf{1 d}, \mathbf{1 m}, \mathbf{2} \mathbf{j}$ were synthesized following the literature procedures. All other chemicals and solvents were used as received from commercial sources without further purification.

General Procedure for the preparation of substrates (1c, $\mathbf{1 d}, \mathbf{1 m}, \mathbf{2 j})$:

Substrate 1c ${ }^{[1]}$:
Bromine (11.6 mL, 0.23 mol) was added slowly to a cooled $0^{\circ} \mathrm{C}$ of 4-ethylphenol ($25 \mathrm{~g}, 0.21$ $\mathrm{mol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(125 \mathrm{~mL})$. After the addition was complete the reaction mixture was stirred for 10 minutes and then quenched with 1 M NaOH . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and the layers separated. The organic layer was concentrated to an orange oil. Purification by flash column chromatography (0 percent to 5% ethyl acetate in petroleum ether) gave the title compound 1c as a clear oil.

Substrate 1d ${ }^{[2]}$:
To a solution of 4-propylphenol (20 mmol) in chloroform (20 mL), $\mathrm{NaHCO}_{3}(2 \mathrm{~g}, 24 \mathrm{mmol})$ was added. The resulting suspension was cooled to $0^{\circ} \mathrm{C}$. While a solution of elementary bromine (1.12 $\mathrm{mL}, 22 \mathrm{mmol}$) in chloroform (8 mL) was slowly added, the suspension was vigorously stirred. After completion of the reaction, monitored by TLC the suspension was filtered. The filter with the solid residue was rinsed once with 50 mL of chloroform. The combined organic solution was evaporated under reduced pressure. The final work up of $\mathbf{1 d}$ was done either by distillation or by column chromatography (petroleum ether: ethyl acetate $=9: 1$).

Substrate $\mathbf{1 m}^{[3]}$:

To a solution of 3,4-dimethylphenol ($2.48 \mathrm{~g}, 20.3 \mathrm{mmol}, 1$ equiv) in dichloromethane (200 mL) at $-78^{\circ} \mathrm{C}$ was added dropwise bromine ($1.05 \mathrm{~mL}, 20.3 \mathrm{mmol}$, 1 equiv). After $1 \mathrm{~h}, 1 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{3}$ was added and the cold bath was removed. After warming to ambient temperature, the dichloromethane layer was separated, dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to provide $\mathbf{1 m}$ as a yellow solid.

Substrate $\mathbf{2 j}{ }^{[4]}$:
2-Acetylthiophene ($6 \mathrm{~g}, 47.6 \mathrm{mmol}$) was dissolved in chloroform (60 mL) and added to a slurry of $\mathrm{CuBr}_{2}(13.5 \mathrm{~g}, 60.4 \mathrm{mmol})$ in ethyl acetate $(120 \mathrm{~mL})$. The mixture was refluxed for 6 h and then filtered while still hot through a celite pad. The filtrate cake was washed with ethyl acetate and the combined filtrate was evaporated to give $\mathbf{2} \mathbf{j}$.

General procedure for preparation of 3a:

A 10 mL oven-dried reaction vessel was charged with $\mathrm{Pd}(\mathrm{COD}) \mathrm{Cl}_{2}(2.9 \mathrm{mg}, 0.01 \mathrm{mmol})$, diphenyl-2-pyridylphosphine (dpppy, $5.3 \mathrm{mg}, 0.02 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(83.0 \mathrm{mg}, 0.6 \mathrm{mmol}$), 2-bromophenol (1a, $23 \mathrm{uL}, \quad 0.2 \mathrm{mmol})$, paraformaldehyde $(15.0 \mathrm{mg}, 0.5 \mathrm{mmol})$, 2-bromo-1-phenylethanone ($\mathbf{2 a}, 60 \mathrm{mg}, 0.3 \mathrm{mmol}$) and DMSO $(0.8 \mathrm{~mL})$. The resulting solution was sealed under air and stirred at $140{ }^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the volatiles were removed under vacuum and the residue was purified by column chromatography (neutral aluminum oxide, petroleum ether/ethyl acetate $=40: 1$) to give 3a as white solid; yield: 36.0 mg (81%).

