Copper-catalyzed radical reaction of 2-azido-*N*-arylacrylamides with 1-(trifluoromethyl) -1,2-benziodoxole and 1-azidyl-1,2benziodoxole

Tonghao Yang, Haizhen Zhu and Wei Yu*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou, 730000, P. R. China Email: yuwei@lzu.edu.cn; Fax: +86-931-8912582;

Supplementary Information

Contents	Page
General methods	2
General experimental procedures	2-4
Characterization data for 2,3-dibromo- <i>N</i> -arylpropanamides and 2- azido- <i>N</i> -arylacrylamides (1)	4-14
Characterization data for compounds 2, 3g, 4 and 5	14-23
References	23-24
Copies of ¹ H NMR and ¹³ C NMR spectra of 2,3-dibromo-N-	25-44
arylpropanamides	
Copies of ¹ H NMR and ¹³ C NMR spectra of substrates 1	45-64
Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra of the products	65-109

General methods

The ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker AM-400 MHz spectrometer and Bruker AM-300 MHz spectrometer with CDCl₃ as the solvent. The chemical shifts in ¹H NMR spectra were determined with Si(CH₃)₄ as the internal standard ($\delta = 0.00$ ppm). The chemical shifts in ¹³C NMR spectra were determined based on the chemical shift of CDCl₃ ($\delta = 77.00$ ppm). The EI-MS spectra were measured on an HP 5988A spectrometer by direct inlet at 70 eV. The high resolution mass spectra (HRMS) were measured on a Bruker micrOTOF QII by ESI. The Fourier transformation infrared spectra (FT-IR) were measured on a NEXUS 670 spectrometer. Melting points were measured on an XT-4 melting point apparatus and were uncorrected. Flash column chromatography was carried out on silica gel (200-300 mesh). 1-(Trifluoromethyl)-1,2-benziodoxole (Togni's reagent) and 1-azidyl-1,2-benziodoxole (Zhdankin's reagent) were prepared according to the reported methods.^{1,2}

General experimental procedures

General procedure for the preparation of 2-azido-*N*-arylacrylamides (compounds 1)

Scheme 1

2-Azido-*N*-arylacrylamides (**1a-1q**) were prepared from arylamines following the procedures given below.

A solution of arylamine (20 mmol) and benzaldehyde (20 mmol, 2 mL) in CH₃OH (250 mL) was stirred at room temperature for 48 h. The reaction flask was then cooled down with an ice-salt bath, and into the flask was added 2.22 g of NaBH₄ (60 mmol). The mixture was stirred at temperature for 4 h. After the reaction finished, the reaction mixture was poured into a saturated aqueous NaHSO₃ solution (150 mL), and was extracted with ethyl acetate (3×50 mL). The combined organic phases were washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure on a rotary evaporator. The obtained crude product was purified by column

chromatography on silica gel to give the secondary arylamine.³

To a stirred solution of secondary arylamine (15 mmol) in 30 mL CCl₄ (held in a 100 mL flask immersed in an ice-salt bath) was added over 30 min a solution of 2,3dibromopropanoyl chloride (15 mmol, 3.75 g) in 10 mL CCl₄. The mixture was stirred at room temperature for 12 h. After that, the mixture was poured into a saturated aqueous NaHCO₃ solution (50 mL), and the aqueous phase was extracted with CH₂Cl₂ (3×30 mL). The combined organic phases were then washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure on a rotary evaporator. The thus obtained crude product was purified by column chromatography on silica gel (with petroleum ether and ethyl acetate (15:1) as effluent unless otherwise specified) to give 2,3-dibromo-*N*-aryllpropanamide.⁴

A solution of 2,3-dibromo-*N*-aryllpropanamide (10 mmol) and NaN₃ (12 mmol, 0.78 g) in DMSO (50 mL) was stirred overnight at room temperature under an argon atmosphere. Then to the solution was injected with a syringe an aqueous NaOH solution (1.5 mL of water containing 0.60 g of NaOH (15 mmol)). 24 h later, the mixture was poured into a saturated aqueous NaHCO₃ solution (50 mL), and was extracted with ethyl acetate (3×50 mL). The combined organic phases were washed with brine (6×100 mL), dried over Na₂SO₄, and concentrated under reduced pressure on a rotary evaporator. The residual was treated with silica gel column chromatography (with petroleum ether and ethyl acetate (15:1) as effluent) to give 1.⁵ Compounds **1r-1t** were prepared from the corresponding starting materials following the same procedure.

General procedure for the reaction of 1 with Togni's reagent

Scheme 2

A mixture of **1** (0.5 mmol), 1-(trifluoromethyl)-1,2-benziodoxole (2.0 mmol, 632 mg) and CuI (0.05 mmol, 9.5 mg) in 5 mL toluene was stirred at 80 °C under an argon atmosphere for 16 h. The reaction mixture was then cooled to room temperature, and was poured into a saturated K_2CO_3 aqueous solution (10 mL). The aqueous phase was extracted with ethyl acetate (3×10 mL), and the combined organic layers were washed sequentially with saturated K_2CO_3 aqueous solution (10 mL) and brine, and then dried over Na₂SO₄. The solvent was evaporated under reduced pressure on a rotary evaporator, and the residual was purified by column chromatography on silica gel (with petroleum and ether ethyl acetate (10:1) as effluent unless otherwise specified) to give product **2** (or **3g**).

General procedure for the reaction of 1 with Zhdankin's reagent

Scheme 3

A mixture of 1 (0.5 mmol), 1-azidyl-1,2-benziodoxole (1.0 mmol, 289 mg) and CuI (0.05 mmol, 9.5 mg) in 5 mL toluene was stirred at 60 °C (in an oil bath) under an argon atmosphere until 1 was consumed completely as indicated by TLC (4-16 h). The reaction mixture was then cooled down to room temperature, and was poured into a saturated aqueous K_2CO_3 solution (10 mL). The aqueous phase was extracted with ethyl acetate (3× 10 mL), and the combined organic layers were washed sequentially with saturated aqueous K_2CO_3 solution (10 mL) and brine, and then dried over Na₂SO₄. The solvent was evaporated under reduced pressure on a rotary evaporator, and the residual was purified by silica gel column chromatography (with petroleum ether and ethyl acetate (5:1) as effluent) to give products 4 and 5.

Characterization data for 2,3-dibromo-N-arylpropanamides, and 2-

azido-N-arylacrylamides

N-Benzyl-2,3-dibromo-N-phenylpropanamide

Yellow solid: m.p. = 86–87 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.37–7.35 (m, 3H), 7.29–7.26 (m, 3H), 7.24–7.22 (m, 2H), 7.11 (d, *J* = 4.0 Hz, 2H), 4.99 (d, *J* = 16.4 Hz, 1H), 4.89 (d, *J* = 16.4 Hz, 1H), 4.31 (dd, *J* = 4.0 Hz, *J* = 12.0 Hz, 1H), 4.18 (dd, *J* = 8.0 Hz, *J* = 12.0 Hz, 1H), 3.54 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 166.7, 140.5, 136.5, 129.8, 128.8, 128.6, 128.5, 127.7, 53.8, 39.4, 30.6; HRMS (ESI): calcd. for C₁₆H₁₅Br₂NO+ H = 397.9573, found 397.9577.

N-Benzyl-2,3-dibromo-N-(o-tolyl)propanamide

White solid: m.p.= 105–106 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.32–7.20 (m, 7H), 7.13–7.06 (m, 1H), 6.95 (d, *J* = 7.6 Hz, 0.6H), 6.77 (d, *J* = 7.6 Hz, 0.4H), 5.65 (d, *J* = 10.0 Hz, 0.4H), 5.47 (d, *J* = 10.0 Hz, 0.6H), 4.41–4.37 (m, 0.45H), 4.22–4.07 (m, 2H), 4.05–4.01 (m, 0.55H), 3.55–3.51 (m, 1H), 3.33 (s, 1.3H), 3.24 (s, 1.7); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 167.4, 167.0, 155.3, 154.8, 136.8, 136.7, 130.3, 130.2, 128.9, 128.8, 128.2, 128.2, 127.4, 120.5, 112.1, 111.6, 55.4, 55.3, 52.2, 52.2, 40.4, 38.7, 31.1, 30.2; HRMS (ESI): calcd. for C₁₇H₁₇Br₂NO+ H = 425.9699, found:

425.9698.

N-Benzyl-2,3-dibromo-N-(m-tolyl)propanamide

Brown solid: m.p.= 90–91 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.31–7.24 (m, 6H), 7.16 (d, *J* = 8.4 Hz, 1H), 6.93 (s, 1H), 6.88 (d, *J* = 8.4 Hz, 1H), 4.94–4.86 (m, 2H), 4.34 (dd, *J* = 4.0 Hz, *J* = 12.0 Hz, 1H), 4.17(dd, *J* = 8.0 Hz, *J* = 12.0 Hz, 1H), 3.54 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 166.3, 140.1, 139.6, 136.3, 129.3, 129.2, 128.8, 128.5, 128.2, 127.3, 125.2, 53.5, 39.3, 30.5, 21.0; HRMS (ESI): calcd. for C₁₇H₁₇Br₂NO+ H = 409.9750, found: 409.9749.