Benzofuran-2-yl(phenyl)methanone (3a, CAS: 6272-40-8) ${ }^{[5]}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.06-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.63(\mathrm{~m}$, 2H), 7.56-7.49 (m, 4H), $7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 184.4$, $156.0,152.3,137.3,132.9,129.5,128.5,128.4,127.0,124.0,123.3,116.5,112.6$; MS (EI) m/z (\%) 222 (100), 194, 145, 105, 77.

Benzofuran-2-yl(4-methoxyphenyl)methanone (3b, CAS: 63157-19-7) ${ }^{[6]}$

The reaction was conducted with methyl 2-bromophenol ($\mathbf{1 a}, 34.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-(4-methoxyphenyl)ethanone ($\mathbf{2 b}, 68.7 \mathrm{mg}$, 0.3 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=40: 1$) to give $\mathbf{3 b}$ as white solid; yield 64%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 182.2,163.7,155.9,153.4,132.0,130.1,127.8$, 127.1, 123.9, 123.1, 114.8, 114.0, 112.5, 55.5; MS (EI) m/z (\%) 252, 221, 135 (100), 107, 77.
[1,1'-Biphenyl]-4-yl(benzofuran-2-yl)methanone (3c, CAS: 82158-42-7) ${ }^{[7]}$

The reaction was conducted with methyl 2-bromophenol (1a, $34.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 1-([1,1'-biphenyl]-4-yl)-2-bromoethanone (2c, 82.5 $\mathrm{mg}, 0.3 \mathrm{mmol}$). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=40: 1$) to give $\mathbf{3 c}$ as white solid; yield 81%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.78-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.68-7.66(\mathrm{~m}$, $3 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 183.8,156.0,152.5,145.7,139.9,135.9,130.1,129.0,128.3,128.3,127.3$ 127.2, 127.1, 124.0, 123.3, 116.2, 112.6; MS (EI) m/z (\%) 298, 221, 181 (100), 152, 77.

The reaction was conducted with methyl 2-bromophenol (1a, $34.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-(4-fluorophenyl)ethanone (2d, 65.1 mg , 0.3 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=40: 1$) to give $\mathbf{3 d}$ as white solid; yield 46%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.14\left(\mathrm{dd}, J_{I}=8.6 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 182.5,165.5(\mathrm{~d}, J=253.3 \mathrm{~Hz}), 155.8,151.9,133.2(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 132.0(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}), 128.3,126.7,123.9,123.2,116.2,115.6(J=21.8 \mathrm{~Hz}), 112.3 ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%) 240$, 145, 123 (100), 95, 89.

Benzofuran-2-yl(4-chlorophenyl)methanone (3e, CAS: 27052-20-6) ${ }^{[5]}$

The reaction was conducted with methyl 2-bromophenol (1a, $34.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-(4-chlorophenyl)ethanone (2e, 70.1 mg , 0.3 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=40: 1$) to give $\mathbf{3 e}$ as white solid; yield 40%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.75-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.64(\mathrm{~m}$, $1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 182.9$, $156.0,152.0,139.4,135.4,130.9,128.9,128.5,126.9,124.1,123.3,116.5,112.5 ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)$ 256, 221, 139 (100), 89, 75.

Benzofuran-2-yl(2-chlorophenyl)methanone (3f) ${ }^{[5]}$

The reaction was conducted with methyl 2-bromophenol ($\mathbf{1 a}, 34.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-(2-chlorophenyl)ethanone ($\mathbf{2 f}, 70.1 \mathrm{mg}$, 0.3 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=40: 1$) to give $\mathbf{3 f}$ as yellow liquid; yield 40%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}$, $4 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 183.8,156.4$, $151.9,137.4,131.8,131.7,130.3,129.3,128.9,127.0,126.6,124.1,123.5,117.7,112.7$; MS (EI) $\mathrm{m} / \mathrm{z}(\%) 256,221,145(100), 111,75$.

Benzofuran-2-yl(3-chlorophenyl)methanone (3g)

The reaction was conducted with methyl 2-bromophenol (1a, $34.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-(3-chlorophenyl)ethanone ($\mathbf{2 g}, 70.1 \mathrm{mg}$, 0.3 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=40: 1$) to give $\mathbf{3 g}$ as white solid; yield 41%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta 182.8,156.1,151.9,138.7,134.8,132.8,129.9,129.4,128.7,127.6,126.8,124.1,123.4$, 116.8, 112.6; MS (EI) m/z (\%) 256, 221, 145 (100), 89, 75; HRMS calcd. for: $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}=257.0369$, found $=257.0365$.

The reaction was conducted with methyl 2-bromophenol (1a, $34.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-(4-(trifluoromethyl)phenyl)ethanone ($\mathbf{2 h}$, $80.1 \mathrm{mg}, 0.3 \mathrm{mmol}$). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=40: 1$) to give $\mathbf{3 h}$ as white solid; yield 60%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 183.1,156.2,151.9,140.1,134.2(\mathrm{q}, J=32.6), 129.8,128.9,126.9,125.6(\mathrm{q}, J=$ 3.6), 125.0, 124.2, 123.4, 117.0, 112.6; MS (EI) m/z (\%) 290, 221, 145 (100), 105, 89.

Benzofuran-2-yl(naphthalen-2-yl)methanone (3i)

The reaction was conducted with methyl 2-bromophenol (1a, $34.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-(naphthalen-2-yl)ethanone ($\mathbf{2 i}, 74.7 \mathrm{mg}$, 0.3 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=40: 1$) to give $\mathbf{3 i}$ as white solid; yield 45%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.10-8.08(\mathrm{~m}, 1 \mathrm{H}), 8.02-7.92(\mathrm{~m}, 3 \mathrm{H}), 7.77-7.75$ $(\mathrm{m}, 1 \mathrm{H}), 7.70-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.52(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 184.2,156.0,152.5,135.5,134.5,132.4,131.1,129.5,128.5,128.5,128.3,127.8$, $127.0,126.9,125.2,124.0,123.3,116.4,112.6 ;$ MS (EI) m/z (\%) 272 (100), 244, 155, 127, 77; HRMS calcd. for: $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=273.0916$, found $=273.0912$.

Benzofuran-2-yl(thiophen-2-yl)methanone (3j) ${ }^{[9]}$

The reaction was conducted with methyl 2-bromophenol (1a, $34.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-(thiophen-2-yl)ethanone ($\mathbf{2} \mathbf{j}, 61.5 \mathrm{mg}, 0.3$ mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=40: 1$) to give $\mathbf{3 j}$ as brown solid; yield 52%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.34-8.33(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.66-7.64(\mathrm{~m}, 1 \mathrm{H})$, $7.51(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 175.0,155.8,152.6,142.3,134.6,134.5,128.4,128.2,127.0,124.0,123.3,114.6,112.4 ; \mathrm{MS}(\mathrm{EI})$ $\mathrm{m} / \mathrm{z}(\%) 228,200,145,111$ (100), 89.

(5-Methylbenzofuran-2-yl)(phenyl)methanone (3k, CAS: 101277-97-8) ${ }^{[10]}$

The reaction was conducted with 2-bromo-4-methylphenol ($\mathbf{1 b}, 37.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-phenylethanone ($\mathbf{2 a}, 60 \mathrm{mg}, 0.3 \mathrm{mmol}$). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=$ $40: 1$) to give $\mathbf{3 k}$ as white solid; yield 51%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.05-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 4 \mathrm{H})$, $7.46(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 184.4,154.6$, $152.4,137.3,133.6,132.8,120.0,129.4,128.5,127.1,122.7,116.3,112.1,21.3 ; \mathrm{MS}$ (EI) m/z (\%) 236, 207 (100), 159, 105, 77.

(5-Ethylbenzofuran-2-yl)(phenyl)methanone (31)

The reaction was conducted with 2-bromo-4-ethylphenol (1c, $40.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-phenylethanone ($\mathbf{2 a}, 60 \mathrm{mg}, 0.3 \mathrm{mmol}$).

The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=$ $40: 1$) to give 31 as yellow liquid; yield 62%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}$, $4 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.31-1.28(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 184.4,154.7,152.4,140.2,137.3,132.8,129.4,129.0,128.5,127.1,121.5$, 116.5, 112.2, 28.7, 16.3; MS (EI) m/z (\%) 250, 235 (100), 207, 105, 77; HRMS calcd. for: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=251.1072$, found $=251.1069$.