N-Benzyl-2,3-dibromo-N-(p-tolyl)propanamide

Yellow solid: m.p. = 64–66 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.30–7.22 (m, 5H), 7.14 (d, J = 8.4 Hz, 2H), 6.98–6.96 (m, 2H), 4.96 (d, J = 14.0 Hz, 1H), 4.87 (d, J = 14.0 Hz, 1H), 4.34 (dd, J = 4.0 Hz, J = 12.0 Hz, 1H), 4.16 (dd, J = 12.0 Hz, J = 12.0 Hz, 1H), 3.54 (dd, J = 4.0 Hz, J = 8.0 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 166.4, 138.5, 137.5, 136.3, 130.1, 128.6, 128.2, 128.0, 127.3, 63.5, 39.2, 30.5, 20.7; HRMS (ESI): calcd. for C₁₇H₁₇Br₂NO+ H = 409.9750, found: 409.9755.

N-Benzyl-2,3-dibromo-N-(2-methoxyphenyl)propanamide

Green solid: m.p. = 115–116 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.36–7.29 (m, 1H), 7.27–7.19 (m, 5H), 6.99–6.93 (m, 1.55H), 6.86–6.80 (m, 1.45H), 5.65 (d, *J* = 10.4 Hz, 0.4H), 5.41 (d, *J* = 10.4 Hz, 0.6H), 4.45(dd, *J* = 4.0 Hz, *J* = 12.0 Hz, 0.4H), 4.29 (d, *J* = 14.4 Hz, 0.6H), 4.19–4.11 (m, 2H), 3.83 (s, 1.3H), 3.76 (s, 1.7H) 3.55–3.51 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 167.4, 167.0, 155.3, 154.8, 136.8, 136.7, 128.9, 128.8, 128.2, 128.2, 127.4, 120.5, 112.1, 111.6, 55.4, 55.3, 52.2, 52.2, 40.4, 38.7, 31.1, 30.2; HRMS (ESI): calcd. for C₁₇H₁₇Br₂NO₂+ H = 425.9699, found: 425.9698.

N-Benzyl-2,3-dibromo-N-(3-methoxyphenyl)propanamide

White solid: m.p. = 74–75 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.31–7.23 (m, 6H), 6.90–6.88 (m, 1H), 6.70 (d, J = 7.2 Hz, 1H), 6.60 (s, 1H), 4.98 (d, J = 14.0 Hz, 1H), 4.36 (dd, J = 4.0 Hz, J = 12.0 Hz, 1H), 4.17 (dd, J = 9.2 Hz, J = 12.0 Hz, 1H), 3.70 (s, 3H), 3.55 (dd, J = 3.6 Hz, J = 8.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 166.7, 160.3, 141.4, 136.5, 130.4, 128.8, 128.4,

127.6, 120.5, 114.9, 113.9, 55.3, 53.6, 39.4, 30.6; HRMS (ESI): calcd. for $C_{17}H_{17}Br_2NO_2 + H = 425.9699$, found: 425.9704.

N-Benzyl-2,3-dibromo-N-(4-methoxyphenyl)propanamide

Colorless transparent liquid: $R_f = 0.47$ (petroleum ether : ethyl acetate = 5:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.29–7.21 (m, 5H), 6.99 (br, 2H), 6.83 (dd, J = 2.0 Hz, J = 7.6 Hz, 2H), 4.98 (d, J = 14.4 Hz, 1H), 4.87 (d, J = 14.4 Hz, 1H), 4.38 (dd, J = 4.0 Hz, J = 12.0 Hz, 1H), 4.18 (dd, J = 9.2 Hz, J = 11.6 Hz, 1H), 3.78 (s, 3H), 3.53 (dd, J = 4.0 Hz, J = 9.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 166.9, 159.4, 136.5, 132.8, 128.7, 128.4, 127.5, 114.7, 55.3, 53.7, 39.3, 30.6; HRMS (ESI): calcd. for C₁₇H₁₇Br₂NO₂+ H = 425.9699, found: 425.9704.

N-Benzyl-2,3-dibromo-N-(2-fluorophenyl)propanamide

Colorless oil: $R_f = 0.57$ (petroleum ether : ethyl acetate = 5:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.38–7.33 (m, 1.2H), 7.28–7.27 (m, 1.2H), 7.25–7.15 (m, 4.3H), 7.09–7.03 (m, 1.55H), 6.90 (dt, J = 2.0 Hz, J = 7.6 Hz, 0.45H), 5.64 (d, J = 14.4 Hz, 0.5H), 5.43 (d, J = 14.4 Hz, 0.5H), 4.42–4.38 (m, 1H), 4.25–4.14 (m, 2H), 3.57–3.53 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 166.9, 166.8, 158.4 (d, J = 250 Hz), 157.6 (d, J = 250 Hz), 131.9, 130.9, 130.9, 130.8, 128.9, 128.9, 128.8, 128.5, 128.4, 127.7, 127.7, 124.8, 124.7, 124.7, 117.4, 117.2, 117.1, 116.9, 52.8, 52.7, 39.9, 38.2, 30.7, 29.9; HRMS (ESI): calcd. for C₁₆H₁₄Br₂FNO+ H, 413.9499, found 413.9505.

N-Benzyl-2,3-dibromo-N-(3-fluorophenyl)propanamide

Colorless transparent liquid: $R_f = 0.60$ (petroleum ether : ethyl acetate = 5:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.36–7.29 (m, 4H), 7.26–7.21 (m, 2H), 7.08 (dt, J = 2.0 Hz, J = 8.4 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H), 6.85 (d, J = 9.2 Hz, 1H), 4.98 (d, J = 14.4 Hz, 1H), 4.87 (d, J = 14.4 Hz, 1H), 4.31 (dd, J = 4.0 Hz, J = 12.0 Hz, 1H), 4.16 (dd, J = 8.8 Hz, J = 12.0 Hz, 1H), 3.55 (dd, J = 4.0 Hz, J = 9.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 166.4, 162.7 (d, J = 249 Hz), 141.8, 141.7, 136.1, 130.9, 130.9, 128.7, 128.5, 127.8, 124.5, 116.2, 116.1, 116.0, 115.9, 55.6, 39.1, 30.4; HRMS (ESI): calcd. for C₁₆H₁₄Br₂FNO+H = 413.9499, found 413.9500.

N-Benzyl-2,3-dibromo-N-(4-fluorophenyl)propanamide

Yellow oil: $R_f = 0.56$ (petroleum ether : ethyl acetate = 5:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.30–7.27 (m, 3.0 H), 7.22–7.20 (m, 2H), 7.05–7.01 (m, 4.0 H), 4.97 (d, J = 14.4 Hz, 1H), 4.85 (d, J = 14.4 Hz, 1H), 4.28 (dd, J = 4.0 Hz, J = 12.0 Hz, 1H),

4.16 (dd, J = 8.8 Hz, J = 12.0 Hz, 1H), 3.55 (dd, J = 4.0 Hz, J = 9.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 166.7, 162.3 (d, J = 249 Hz), 136.2, 136.2, 130.4, 128.8, 128.6, 128.5, 127.8, 127.7, 116.8, 116.6, 53.7, 39.1, 30.5; HRMS (ESI): calcd. for C₁₆H₁₄Br₂FNO+ H = 413.9499, found 413.9504.

N-Benzyl-2,3-dibromo-N-(2-chlorophenyl)propanamide

Brown solid: m.p. = 131–133 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.54–7.51 (m, 1H), 7.35–7.25 (m, 2.40H), 7.24–7.12 (m, 4.60H), 7.02 (dd, J = 2.0 Hz, J = 7.6 Hz, 0.6H), 6.86 (dd, J = 2.0 Hz, J = 7.6 Hz, 0.4H), 5.84 (d, J = 14.4 Hz, 0.40H), 5.67 (d, J = 14.4 Hz, 0.60H), 4.35-4.31 (m, 0.40H), 4.18–3.99 (m, 2.60H), 3.54 (dd, J = 4.0 Hz, J = 9.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 166.6, 166.5, 136.9, 136.9, 135.9, 135.8, 133.0, 132.9, 132.4, 131.4, 131.0, 130.6, 130.3, 130.2, 129.0, 129.0, 128.4, 128.3, 127.7, 127.6, 127.5, 127.3, 51.8, 51.8, 40.5, 38.1, 30.9, 29.7; HRMS (ESI): calcd. for C₁₆H₁₄Br₂ClNO+ H = 429.9203, found 429.9208.

N-Benzyl-2,3-dibromo-N-(3-chlorophenyl)propanamide

Yellow solid: m.p. = 67–68 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.37–7.33 (m, 1H), 7.31–7.27 (m, 4H), 7.23–7.21 (m, 1H), 7.14 (s, 1H), 6.98 (d, *J* = 7.2 Hz, 1H), 4.99–4.87 (m, 2H), 4.29 (dd, *J* = 3.6 Hz, *J* = 11.6 Hz, 1H), 4.17 (dd, *J* = 8.8 Hz, *J* = 11.6 Hz, 1H), 3.54 (dd, *J* = 3.6 Hz, *J* = 8.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 166.5, 141.5, 135.9, 135.2, 130.7, 129.3, 128.8, 128.7, 128.6, 127.8, 127.0, 53.7, 39.1, 30.4; HRMS (ESI): calcd. for C₁₆H₁₄Br₂ClNO+H = 429.9203, found 429.9209.

N-Benzyl-2,3-dibromo-N-(4-chlorophenyl)propanamide

Yellow oil: $R_f = 0.53$ (petroleum ether : ethyl acetate = 5:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.34–7.26 (m, 5H), 7.22-7.20 (m, 2H), 7.03 (d, J = 8.0 Hz, 2H), 4.96 (d, J = 14.4 Hz, 1H), 4.86 (d, J = 14.4 Hz, 1H), 4.28 (dd, J = 3.6 Hz, J = 11.6 Hz, 1H), 4.16 (dd, J = 8.8 Hz, J = 11.6 Hz, 1H), 3.55 (dd, J = 3.6 Hz, J = 8.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 166.5, 138.8, 136.1, 134.9, 130.0, 128.8, 128.6, 127.8, 53.7, 39.1, 30.5; HRMS (ESI): calcd. for C₁₆H₁₄Br₂ClNO+ H = 429.9203, found 429.9207.