Phenyl(5-propylbenzofuran-2-yl)methanone (3m)

The reaction was conducted with 2-bromo-4-propylphenol (1d, $43.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-phenylethanone (2a, $60 \mathrm{mg}, 0.3 \mathrm{mmol}$). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=$ 40:1) to give $\mathbf{3 m}$ as yellow liquid; yield 77%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}$, $5 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) ~ \delta 184.4,154.7,152.4,142.5,137.3,132.8,129.5,129.4,128.5$, 127.0, 122.2, 116.4, 112.1, 37.8, 24.9, 13.7; MS (EI) m/z (\%) 264, 235 (100), 207, 105, 77; HRMS calcd. for: $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=265.1229$, found $=265.1218$.

(5-Methoxybenzofuran-2-yl)(phenyl)methanone (3n, 383159-30-6) ${ }^{[11]}$

The reaction was conducted with 2-bromo-4-methoxyphenol (1e, $40.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-phenylethanone ($\mathbf{2 a}, 60 \mathrm{mg}, 0.3 \mathrm{mmol}$). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=$ $40: 1$) to give $\mathbf{3 n}$ as white solid; yield 60%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.52$ $(\mathrm{m}, 3 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 184.2$, 156.7, 153.0, 151.2, 137.3, 132.8, 129.5, 128.5, 127.5, 118.5, 116.4, 113.2, 104.0, 55.9; MS (EI) m/z (\%) 252 (100), 207, 175, 105, 77.

(5-Fluorobenzofuran-2-yl)(phenyl)methanone (30)

The reaction was conducted with 2-bromo-4-fluorophenol ($\mathbf{1 f}, 38.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-phenylethanone ($2 \mathrm{a}, 60 \mathrm{mg}, 0.3 \mathrm{mmol}$). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=$ $40: 1$) to give $\mathbf{3 o}$ as white solid; yield 78%.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.50(\mathrm{~m}$, $4 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 184.1,159.6(\mathrm{~d}$, $J=239.6 \mathrm{~Hz}), 153.8,152.3,137.0,133.1,129.5,128.6,116.7(\mathrm{~d}, J=26.7 \mathrm{~Hz}), 116.1,116.0$, 113.6 (d, $J=9.5 \mathrm{~Hz}$), 108.2 (d, $J=24.8 \mathrm{~Hz}$); MS (EI) m/z (\%) 240, 223, 163, 105 (100), 77; HRMS calcd. for: $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{FO}_{2}[\mathrm{M}+\mathrm{H}]^{+}=241.0665$, found $=241.0659$.

(5-Chlorobenzofuran-2-yl)(phenyl)methanone (3p, CAS: 100914-68-9) ${ }^{[5]}$

The reaction was conducted with 2-bromo-4-chlorophenol ($\mathbf{1 g}, 41.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-phenylethanone ($\mathbf{2 a}, 60 \mathrm{mg}, 0.3 \mathrm{mmol}$). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=$ 40:1) to give 3p as white solid; yield 68%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.05-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 1 \mathrm{H})$, 7.59-7.53 (m, 3H), 7.47-7.44 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) δ 184.1, 154.2, 153.3,
$136.8,133.1,129.6,129.4,128.6,128.6,128.2,122.6,115.4,113.6 ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%) 256,221$, 179, 105 (100), 77.

2-Benzoylbenzofuran-5-carbonitrile (3q)

The reaction was conducted with 3-bromo-4-hydroxybenzonitrile ($\mathbf{1 h}, 39.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-phenylethanone ($\mathbf{2 a}, 60 \mathrm{mg}, 0.3 \mathrm{mmol}$). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=$ $20: 1$) to give $\mathbf{3 q}$ as white solid; yield 42%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 2 \mathrm{H}), 7.70-7.67$ (m, 1H), 7.59-7.55 (m, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 183.7,157.1,154.0,136.5$, $133.5,131.1,129.5,128.7,128.5,127.6,118.6,115.0,113.9,108.3$; MS (EI) m/z (\%) 247, 230, 190, 105 (100), 77; HRMS calcd. for: $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}=248.0712$, found $=248.0710$.