N-Benzyl-2,3-dibromo-N-(3-bromophenyl)propanamide

White solid: m.p. =101–103 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.51–7.49 (m, 1H), 7.31–7.26 (m, 4H), 7.24–7.20 (m, 3H), 7.01 (d, *J* = 8.0 Hz, 1H), 4.28 (dd, *J* =

3.6 Hz, J = 11.6 Hz, 1H), 4.15 (dd, J = 8.8 Hz, J = 11.6 Hz, 1H) (m, 1H), 3.54 (dd, J = 3.6 Hz, J = 8.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 166.3, 141.5, 135.9, 132.0, 131.7, 130.9, 128.7, 128.6, 127.8, 127.4, 122.9, 53.7, 39.1, 30.4; HRMS (ESI): calcd. for C₁₆H₁₄Br₃NO+Na = 499.8477, found 499.8490.

N-Benzyl-2,3-dibromo-N-(4-bromophenyl)propanamide

Yellow oil: $R_f = 0.53$ (petroleum ether : ethyl acetate = 5:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.49 (d, J = 8.8 Hz, 2H), 7.31–7.26 (m, 3H), 7.22–7.20 (m, 2H), 6.97 (d, J = 8.0 Hz, 2H), 4.97 (d, J = 14.4 Hz, 1H), 4.85 (d, J = 14.4 Hz, 1H), 4.27(dd, J = 3.6 Hz, J = 11.6 Hz, 1H), 4.16(dd, J = 8.8 Hz, J = 11.6 Hz, 1H), 3.55 (dd, J = 3.6 Hz, J = 8.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 166.4, 139.3, 136.1, 133.0, 130.3, 128.8, 128.6, 127.8, 123.0, 53.6, 39.1, 30.5; HRMS (ESI): calcd. for C₁₆H₁₄Br₃NO+H = 473.8698, found 473.8703.

N-Benzyl-2,3-dibromo-N-(3-iodophenyl)propanamide

White solid: m.p. = 101–103 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.72–7.69 (m, 1H), 7.50 (s, 1H), 7.33–7.29 (m, 3H), 7.26–7.20 (m, 2H), 7.10–7.00 (m, 2H), 4.90 (br, 2H), 4.28(dd, *J* = 3.6 Hz, *J* = 11.6 Hz, 1H), 4.16(dd, *J* = 8.8 Hz, *J* = 11.6 Hz, 1H), 3.56 (dd, *J* = 3.6 Hz, *J* = 8.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 166.5, 141.5, 138.0, 136.0, 131.0, 128.8, 128.6, 127.8, 94.3, 53.8, 39.2, 30.5; HRMS (ESI): calcd. for C₁₆H₁₄Br₂INO+H = 521.8560, found 521.8564.

N-Benzyl-2,3-dibromo-N-(4-iodophenyl)propanamide

Yellow oil: $R_f = 0.53$ (petroleum ether : ethyl acetate = 5:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.69 (d, J = 8.8 Hz, 1.45H), 7.37–7.35 (m, 0.90H), 7.31–7.26 (m, 3.0H), 7.24–7.20 (m, 1.90H), 7.10 (s, 0.45H), 6.83 (d, J = 8.0 Hz, 1.30H), 5.01–4.83 (m, 2H), 4.33–4.26 (m, 1H), 4.20–4.13 (m, 1H), 3.57–3.53 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 166.4, 140.1, 139.1, 136.1, 129.8, 128.8, 128.6, 128.5, 127.8, 127.6, 94.7, 53.8, 53.6, 39.4, 39.2, 30.6, 30.5; HRMS (ESI): calcd. for C₁₆H₁₄Br₂INO+H = 521.8560, found 521.8555.

2,3-Dibromo-N-methyl-N-phenylpropanamide

Colorless transparent liquid: $R_f = 0.47$ (petroleum ether : ethyl acetate = 5:1); effluent for silica gel chromatography: petroleum ether and ethyl acetate (20:1).¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.51–7.41 (m, 3H), 7.35 (d, *J* = 7.6 Hz, 2H), 4.37–4.33 (m, 1H), 4.12–4.07 (m, 1H), 3.52 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 3.35 (s, 3H); ¹³C

NMR (CDCl₃, 100 MHz, δ ppm): 166.4, 142.0, 129.9, 128.6, 127.3, 38.9, 38.0, 30.4; HRMS (ESI): calcd. for C₁₀H₁₁Br₂NO+ H = 319.9280, found: 319.9285.

2,3-Dibromo-N,N-diphenylpropanamide

Yellow oil; $R_f = 0.47$ (petroleum ether : ethyl acetate = 5:1). Effluent for silica gel chromatography: petroleum ether and ethyl acetate (40:1). ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.49–7.40 (m, 5H), 7.37–7.30 (m, 4H), 7.24–7.20 (m, 1H), 4.54 (dd, *J* = 4.0 Hz, *J* = 11.6 Hz, 1H), 4.43 (dd, *J* = 4.0 Hz, *J* = 11.6 Hz, 0.20H), 4.20 (dd, *J* = 9.2 Hz, *J* = 11.6 Hz, 1H), 3.90 (dd, *J* = 9.2 Hz, *J* = 11.6 Hz, 0.2H), 3.66 (dd, *J* = 4.4 Hz, *J* = 10.0 Hz, 0.2H), 3.59 (dd, *J* = 4.4 Hz, *J* = 10.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 169.8, 166.8, 141.9, 141.2, 130.1, 129.0, 128.7, 126.7, 126.0, 40.8, 40.1, 30.6, 29.5; HRMS (ESI): calcd. for C₁₅H₁₃Br₂NO+H = 381.9437, found 381.9452.

2,3-Dibromo-1-(3,4-dihydroquinolin-1(2H)-yl)propan-1-one

Light yellow liquid; $R_f = 0.56$ (petroleum ether : ethyl acetate= 5:1). Effluent for silica gel chromatography: petroleum ether and ethyl acetate (20:1). ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.36 (d, J = 7.2 Hz, 1H), 7.27–7.24 (m, 3H), 5.00 (dd, J = 3.6 Hz, J = 11.6 Hz, 1H), 4.50–4.48 (m, 0.30H), 4.19–3.91 (m, 2.50H), 3.75–3.67 (m, 1.40H), 3.62–3.59 (m, 0.80H), 2.79–2.69 (m, 2H), 2.09–1.92 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 166.8, 138.1, 135.0, 128.7, 126.8, 126.7, 123.7, 43.5, 40.0, 30.9, 29.8, 26.2, 23.6; HRMS (ESI): calcd. for C₁₂H₁₃Br₂NO+H = 345.9437, found 345.9433.

2-Azido-N-benzyl-N-phenylacrylamide (1a)

Yellow oil: $R_f = 0.45$ (petroleum ether : ethyl acetate = 5:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.30–7.20 (m, 8H), 7.01–6.99 (m, 2H), 4.97 (s, 2H), 4.92 (d, J = 2.0 Hz, 1H), 4.88 (d, J = 2.0 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm CDCl₃): 164.0, 141.9, 140.0, 136.4, 129.1, 128.4, 128.3, 127.5, 127.4, 126.9, 106.4, 53.4; FT-IR (KBr, cm⁻¹): 2107, 1652.5; HRMS (ESI): calcd. for C₁₆H₁₄N₄O+H = 279.1248, found 279.1245.

2-Azido-N-benzyl-N-(4-fluorophenyl)acrylamide (1b)

Yellow solid: m.p. = 41–42 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.27–7.24 (m, 3H) , 7.20–7.18 (m, 2H), 6.96 (d, J = 6.4 Hz, 4H), 4.97 (s, 1H), 4.93 (s, 2H), 4.92 (d, J = 2.0 Hz, 1H) ; ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 164.0, 161.4 (d, J = 247 Hz), 139.9, 137.7, 136.1, 128.9, 128.8, 128.6, 128.5, 128.4, 127.7, 116.1, 115.9, 106.4, 53.5; FT-IR (KBr, cm⁻¹): 2108.8, 1642.4; ESI-HRMS: m/z calcd for C₁₆H₁₃FN₄O+H

= 297.1152, found 297.1143.

2-Azido-*N*-benzyl-*N*-(4-chlorophenyl)acrylamide (1c)

Colorless oil: $R_f = 0.45$ (petroleum ether : ethyl acetate = 5:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.29–7.24 (m, 5H), 7.20–7.18 (m, 2H), 6.93 (d, J = 8.8 Hz, 2H), 5.00 (d, J = 2.0 Hz, 1H), 4.94 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 164.0, 140.5, 140.0, 136.2, 133.4, 129.4, 128.6, 128.5, 128.4, 127.7, 106.6, 53.5; FT-IR (KBr, cm⁻¹): 2107.8, 1652.4; ESI-HRMS: m/z calcd for C₁₆H₁₃ClN₄O+H = 313.0856, found 313.0849.