Phenyl(5-phenylbenzofuran-2-yl)methanone (3r, CAS: 102183-99-3)

The reaction was conducted with 3-bromo-(1,1'-biphenyl)-4-ol (1i, $49.8 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-phenylethanone (2a, $60 \mathrm{mg}, 0.3 \mathrm{mmol}$). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=$ $40: 1$) to give $\mathbf{3 r}$ as white solid; yield 70%.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.71(\mathrm{~m}, 2 \mathrm{H})$, 7.69-7.61 (m, 3H), 7.58-7.54 (m, 3H), $7.47(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 184.3,155.5,152.8,140.8,137.7,137.1,132.9,129.4,128.8,128.5,128.2$, 127.5, 127.4, 127.3, 121.4, 116.6, 112.7; MS (EI) m/z (\%) 298 (100), 221, 165, 105, 77.

(4-Fluorobenzofuran-2-yl)(phenyl)methanone (3s)

The reaction was conducted with 2-bromo-3-fluorophenol ($\mathbf{1} \mathbf{j}, 38.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-phenylethanone ($\mathbf{2 a}, 60 \mathrm{mg}, 0.3 \mathrm{mmol}$). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=$ $40: 1$) to give 3 s as white solid; yield 58%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}$, $3 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 183.9,157.0(\mathrm{~d}$, $J=252.6 \mathrm{~Hz}), 152.0,136.8,133.1,129.4,129.0(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 128.6,116.8,(\mathrm{~d}, J=21.9 \mathrm{~Hz})$, 112.3, $109.1(\mathrm{~d}, J=18.4 \mathrm{~Hz}), 108.7,108.6 ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%) 240,223,163,105$ (100), 77; $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{FO}_{2}[\mathrm{M}+\mathrm{H}]^{+}=241.0665$, found $=241.0659$.

(6-Fluorobenzofuran-2-yl)(phenyl)methanone (3t)

The reaction was conducted with 2-bromo-5-fluorophenol ($\mathbf{1 k}, 38.2 \mathrm{mg}, 0.2 \mathrm{mmol})$, paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-phenylethanone ($\mathbf{2 a}, 60 \mathrm{mg}, 0.3 \mathrm{mmol}$). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=$ $40: 1$) to give $3 t$ as white solid; yield 66%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.05-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 3 \mathrm{H})$, 7.37-7.35 (s, 1H), 7.15-7.11 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 183.9,163.2(\mathrm{~d}, J=$ $246.7 \mathrm{~Hz}), 137.1,133.0,129.4,128.6,128.6,124.1(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 123.4,116.3,116.2,113.2$ (d, $J=24.6 \mathrm{~Hz}), 100.0(\mathrm{~d}, J=26.5 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%) 240,223,163,105(100), 77$; HRMS calcd. for: $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{FO}_{2}[\mathrm{M}+\mathrm{H}]^{+}=241.0665$, found $=241.0660$.

Phenyl(6-(trifluoromethyl)benzofuran-2-yl)methanone (3u)

The reaction was conducted with 2-bromo-5-(trifluoromethyl)phenol (11, $48.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-phenylethanone ($\mathbf{2 a}, 60 \mathrm{mg}, 0.3 \mathrm{mmol}$). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=$ $40: 1$) to give $\mathbf{3 u}$ as white solid; yield 50%.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.85(\mathrm{~m}, 1 \mathrm{H})$, 7.69-7.65 (s, 1H), 7.61-7.54 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 183.9,154.8,154.5$, $136.7,135.1,134.5,133.4,129.6,128.7,123.9,122.6,120.8(\mathrm{q}, J=3.6 \mathrm{~Hz}), 115.1,110.3(\mathrm{q}, J$ $=4.1 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%) 290,262,213,105(100), 77$.