2-Azido-N-benzyl-N-(4-bromophenyl)acrylamide (1d)

Colorless oil: $R_f = 0.53$ (petroleum ether : ethyl acetate = 5:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.38 (d, J = 8.4 Hz, 2H), 7.25–7.18 (m, 3H), 7.18–7.16(m, 2H), 6.87 (d, J = 8.8 Hz, 2H), 5.01 (d, J = 2.4 Hz, 1H), 4.95 (d, J = 2.0 Hz, 1H), 4.94 (s, 2H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 152.7, 137.2, 135.0, 134.0, 133.7, 133.6, 132.5, 129.3, 128.4, 126.9, 117.7, 116.4, 113.6, 46.7; FT-IR (KBr, cm⁻¹): 2109.8, 1646.4; ESI-HRMS: m/z calcd for C₁₆H₁₃BrN₄O+H = 357.0351, found 357.0344.

2-Azido-N-benzyl-N-(4-iodophenyl)acrylamide (1e)

Yelow solid: m.p. = 49–51 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.59 (d, J = 8.4 Hz, 2H), 7.25–24 (m, 3H), 7.20–7.18 (m, 2H), 6.75 (d, J = 8.8 Hz, 2H), 5.00 (d, J = 2.0 Hz, 1H), 5.00–4.93 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 163.8, 141.7, 139.8, 138.3, 136.1, 128.8, 128.5, 128.4, 127.7, 106.8, 92.7, 53.4; FT-IR (KBr, cm⁻¹): 2105.6, 1649.1; ESI-HRMS: m/z calcd for C₁₆H₁₃IN₄O+H = 405.0212, found 405.0207.

2-Azido-N-benzyl-N-(p-tolyl)acrylamide (1f)

Yellow solid: m.p. = 36-37 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.27–7.20 (m, 5H), 7.07 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.9 Hz, 2H), 4.94 (s, 2H), 4.89–4.88 (m, 2H), 2.31 (s, 3H) ; ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 164.0, 139.9, 139.2, 137.4, 136.5, 129.7, 128.4, 128.3, 126.7, 106.1, 53.4, 20.8; FT-IR (KBr, cm⁻¹): 2107.3, 1651.4; ESI-HRMS: m/z calcd for C₁₇H₁₆N₄O+H = 293.1400, found 293.1397.

2-Azido-N-benzyl-N-(4-methoxyphenyl)acrylamide (1g)

Colorless oil: $R_f = 0.30$ (petroleum ether : ethyl acetate = 5:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.28–7.25 (m, 3H), 7.22–7.20 (m, 2H), 6.88 (d, J = 8.8 Hz, 2H), 6.78 (d, J = 8.8 Hz, 2H), 4.92 (s, 2H), 4.89 (m, 2H), 3.78 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 164.3, 158.8, 140.2, 136.6, 134.6, 128.7, 128.5, 128.4, 127.6, 114.3, 106.0, 55.4, 53.7; FT-IR (KBr, cm⁻¹): 2105.9, 1650.6; ESI-HRMS: m/z calcd for C₁₇H₁₆N₄O₂+H = 309.1346, found 309.1351.

2-Azido-N-benzyl-N-(3-fluorophenyl)acrylamide (1h)

Colorless oil: $R_f = 0.53$ (petroleum ether : ethyl acetate = 5:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.28–7.25 (m, 4H), 7.22–7.16 (m, 2H), 6.97 (dt, J = 9.6 Hz, J = 2.4 Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 6.76 (dt, J = 3.6 Hz, J = 8.0 Hz, 1H), 5.00 (d, J = 2.4 Hz, 1H), 4.99–4.97 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 164.0, 162.6 (d, J = 247 Hz), 143.6, 143.5, 140.5, 136.2, 130.4, 128.6, 128.4, 127.7, 122.9, 122.9, 114.8, 114.6, 114.4, 114.2, 106.7, 53.6; FT-IR (KBr, cm⁻¹): 2111.8, 1657.1; ESI-HRMS: m/z calcd for C₁₆H₁₃FN₄O+H = 297.1146, found. 297.1147.

2-Azido-N-benzyl-N-(3-chlorophenyl)acrylamide (1i)

Yellow solid: m.p. = 46–47 °C; ¹H NMR(CDCl₃, 400 MHz, δ ppm): 7.26–7.22 (m, 5H), 7.19–7.17 (m, 2H), 6.93–6.91 (m, 2H), 4.99 (d, *J* = 2.0 Hz, 1H), 4.93–4.92 (m, 3H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 163.9, 140.5, 140.0, 136.2, 133.4, 129.4, 128.6, 128.5, 128.4, 127.7, 106.6, 53.5; FT-IR (KBr, cm⁻¹): 2108.6, 1655.9; ESI-HRMS: m/z calcd for C₁₆H₁₃ClN₄O+H = 313.0856, found 313.0849.

2-Azido-N-benzyl-N-(3-bromophenyl)acrylamide (1j)

Yellow solid: m.p. = 42–43 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.43–7.41 (m, 1H), 7.33–7.28 (m, 3H), 7.26–7.22 (m, 3H), 7.17 (t, *J* = 8.0 Hz, 1H), 6.95–6.93 (m, 3H), 5.07 (d, *J* = 2.0 Hz, 1H), 4.99 (d, *J* = 2.0 Hz, 1H), 4.97 (s, 2H) ; ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 163.9, 145.4, 140.0, 136.1, 130.7, 130.3, 130.0, 128.6, 128.4, 127.7, 125.9, 122.5, 106.9, 53.2; FT-IR (KBr, cm⁻¹): 2107.8, 1655.2; ESI-HRMS: m/z calcd for C₁₆H₁₃BrN₄O+H = 357.0351, found 357.0344.

2-Azido-N-benzyl-N-(3-iodophenyl)acrylamide (1k)

Colorless oil: $R_f = 0.50$ (petroleum ether : ethyl acetate = 5:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.59 (dt, J = 7.6 Hz, 1.6 Hz, 1H), 7.41 (t, J = 2.0 Hz 1H), 7.29–27 (m, 3H), 7.20–7.18 (m, 2H), 7.01 (t, J = 8.0 Hz, 1H), 6.95–6.92 (m, 1H), 5.04 (d, J = 2.0 Hz, 1H), 4.97 (d, J = 2.0 Hz, 1H), 4.94 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 163.8, 143.2, 139.9, 136.6, 136.1, 135.8, 130.5, 128.5, 128.4, 127.7, 126.5, 106.9, 93.8, 53.6; FT-IR (KBr, cm⁻¹): 2104.9, 1654.5; ESI-HRMS: m/z calcd for C₁₆H₁₃IN₄O+H = 405.0212, found 405.0207.

2-Azido-N-benzyl-N-(m-tolyl)acrylamide (11)

Yellow solid: m.p. = 36-37 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.27–7.21 (m, 5H), 7.15 (t, J = 7.6 Hz, 1H), 7.05 (d, J = 7.6 Hz, 1H), 6.83 (s, 1H), 6.78 (d, J = 7.6 Hz, 1H), 4.95 (s, 2H), 4.91 (d, J = 1.6 Hz, 1H), 4.89 (d, J = 1.6 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 164.0, 141.9, 139.9, 139.2, 136.5, 128.9, 128.4, 128.3, 127.4, 127.4, 124.0, 106.3, 53.5, 21.1; FT-IR (KBr, cm⁻¹): 2109.5, 1652.6; ESI-HRMS: m/z calcd for C₁₇H₁₆N₄O+H = 293.1397, found 293.1402;

2-Azido-N-benzyl-N-(3-methoxyphenyl)acrylamide (1m)

Colorless oil: $R_f = 0.44$ (petroleum ether : ethyl acetate = 5:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.21–7.29 (m, 5H), 7.18 (t, J = 8.0 Hz, 1H), 6.79 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 6.62–6.59 (m, 1H), 6.53 (t, J = 2.0 Hz, 1H), 4.95 (s, 3H), 4.90 (d, J = 2.0 Hz, 1H), 3.70 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 164.0, 160.0, 143.2, 140.1, 136.6, 129.8, 128.5, 128.4, 127.5, 119.4, 113.0, 112.9, 106.3, 55.3, 53.5; FT-IR (KBr, cm⁻¹): 2109.6, 1653.8; ESI-HRMS: m/z calcd for C₁₇H₁₆N₄O₂+H = 309.1346, found 309.1349.

2-Azido-N-benzyl-N-(2-fluorophenyl)acrylamide (10)

Colorless oil: $R_f = 0.53$ (petroleum ether : ethyl acetate = 5:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.25–7.21 (m, 6.60H), 7.07–7.01 (m, 2.20H), 6.98–6.94 (m, 1.10H), 5.94 (s, 0.10H), 5.61 (s, 0.10H), 5.19 (d, J = 1.6 Hz, 1H), 4.88 (s, 2H), 4.68 (d, J = 1.6 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 164.5, 157.4 (d, J = 248 Hz), 139.6, 136.1, 129.6, 129.6, 129.3, 128.8, 128.5, 124.8, 124.6, 116.7, 116.5, 105.9, 52.7; FT-IR (KBr, cm⁻¹): 2111.6, 1662.2; ESI-HRMS: m/z calcd for C₁₆H₁₃FN₄O+H = 297.1152, found 207.1143.

2-Azido-N-benzyl-N-(2-chlorophenyl)acrylamide (1p)

Brown solid:m.p.= 38-39 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.44-7.41 (m,

1.10H), 7.26–7.23 (m, 4.40H), 7.23–7.19 (m, 2.20H), 7.14–7.10 (m, 1.10H), 6.84–6.82 (m, 1.10H), 5.96 (d, J = 1.6 Hz, 0.10H), 5.59 (s, 0.10H), 5.56 (d, J = 2.0 Hz, 0.20H), 5.48 (d, J = 14.4 Hz, 0.85H), 4.82 (s, 2H), 4.36 (d, J = 14.4 Hz, 1.0H), 4.23(d, J = 14.4 Hz, 0.10H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 165.5, 164.1, 139.3, 138.9, 135.8, 132.4, 131.5, 130.5, 130.4, 130.4, 129.7, 129.4, 129.20, 128.4, 127.7, 127.4, 122.2, 121.5, 105.7, 52.0, 51.7; FT-IR (KBr, cm⁻¹): 2108.7, 1656.3; ESI-HRMS: m/z calcd for C₁₆H₁₃ClN₄O+H = 313.0856, found 313.0849.

2-Azido-N-benzyl-N-(o-tolyl)acrylamide (1p)

Colorless oil: $R_f = 0.53$ (petroleum ether : EtOAc = 5:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.26–7.24 (m , 3H), 7.21–7.19 (m, 4H), 7.10–7.08 (m, 1H), 6.81 (d, *J* = 7.6 Hz, 1H), 5.21 (d, *J* = 14.0 Hz, 1H), 4.83 (d, *J* = 1.6 Hz 2H), 4.50 (d, *J* = 14.0 Hz, 1H), 2.06 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 164.1, 140.3, 140.0, 136.1, 135.5, 131.3, 129.4, 129.0, 128.3, 128.2, 127.7, 126.6, 105.8, 52.9, 17.5; FT-IR (KBr, cm⁻¹): 2107.2, 1648.8; ESI-HRMS: m/z calcd for C₁₇H₁₆N₄O+H = 293.1397, found 293.1394.

2-Azido-N-benzyl-N-(2-methoxyphenyl)acrylamide (1q)

Green solid: m.p. = 54–56 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.25–7.19 (m, 6H), 6.92 (dd, J = 7.6 Hz, 2.0 Hz, 1H), 6.86–6.82 (m, 2H), 5.10 (d, J = 14.4 Hz, 1H), 4.74 (s, 1H), 4.69 (d, J = 14.4 Hz, 1H), 4.55 (s, 1H), 3.69 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 165.2, 154.3, 139.3, 136.6, 131.1, 131.9, 128.9, 128.8, 128.1, 128.1, 127.3, 120.7, 111.8, 105.0, 55.3, 52.5; FT-IR (KBr, cm⁻¹): 2108.4, 1653.5; ESI-HRMS: m/z calcd for C₁₇H₁₆N₄O₂+H = 309.1346, found 309.1351.

2-Azido-*N*-methyl-*N*-phenylacrylamide (1r)

Yellow oil: $R_f = 0.53$ (petroleum ether : ethyl acetate = 5:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.38 (t, J = 7.2 Hz, 2H), 7.30 (t, J = 7.2 Hz, 1H), 7.17 (d, J = 7.6 Hz, 2H), 4.90 (s, 2H), 3.38 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 164.1, 143.6, 139.9, 129.4, 127.4, 126.0, 106.4, 37.8; FT-IR (KBr, cm⁻¹): 2112.9, 1655.1; ESI-HRMS: m/z calcd for C₁₀H₁₀N₄O+H = 309.1346, found. 309.1351.

N₃ N Ph

2-Azido-N,N-diphenylacrylamide (1s)

Yellow oil: $R_f = 0.53$ (petroleum ether : ethyl acetate = 5:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.36–7.34 (m, 4H), 7.28–7.21 (m, 2.50H), 7.21–7.17 (m, 3.50H), 6.13 (d, J = 2.4 Hz, 0.10H), 5.79 (d, J = 2.0 Hz, 0.10H), 5.15 (d, J = 2.0 Hz, 0.90H), 5.03

(d, J = 2.0 Hz, 0.90H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 164.2, 142.5, 140.6, 129.2, 129.1, 127.1, 127.0, 126.8, 107.6; FT-IR (KBr, cm⁻¹): 2105.3, 1666.8; ESI-HRMS: m/z calcd for C₁₅H₁₂N₄O+H = 265.1084, found 265.1083.

2-Azido-1-(3,4-dihydroquinolin-1(2*H*)-yl)prop-2-en-1-one (1t)

Colorless oil: $R_f = 0.45$ (petroleum ether : ethyl acetate = 5:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.21 (d, J = 6.8 Hz, 1H), 7.16–7.11 (m, 3H), 5.07 (d, J = 2.4 Hz, 1H), 5.04 (d, J = 2.0 Hz, 1H), 3.83 (t, J = 6.4 Hz, 2H), 2.78 (t, J = 6.4 Hz, 2H), 2.01 (q, J = 6.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 163.7, 140.8, 138.1, 131.6, 128.5, 126.1, 125.5, 123.7, 106.2, 44.3, 26.6, 23.7; FT-IR (KBr, cm⁻¹): 2109.4, 1647.2; ESI-HRMS: m/z calcd for C₁₂H₁₂N₄O+H = 229.1084, found 229.1085.

Characterization data for compounds 2, 3g, 4 and 5

1-Benzyl-3-(2,2,2-trifluoroethyl)quinoxalin-2(1*H*)-one (2a)

White solid: m.p. = 109–112 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.90 (dd, J = 8.0 Hz, 1.6 Hz, 1H), 7.47 (dt, J = 1.6 Hz, 8.0 Hz, 1H), 7.33–7.22 (m, 7H), 5.51 (s, 2H), 3.90 (q, J = 10.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 154.6, 150.7, 134.8, 132.7, 132.7, 131.2, 130.7, 129.0, 127.8, 126.8, 125.1, 124.0, 114.5, 46.2, 37.4 (q, J = 30 Hz); ¹⁹F NMR (CDCl₃, 282 MHz, δ ppm): -63.66 (dt, J= 3.0, 12.0 Hz); ESI-HRMS: m/z calcd for C₁₇H₁₃F₃N₂O+H = 319.1058, found 319.1051.

1-Benzyl-6-fluoro-3-(2,2,2-trifluoroethyl)quinoxalin-2(1*H*)-one (2b)

White solid: m.p. = 108–110 °C (recrystallized from petroleum ether and CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.61–7.59 (m, 1H), 7.34–7.27 (m, 3H), 7.24–7.20 (m, 4H), 5.50 (s, 2H), 3.91 (q, *J* = 10.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 158.7 (d, *J* = 253 Hz), 154.3, 152.3, 152.2, 134.6, 133.2, 133.1, 129.4, 129.3, 129.1, 128.0, 126.8, 126.7, 126.3, 123.6, 119.0, 118.9, 116.1, 115.9, 115.8, 115.7, 46.4, 37.5 (q, *J* = 30 Hz); ¹⁹F NMR (CDCl₃, 377 MHz, δ ppm): -62.81 (t, *J* = 10.0Hz, 3F), -118.03–-118.08 (m, 1F); ESI-HRMS: m/z calcd for C₁₇H₁₂F₄N₂O+H = 337.0964, found 337.0956.

1-Benzyl-6-chloro-3-(2,2,2-trifluoroethyl)quinoxalin-2(1*H*)-one (2c)

Yellow solid: m.p. = 149–151 °C (recrystallized from petroleum ether and CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.90 (d, *J* = 2.0 Hz, 1H), 7.82 (d, *J* = 2.0 Hz, 0.05H), 7.41 (dd, J = 2.4 Hz, J = 8.8 Hz, 1 H), 7.34–7.26 (m, 3H), 7.20–7.19 (m, 3H), 5.47 (s, 2H), 4.67 (s, 0.10H), 3.89 (q, J = 10.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 154.2, 152.1, 134.5, 133.1, 131.4, 131.1, 130.0, 129.4, 129.0, 128.0, 126.7, 126.3, 123.6, 115.7, 46.3, 37.6 (q, J = 30 Hz); ¹⁹F NMR (CDCl₃, 377 MHz, δ ppm): -62.81(t, J = 12.0Hz); ESI-HRMS: m/z calcd for C₁₇H₁₂ClF₃N₂O+H = 353.0669, found 353.0659.

1-Benzyl-6-bromo-3-(2,2,2-trifluoroethyl)quinoxalin-2(1*H*)-one (2d)

White solid: m.p. = 118–121 °C (recrystallized from petroleum ether and CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.06 (d, J = 2.0 Hz, 1H), 7.54 (dd, J = 2.0 Hz, 9.2 Hz, 1H), 7.30 (m, 3H), 7.20–7.19 (m, 2H), 7.14 (d, J = 8.8 Hz, 1H), 5.47 (s, 2H), 3.90 (q, J = 10.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 154.2, 152.1, 152.0, 134.4, 134.8, 133.4, 133.0, 131.8, 129.1, 128.6, 128.5, 128.0, 126.7, 126.3, 123.5, 116.6, 116.0, 46.3, 37.4 (q, J = 30 Hz); ¹⁹F NMR (CDCl₃, 282 MHz, δ ppm): -63.53 (t, J = 12.4 Hz); ESI-HRMS: m/z calcd for C₁₇H₁₂F₃IN₂O+H = 445.0025, found 445.0021.