(5,6-Dimethylbenzofuran-2-yl)(phenyl)methanone (3v)

The reaction was conducted with 2-bromo-4,5-dimethylphenol ($\mathbf{1 m}, 40.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-phenylethanone ($\mathbf{2 a}, 60 \mathrm{mg}, 0.3 \mathrm{mmol}$). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=$ $40: 1$) to give $\mathbf{3 v}$ as white solid; yield 68%.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}$, 2H), 7.45-7.42 (m, 3H), $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 184.3$, $155.4,151.9,138.6,137.5,133.0,132.6,129.4,128.4,125.0,122.9,116.6,112.7,20.9,20.0 ; \mathrm{MS}$ (EI) $\mathrm{m} / \mathrm{z}(\%) 250(100), 235,173,105,77$; HRMS calcd. for: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=251.1072$, found $=251.1068$.

Naphtho[2,3-b]furan-2-yl(phenyl)methanone (3w, CAS: 82158-50-7)

The reaction was conducted with 3-bromonaphthalen-2-ol ($\mathbf{1 n}, 44.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-bromo-1-phenylethanone ($\mathbf{2 a}, 60 \mathrm{mg}, 0.3 \mathrm{mmol}$). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=$ $20: 1$) to give $\mathbf{3 w}$ as yellow liquid; yield 52%.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~s}$, 2H), $7.98(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 2 \mathrm{H})$, $7.59-7.54(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 183.8,154.5,151.9,137.4,132.7,130.5$, $130.1,129.4,129.1,128.5,128.2,127,4,125.5,123.3,122.9,115.5,112.8 ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%) 272$ (100), 195, 139, 105, 77; HRMS calcd. for: $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=273.0916$, found $=273.0910$.

Furo[3,2-b]pyridin-2-yl(phenyl)methanone (3x) ${ }^{[12]}$

The reaction was conducted with 2 -chloropyridin-3-ol (10, $25.9 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde $(15.0 \mathrm{mg}, 0.5 \mathrm{mmol})$ and 2-bromo-1-phenylethanone (2a, $60 \mathrm{mg}, 0.3 \mathrm{mmol}$). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=4: 1$) to give $\mathbf{3 x}$ as white solid; yield 32%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.72-8.71(\mathrm{~m}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta 184.1,154.4,149.4,147.9,146.2,136.6,133.4,129.5,128.7,122.3,119.8,116.5 ; \mathrm{MS}$ (EI) m/z (\%) 223, 207, 146, 105 (100), 77.

When 2-bromopyridin-3-ol ($\mathbf{1 p}, 34.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) was used, the reaction yield for $\mathbf{3 x}$ is 70%. When 2-iodopyridin-3-ol ($\mathbf{1 q}, 44.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) was used, the reaction yield for $\mathbf{3 x}$ is 72%.

The reaction was conducted with 3-bromo-[1,1'-biphenyl]-4-ol (1i, $49.8 \mathrm{mg}, 0.2 \mathrm{mmol}$), paraformaldehyde ($15.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 1-([1,1'-biphenyl]-4-yl)-2-bromoethanone (2c, 82.5 $\mathrm{mg}, 0.3 \mathrm{mmol}$). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate $=40: 1$) to give $\mathbf{3 y}$ as white solid; yield 65%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.77(\mathrm{~m}, 2 \mathrm{H})$, 7.74-7.73 (m, 1H), 7.69-7.67 (m, 2H), 7.64-7.62 (m, 3H), 7.52-7.36 (m, 7H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 183.7,155.5,153.0,145.8,140.8,139.8,137.8,135.8,130.1,129.0,128.9,128.3$, $128.2,127.6,127.4,127.3,127.3127 .2,121.5,116.4,112.7$; HRMS calcd. for: $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ $=375.1385$, found $=375.1378$.