1-Benzyl-6-iodo-3-(2,2,2-trifluoroethyl)quinoxalin-2(1*H*)-one (2e)

Brown solid: m.p. = 143–146 °C (recrystallized from petroleum ether and CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.25 (d, *J* = 1.6 Hz, 0.80H), 8.18 (d, *J* = 1.6 Hz, 0.2H), 7.72–7.66 (m, 1H), 7.33–7.27 (m, 3.0H), 7.21–7.18 (m, 2.0H), 7.02–6.98 (m, 1.20H), 5.46 (s, 2H), 4.67 (s, 0.2H), 3.89 (q, *J* = 10.4 Hz, 1.60H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 157.9, 154.2, 153.2, 151.8, 151.8, 139.5, 139.1, 139.0, 138.7, 134.4, 133.6, 132.5, 129.1, 128.0, 128.0, 126.8, 126.7, 116.3, 116.2, 86.7, 46.2, 46.1, 37.0 (q, *J* = 30 Hz); ¹⁹F NMR (CDCl₃, 282 MHz, δ ppm) -63.54 (t, *J* = 12.0 Hz); ESI-HRMS: m/z calcd for C₁₇H₁₂F₃IN₂O+H = 445.0025, found 445.0021.

1-Benzyl-6-methyl-3-(2,2,2-trifluoroethyl)quinoxalin-2(1H)-one (2f)

Yellow solid: m.p. = 132–135 °C (recrystallized from petroleum ether and CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.71 (s, 1H), 7.31–7.27 (m, 4H), 7.22–7.20 (m, 2H), 7.16 (d, *J* = 8.4 Hz, 1H), 5.49 (s, 2H), 3.89 (q, *J* = 10.4 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 154.5, 150.5, 150.5, 135.0, 133.9, 132.6, 132.3, 130.5, 130.4, 128.9, 127.8, 126.9, 126.5, 114.3, 46.1, 37.5 (q, *J* = 30 Hz), 20.5; ¹⁹F NMR (CDCl₃, 377 MHz, δ ppm): -62.82 (t, *J* = 12.8 Hz); ESI-HRMS: m/z calcd for C₁₈H₁₅F₃N₂O+H = 333.1215, found 337.1207.

1-Benzyl-3-(2,2,2-trifluoroethyl)-1,4-diazaspiro[4.5]deca-3,6,9-triene-2,8-dione

(3g)

White solid: m.p. = 158–160 °C. Effluent for silica gel chromatography: petroleum ether and ethyl acetate (1:1). ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.28–7.26 (m, 3H), 7.18–7.16 (m, 2H), 6.33 (d, *J* = 10.0 Hz, 2H), 5.96 (d, *J* = 10.0 Hz, 2H), 4.53 (s, 2H), 3.60 (q, *J* = 9.6 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 183.6, 165.3, 165.3, 162.6, 141.7, 135.4, 132.3, 128.8, 128.8, 128.4, 125.3, 122.5, 82.2, 45.2, 33.5 (q, *J* = 30 Hz); ¹⁹F NMR (CDCl₃, 377 MHz, δ ppm): -62.85 (t, *J* = 12.8 Hz); ESI-HRMS: m/z calcd for C₁₇H₁₃F₃N₂O₂+H = 335.1007, found 335.1001.

1-Benzyl-5-fluoro-3-(2,2,2-trifluoroethyl)quinoxalin-2(1*H*)-one (2h-1)

White solid: m.p. = 136–138 °C (recrystallized from petroleum ether and CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.45–7.39 (m, 1H), 7.34–7.26 (m, 3H), 7.22–7.20 (m, 2H), 7.08–7.05 (m, 2H), 5.49 (s, 2H), 3.94 (q, *J* = 10.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 158.7 (d, *J* = 257 Hz), 154.4, 150.7, 134.5, 134.4, 131.7, 131.6, 129.0, 128.0, 126.8, 126.8, 126.3, 123.5, 122.7, 122.6, 110.4, 110.2, 110.2, 46.6, 37.6 (q, *J* = 30 Hz); ¹⁹F NMR (CDCl₃, 377 MHz, δ ppm): -62.83 (t, *J* = 12.0Hz, 3F), -102.81–-102.85 (m, 1F); ESI-HRMS: m/z calcd for C₁₇H₁₂F₄N₂O+H = 337.0959, found 337.0964.

1-Benzyl-7-fluoro-3-(2,2,2-trifluoroethyl)quinoxalin-2(1*H*)-one (2h-2)

White solid: m.p. = 138–140 °C (recrystallized from petroleum ether and CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.88 (dd, *J* = 6.0 Hz, *J* = 8.8 Hz, 1H), 7.35–7.26 (m, 3H), 7.24–7.22 (m, 2H), 7.04 (dt, *J* = 2.4 Hz, *J* = 8.4 Hz, 1H), 6.96 (dd, *J* = 2.4 Hz, *J* = 10.0 Hz, 1H), 5.44 (s, 2H), 3.87 (q, *J* = 10.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 165.0, 162.5, 154.5, 149.5, 134.4, 134.3, 132.7, 132.6, 129.5, 129.1, 128.6, 128.4, 128.1, 126.8, 126.4, 123.7, 112.2, 111.9, 101.6, 101.4, 46.5, 37.4 (q, *J* = 30 Hz); ¹⁹F NMR (CDCl₃, 377 MHz, δ ppm): -62.96 (t, *J* = 11.6 Hz, 3F), -105.24–-105.30 (m, 1F); ESI-HRMS: m/z calcd for C₁₇H₁₂F₄N₂O+H = 305.0896, found 305.0900.

1-Benzyl-5-chloro-3-(2,2,2-trifluoroethyl)quinoxalin-2(1*H*)-one (2i-1)

Yellow solid; m.p. = 134–136 °C (recrystallized from petroleum ether and CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.42–7.35 (m, 2.10H), 7.34–7.27 (m, 3.15H), 7.22–7.17 (m, 3.15H), 5.94 (s, 2.10H), 4.74 (s, 0.10H), 3.94 (q, *J* = 10.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 154.2, 151.0, 151.0, 135.5, 134.5, 134.2, 131.1, 129.4, 129.0, 127.9, 126.7, 126.7, 126.3, 125.0, 124.9, 123.6, 113.5, 113.4, 46.5, 37.6 (q, *J* = 30 Hz); ¹⁹F NMR (CDCl₃, 282 MHz, δ ppm): -63.55 (t, *J* = 12.0 Hz); ESI- HRMS: m/z calcd for $C_{17}H_{12}ClF_3N_2O+H = 353.0669$, found 353.0659.

1-Benzyl-5-bromo-3-(2,2,2-trifluoroethyl)quinoxalin-2(1*H*)-one (2j-1)

Yellow solid: m.p. = 119–121 °C (recrystallized from petroleum ether and CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.59 (d, J = 7.6 Hz, 1H), 7.34–7.27 (m, 4H), 7.22 (d, 3H), 5.49 (s, 2H), 3.94 (q, J = 10.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 154.2, 151.3, 134.5, 134.0, 131.4, 130.3, 129.0, 128.2, 127.9, 126.7, 126.4, 126.3, 123.6, 114.2, 46.5, 37.6 (q, J = 30 Hz); ¹⁹F NMR (CDCl₃, 282 MHz, δ ppm): -63.52(t, J = 12.0 Hz); ESI-HRMS: m/z calcd for C₁₇H₁₂BrF₃N₂O+H = 397.0163, found 397.0156.

1-benzyl-5-iodo-3-(2,2,2-trifluoroethyl)quinoxalin-2(1H)-one (2k-1)

Light yellow solid: m.p. = 153-156 °C (recrystallized from petroleum ether and CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.89(d, J = 7.2 Hz, 1H), 7.33–7.26 (m, 4H), 7.19–7.17 (m, 2H), 7.11 (t, J = 8.0 Hz, 1H), 5.49 (s, 2H), 3.94 (q, J = 10.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 154.4, 151.4, 151.3, 134.7, 134.5, 133.0, 132.3, 131.8, 129.1, 128.0, 126.7, 126.3, 115.3, 104.3, 46.4, 37.3 (q, J = 30 Hz); ¹⁹F NMR (CDCl₃, 377 MHz, δ ppm): -62.85 (dt, J = 4.0Hz, 12.4Hz); ESI-HRMS: m/z calcd for C₁₇H₁₂F₃IN₂O+H = 445.0025, found 445.0021.

1-Benzyl-5-methyl-3-(2,2,2-trifluoroethyl)quinoxalin-2(1H)-one (2l-1)

Yellow solid: m.p. = 111–114 °C (recrystallized from petroleum ether and CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.36–7.25 (m, 4H), 7.23–7.19 (m, 3H), 7.10 (d, J = 8.4 Hz, 1H), 5.50 (s, 2H), 4.71 (s, 0.10H), 3.91 (q, J = 10.4 Hz, 2H), 2.68 (s, 2.85H), 2.65 (s, 0.15H); ¹³C NMR(CDCl₃, 100 MHz, δ ppm): 154.5, 148.6, 148.6, 139.6, 135.1, 132.8, 131.3, 130.8, 128.9, 127.7, 126.8, 126.5, 125.2, 123.9, 112.4, 46.2, 37.3 (q, J = 30 Hz), 17.4; ¹⁹F NMR (CDCl₃, 377 MHz, δ ppm): -63.01 (t, J =11.6 Hz); ESI-HRMS: m/z calcd for C₁₈H₁₅F₃N₂O+H = 333.1215, found 333.1207. OMe

1-Benzyl-5-methoxy-3-(2,2,2-trifluoroethyl)quinoxalin-2(1*H*)-one (2m-1)

White solid: m.p. = 174-176 °C (recrystallized from petroleum ether and CH₂Cl₂); ¹H

NMR (CDCl₃, 400 MHz, δ ppm): 7.40 (t, J = 8.4 Hz, 1H), 7.33–7.30 (m, 3H), 7.22–7.20 (m, 2H), 6.85 (d, J = 8.4 Hz, 1H), 6.80 (d, J = 8.4 Hz, 1H), 5.49 (s, 2H), 4.02 (s, 3H), 3.96 (q, J = 10.4 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 156.7, 154.8, 148.3, 134.9, 134.3, 132.0, 128.9, 127.7, 126.7, 123.5, 106.8, 105.5, 56.5, 46.5, 37.6 (q, J = 30 Hz); ¹⁹F NMR (CDCl₃, 377 MHz, δ ppm): -62.90 (t, J = 12.0Hz); ESI-HRMS: m/z calcd for C₁₈H₁₅F₃N₂O₂+H = 349.1164, found 349.1156.

1-Methyl-3-(2,2,2-trifluoroethyl)quinoxalin-2(1*H*)-one (2r)

White solid: m.p. = 169-172 °C (recrystallized from petroleum ether and CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.90 (dd, J = 1.6 Hz J = 8.0 Hz, 1H), 7.62 (dt, J = 1.6 Hz, J = 8.0 Hz 1H), 7.40 (dt, J = 1.6 Hz, J = 8.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 3.85 (q, J = 10.4 Hz, 2H), 3.73 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 154.5, 150.5, 133.4, 132.4, 131.2, 130.5, 126.5, 124.0, 123.7, 113.7, 37.5 (q, J = 30 Hz), 29.4; ¹⁹F NMR (CDCl₃, 377 MHz, δ ppm): -63.63 (t, J = 12.0 Hz); ESI-HRMS: m/z calcd for C₁₁H₉F₃N₂O+H = 243.0745, found 243.0737.

1-Phenyl-3-(2,2,2-trifluoroethyl)quinoxalin-2(1*H*)-one (2s)

Light yellow solid: m.p. = 158-159 °C (recrystallized from petroleum ether and CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.93 (dd, J = 2.0 Hz, J = 8.0 Hz, 1H), 7.63–7.59 (m, 2H), 7.40–7.32 (m, 3H), 7.30–7.27 (m, 2H), 6.70 (dd, J = 2.0 Hz, J = 8.0 Hz, 1H), 3.86 (q, J = 10.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 154.1, 151.3, 151.3, 135.4, 134.2, 132.3, 130.7, 130.3, 130.2, 130.0, 129.6, 128.1, 126.5, 126.4, 124.0, 123.7, 115.5, 37.2 (q, J = 30 Hz); ¹⁹F NMR (CDCl₃, 377 MHz, δ ppm): -62.80 (t, J = 11.6 Hz); ESI-HRMS: m/z calcd for C₁₆H₁₁F₃N₂O+H = 337.0959, found 337.0964.

2-(2,2,2-Trifluoroethyl)-6,7-dihydropyrido[1,2,3-de]quinoxalin-3(5H)-one (2t)

Light yellow solid: m.p. = 169-172 °C (recrystallized from petroleum ether and CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.71 (d, *J* = 8.0 Hz, 1H), 7.33 (d, *J* = 6.4 Hz, 1H), 7.25 (t, *J* = 8.0 Hz, 1H), 4.14 (t, *J* = 6.0 Hz, 2H), 3.84 (q, *J* = 10.4 Hz, 2H), 2.98 (t, *J* = 6.0 Hz, 2H), 2.14 (quint, *J* = 6.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 153.8, 150.0, 150.0, 132.2, 130.0, 129.7, 128.0, 126.5, 124.7, 123.7, 123.3, 42.0, 37.2 (q, *J* = 30 Hz), 26.3, 20.2; ¹⁹F NMR (CDCl₃, 377 MHz, δ ppm): -62.93 (t, *J* = 12.0Hz); ESI-HRMS: m/z calcd for C₁₃H₁₁F₃N₂O+H = 269.0896, found 269.0894.

3-(Azidomethyl)-1-benzylquinoxalin-2(1*H***)-one (4a)**

White solid:m.p. = 61–63 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.96 (dd, J = 2.0 Hz, J = 8.0 Hz, 1H), 7.48 (dt, J = 2.0 Hz, J = 8.0 Hz, 1H), 7.37–7.27 (m, 5H), 7.25–7.23 (m, 2H), 5.52 (s, 2H), 4.67 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 154.2, 134.8, 132.7, 130.8, 130.6, 129.0, 127.8, 126.8, 124.0, 114.5, 51.8, 45.9; ESI-HRMS: m/z calcd for C₁₆H₁₃N₅O+Na = 314.1012, found: 314.1007.

4-Benzyl-3-oxo-3,4-dihydroquinoxaline-2-carbonitrile (5a)

Brown solid: m.p. = 175–178 °C; ¹H NMR (CDCl₃, 300 MHz, δ ppm): 7.96 (d, J = 10.0 Hz, 1H), 7.66 (t, J = 10.0 Hz, 1H), 7.45–7.25 (m, 7H), 5.53 (s, 2H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 153.1, 134.6, 133.9, 133.7, 133.4, 133.1, 131.9, 129.1, 128.2, 127.0, 125.0, 115.0, 114.0, 46.5; HRMS (ESI): calcd. for C₁₆H₁₁N₃O+Na = 284.0794, found: 284.0798.

3-(Azidomethyl)-1-benzyl-6-fluoroquinoxalin-2(1*H***)-one (4b)**

Yellow oil: $R_f = 0.37$ (petroleum ether : EtOAc = 3:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.65 (dd, J = 2.4 Hz, J = 8.4 Hz, 1H), 7.35–7.28 (m , 3H), 7.24–7.21 (m, 4H), 5.50 (s, 2H), 4.66 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 158.7 (d, J = 244 Hz), 155.8, 153.8, 134.5, 133.3, 133.1, 129.2, 129.1, 129.0, 128.0, 126.7, 118.8, 116.1, 115.8, 115.8, 115.7, 51.7, 46.1; HRMS (ESI): calcd. for C₁₆H₁₂FN₅O+Na = 332.0918, found 332.0923.

4-Benzyl-7-fluoro-3-oxo-3,4-dihydroquinoxaline-2-carbonitrile (5b)

Light yellow solid: m.p. = 205–208 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.65 (dd, J = 2.4 Hz, J = 8.0 Hz, 1H), 7.42–7.33 (m , 5H), 7.31–7.21 (m, 2H), 5.52 (s, 2H) ; ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 158.9 (d, J = 246 Hz), 152.7, 135.3, 133.7, 133.6, 133.5, 130.2, 129.3, 129.1, 128.4, 126.9, 126.8, 122.9, 122.6, 117.0, 116.7, 116.4, 116.4, 113.7, 46.8; HRMS (ESI): calcd. for C₁₆H₁₀FN₃O+Na = 302.0700, found 302.0702.

3-(Azidomethyl)-1-benzyl-6-chloroquinoxalin-2(1*H*)-one (4c)

White solid: m.p. = 128-130 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.13 (d, J = 1.6 Hz, 1H), 7.41 (dd, J = 2.4 Hz, J = 8.8 Hz, 1H), 7.34–7.26 (m , 3H), 7.22–7.20 (m,

3H), 5.48 (s, 2H), 4.64 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 155.7, 153.8, 134.4, 133.1, 131.2, 130.8, 129.8, 129.4, 129.1, 128.0, 126.7, 115.7, 57.6, 46.0; HRMS (ESI): calcd. for C₁₆H₁₂ClN₅O+Na = 348.0623, found 348.0626.

4-Benzyl-7-chloro-3-oxo-3,4-dihydroquinoxaline-2-carbonitrile (5c)

Yellow solid: m.p. = 195–198 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.95 (d, *J* = 2.4 Hz, 1H), 7.58 (dd, *J* = 2.4 Hz, *J* = 9.2 Hz, 1H), 7.37–7.30 (m, 4H), 7.25–7.23 (m, 2H), 5.50 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 152.7, 135.1, 134.5, 133.6, 133.4, 132.0, 130.9, 130.6, 129.3, 128.4, 126.9, 116.2, 113.7, 46.8; HRMS (ESI): calcd. for C₁₆H₁₀ClN₃O+Na = 318.0405, found 318.0413.

4-Benzyl-7-bromo-3-oxo-3,4-dihydroquinoxaline-2-carbonitrile (5d)

Yellow solid: m.p. = 197–200 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.10 (d, *J* = 2.4 Hz, 1H), 7.71 (dd, *J* = 2.4 Hz, *J* = 8.8 Hz, 1H), 7.36–7.30 (m, 3H), 7.27–7.23 (m, 3H), 5.50 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 152.7, 137.2, 135.0, 134.0, 133.7, 133.6, 132.5, 129.3, 128.4, 126.9, 117.7, 116.4, 113.6, 46.7; HRMS (ESI): calcd. for C₁₆H₁₀BrN₃O+Na = 363.9879, found 363.9882.

4-Benzyl-7-iodo-3-oxo-3,4-dihydroquinoxaline-2-carbonitrile (5e)

Yellow solid: m.p. = 202–204 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.29 (d, *J* = 1.6 Hz, 1H), 7.86 (dd, *J* = 1.6 Hz, *J* = 9.2 Hz, 1H), 7.34–7.30 (m, 3H), 7.24–7.22 (m, 2H), 7.12 (d, *J* = 8.8 Hz, 1H), 5.48 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 152.7, 142.7, 140.1, 134.7, 133.9, 133.6, 133.1, 129.2, 128.4, 126.9, 116.6, 113.7, 87.7, 46.6; HRMS (ESI): calcd. for C₁₆H₁₀IN₃O+ Na = 409.9761, found 409.9767.