Reference

1. Pfizer Inc., Patent, WO2004/74270 A2, 2004.
2. Fuchs, A.; Baur, R.; Schoeder, C.; Sigel, E.; Müller, C. E. Bioorg. Med. Chem. 2014, 22, 6908.
3. Peese, K.; Wang, Z. Y.; Kadow, J. F.; Sivaprakasam, P.; Naidu, B. N. Patent, US2015/232480 A1, 2015.
4. Wagle, D.; Fang, S.; Rho; Taikyun, E.; John J.; Vasan, S.; Ulrich, P. Patent, US6121300 A1, 2000.
5. Xu, W. G.; Li, Q. C.; Cao, C. P.; Zhang, F. L.; Zheng, H. Org. Biomol. Chem. 2015, 13, 6158.
6. Yahiaoui, S.; Peuchmaur, M.; Boumendjel, A. Tetrahedron 2011, 67, 7703.
7. Pautus, S.; Yee, S. W.; Jayne, M.; Coogan, M. P.; Simons, C. Bioorg. Med. Chem. 2006, 14, 3643.
8. Carpenter, L.; Clarke, M. L. Synlett 2011, 65.
9. Shen, Z.; Dornan, P.; Khan, H. A.; Woo, T. K.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 1077.
10. Stroba, A.; Schaeffer, F.; Hindies, V.; Lopez-carcia, L.; Adrican, I.; Froehuer, W.; Hartmann, R. W.; Biondi, R. M.; Engel, M. J. Med. Chem. 2009, 52, 4683.
11. Salome, C.; Narbonne, V.; Ribeiro, N.; Thuaud, F.; Serova, M.; De G. A.; Faivre, S.; Raymond, E.; Desaubry, L. Eur. J. Med. Chem. 2014, 74, 41.
12. Carrr, A.; Florent, J. C.; Bertounesque, E.; Rousselle, P. Adv. Synth. Catal. 2012, 354, 2751.
13. Aswathanarayanappa, C.; Bheemappa, E.; Bodke, Y. D.; Bhovi, V. K.; Ningegowda, Raghu; Shivakumar; Peethambar; Telkar, S. Med. Chem. Res. 2013, 22, 78.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for all products

(

3b

180	170	160	150	140	130	120	110	100	90 $\mathrm{fl}(\mathrm{ppm})$	80	70	60	50	40	30
20	10	0													

3c

थ̈
\cdots
\cdots
-156.0117
-152.4753

135.8948
-130.1302
-128.933
-128.3214
-128.2813
-127.3112
-127.2011
-123.9874
-123.2896
-112.5686

3c

	$\begin{aligned} & \frac{4}{n} \\ & \frac{\infty}{4} \\ & 0 \\ & \frac{0}{1} \\ & \hline 1 \end{aligned}$	$\begin{gathered} \text { 笑 } \\ \text { in } \\ \end{gathered}$	\circ $\stackrel{2}{9}$ \cdots \cdots	

$\begin{aligned} & \text { ั్ర } \\ & \frac{\text { ed }}{1} \end{aligned}$		

3 e

$3 f$

																λ
8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	$\begin{array}{ll} \mathrm{fl}(\mathrm{ppm}) \end{array}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

会
$\stackrel{1}{1}$

3h

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

9
$\stackrel{0}{6}$
$\stackrel{0}{2}$

3i

-184.2455
-156.0374
-152.4692
-135.4839
-134.4981
-132.3925
-131.1269
$=129.5360$
-128.5078
$=128.4797$
$=128.3289$
-127.8468
-127.0499
$\mathbf{1} 26.9047$
-125.1772
-123.9857
-123.2964
-116.4334
112.5761

3i
$\begin{array}{lllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

3j

3k

$\stackrel{\infty}{\stackrel{\infty}{*}}$

1	+	+	,	-	1	1	,	+	1	1	1	1	1	1	1	1	-	1	1
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

ň
O
ín
1

$\begin{aligned} & \mathscr{N} \\ & \underset{\sim}{\tilde{N}} \\ & \hline \end{aligned}$		 す쎄		¢

31

$3 m$

$\stackrel{\text { ® }}{\infty}$
$\stackrel{n}{\stackrel{\sim}{n}} \stackrel{n}{1}$

3n

30

30

$3 q$

$\frac{\infty}{\frac{\infty}{1}}$

$3 q$

[^0]習
1

¢	

[^1]

$3 v$

$\left.\begin{array}{llllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}\right)$

$\frac{\mathbb{N}}{\underset{\sim}{ \pm}}$		
I	\く1	1111

$3 x$

[^0]: $\begin{array}{lllllllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \begin{array}{rlllllllll}90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}\end{array}$

[^1]: $\begin{array}{llllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{f l}{100} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