3-(Azidomethyl)-1-benzyl-6-methylquinoxalin-2(1H)-one (4f)

Light yellow solid: m.p. = $122-124 \,^{\circ}$ C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.75 (s, 1H), 7.33–7.28 (m, 4H), 7.24–7.22 (m, 2H), 7.18 (d, *J* = 8.8 Hz, 1H), 5.49 (s, 2H), 4.65 (s, 2H), 2.42 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 154.1, 154.1, 134.9, 134.0, 132.6, 132.1, 130.4, 130.4, 129.0, 127.8, 126.8, 114.3, 51.8, 45.8, 20.6; HRMS (ESI): calcd. for C₁₇H₁₅N₅O+ Na = 328.1169, found 328.1172.

4-Benzyl-7-methyl-3-oxo-3,4-dihydroquinoxaline-2-carbonitrile (5f)

Yellow solid: It is easily oxidized red solid in air. ¹H NMR (CDCl₃, 400 MHz, δ ppm):

7.74 (s, 1H), 7.45 (dd, J = 1.6 Hz, J = 8.8 Hz, 1H), 5.51 (s, 2H), 2.44 (s, 3H); HRMS (ESI): calcd. for C₁₇H₁₃N₃O+ Na = 298.0951, found 298.0955.

3-(Azidomethyl)-1-benzyl-7-fluoroquinoxalin-2(1*H***)-one (5h)**

White solid: m.p. = 136–138 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.92 (dd, J = 6.0 Hz, J = 8.8 Hz, 1H), 7.35–7.27 (m, 3H), 7.24–7.22 (m, 2H), 7.05 (dt, J = 2.4 Hz, 8.4 Hz, 1H), 6.97 (dd, J = 2.4 Hz, 10.0 Hz, 1H), 5.44 (s, 2H), 4.63 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 163.5 (d, J = 251 Hz), 154.1, 153.1, 153.1, 134.2, 134.1, 132.6, 132.5, 129.4, 129.4, 129.1, 128.1, 126.8, 112.2, 111.9, 101.7, 101.4, 51.6, 46.2; HRMS (ESI): calcd. for C₁₆H₁₂FN₅O+Na = 332.0918, found 332.0922.

3-(Azidomethyl)-1-benzyl-5-fluoroquinoxalin-2(1*H*)-one (4h-1) 4-Benzyl-6-fluoro-3-oxo-3,4-dihydroquinoxaline-2-carbonitrile (5h-2)

¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.95 (dd, J = 2.4 Hz, J = 8.8 Hz, 0.37H), 7.45–7.39 (m, 1.26 H), 7.38–7.26 (m, 5.52H), 7.25–7.22 (m, 2.70H), 7.14–7.13 (m, 0.37H), 7.09–7.02 (m, 2.70H), 5.50 (s, 2H), 5.45 (s, 0.37H), 4.63 (s, 2H); ¹³C NMR (CDCl₃, 400 MHz, δ ppm): 160.0, 157.4, 154.4, 154.4, 154.1, 134.5, 134.4, 133.4, 131.4, 131.3, 129.3, 129.0, 128.5, 128.0, 127.0, 126.8, 122.6, 122.5, 113.7, 113.4, 110.4, 110.2, 110.2, 102.1, 101.9, 51.9, 46.9, 46.3; HRMS (ESI): calcd. for C₁₆H₁₂FN₅O+Na = 332.0918, found 332.0923; HRMS (ESI): calcd. for C₁₆H₁₀FN₃O+Na = 302.0700, found 302.0704.

3-(Azidomethyl)-1-benzyl-5-chloroquinoxalin-2(1*H*)-one (4i-1) 4-Benzyl-6-chloro-3-oxo-3,4-dihydroquinoxaline-2-carbonitrile (5i-2)

¹H NMR (400 MHz, CDCl₃): 7.87 (d, J = 9.2 Hz, 0.60H), 7.43–7.27 (m, 8.0H), 7.25 (s, 1H), 7.22–7.20 (m, 3.20H), 5.50 (s, 2H), 5.46 (s, 1.20H), 4.65 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): 154.7, 153.9, 152.8, 141.1, 134.5, 132.9, 130.8, 129.3, 129.0, 128.5, 127.9, 127.0, 126.7, 125.6, 124.9, 114.9, 113.8, 113.4, 51.5, 46.7, 46.2; HRMS (ESI): calcd. for C₁₆H₁₂ClN₅O+Na = 348.0623, found 348.0628. HRMS (ESI): calcd. for C₁₆H₁₀ClN₃O+Na = 318.0405, found 318.0410.

3-(Azidomethyl)-1-benzyl-5-bromoquinoxalin-2(1*H***)-one (4j-1) and 4-Benzyl-8-bromo-3-oxo-3,4-dihydroquinoxaline-2-carbonitrile (5j-2)**

¹H NMR (400 MHz, CDCl₃): $\delta = 7.77$ (d, J = 8.4 Hz, 0.33H), 7.61 (dd, J = 1.2Hz, J = 7.6 Hz, 1.00H), 7.54–7.49 (m, 0.66H), 7.34–7.27 (m, 5.33H), 7.25–7.23 (m, 1.33H), 7.20–7.18 (m, 2H), 5.49 (s, 2H), 5.44 (s, 0.66H), 4.63 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 154.9$, 153.8, 152.7, 134.4, 134.2, 133.9, 134.4, 134.2, 133.9, 133.4, 132.8, 131.8, 131.1, 130.3, 129.6, 129.2, 129.0, 128.5, 128.4, 128.2, 127.9, 127.0, 126.7, 126.2, 118.0, 114.2, 113.8, 51.2, 46.6, 46.2; HRMS (ESI): calcd. for C₁₆H₁₀BrN₃O+Na=363.9879, found 363.9882. calcd.for C₁₆H₁₂BrN₅O+Na=394.0097, found 394.0101.

3-(Azidomethyl)-1-benzyl-7-iodoquinoxalin-2(1*H*)-one (4k-2) 4-Benzyl-8-iodo-3-oxo-3,4-dihydroquinoxaline-2-carbonitrile (5k-1)

¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.90 (d, J = 6.4 Hz , 1.00H), 7.76–7.70 (m, 0.33 H), 7.60 (d, J = 8.4 Hz, 0.17H), 7.38–7.27 (m, 4.83H), 7.20–7.18 (m, 2.0H), 7.13 (t, J = 8.4 Hz, 1.0H), 5.49 (s, 2H), 5.45 (s, 0.33H), 4.64 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 154.9, 154.0, 134.8, 134.5, 134.3, 132.9, 132.6, 132.4, 131.5, 129.3, 129.0, 128.5, 127.9, 127.1, 126.7, 124.2, 115.3, 104.0, 51.1, 46.6, 46.2; HRMS (ESI): calcd. for C₁₆H₁₂IN₅O+Na = 439.9979, found 439.9984, calcd. for C₁₆H₁₀IN₃O+Na = 409.9761, found 409.9767.

3-(Azidomethyl)-1-benzyl-5-methylquinoxalin-2(1H)-one (4l)

White solid: m.p. = 69–72 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.35–7.29 (m, 3 H), 7.25–7.17 (m, 4H), 7.11 (d, *J* = 8.4 Hz, 1H), 5.48 (s, 2H), 4.59 (s, 2H), 2.72 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 154.0, 152.2, 139.3, 135.0, 132.7, 131.2, 130.5, 128.8, 127.6, 126.7, 125.2, 112.4, 51.1, 45.9, 17.6; HRMS (ESI): calcd. for C₁₇H₁₅N₅O+Na = 328.1169, found 328.1173.

4-Benzyl-8-methyl-3-oxo-3,4-dihydroquinoxaline-2-carbonitrile (5l-1) 4-Benzyl-6-methyl-3-oxo-3,4-dihydroquinoxaline-2-carbonitrile (5l-2)

¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.82 (d, J = 8.4 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 5.52 (s, 2H), 5.50 (s, 1.80H), 2.69 (s, 3H), 2.47 (s, 2.70H); HRMS (ESI): calcd. for C₁₇H₁₃N₃O+ Na = 298.0951, found: 298.0955, 298.0950. These compounds are

unstable. There were isolated as yellow solid, but then quickly became red.

3-(azidomethyl)-1-benzyl-7-methoxyquinoxalin-2(1*H*)-one (4m)

 $R_f = 0.44$ (petroleum ether : ethyl acetate = 3:1); ¹H NMR (CDCl₃, 300 MHz, δ ppm): 7.84 (d, *J* = 12.0 Hz, 1H), 6.91 (dd, *J* = 6.4 Hz, *J* = 12.0 Hz, 1H), 6.71 (d, *J* = 6.4 Hz, 1H), 5.48 (s, 2H), 4.63 (s, 2H), 3.79 (s, 3H); HRMS (ESI): calcd. for C₁₇H₁₅N₅O₂+ Na = 344.1118, found: 344.1122. **4m** was isolated as white oil, but quickly became yellow.

4-Benzyl-6-methoxy-3-oxo-3,4-dihydroquinoxaline-2-carbonitrile (5m-2)

¹H NMR (CDCl₃, 300 MHz, δ ppm): 7.83 (d, J = 12.0 Hz, 1H), 7.35–7.28 (m, 5H), 6.87 (dd, J = 3.2 Hz, J = 12.0 Hz, 1H), 6.71 (d, J = 3.2 Hz, 1H), 5.48 (s, 2H), 3.83 (s, 3H); HRMS (ESI): calcd. for C₁₇H₁₃N₃O₂+ Na = 314.0900, found: 314.0910. **5m-2** was isolated as light yellow solid, but quickly became yellow oil.

4-Benzyl-8-methoxy-3-oxo-3,4-dihydroquinoxaline-2-carbonitrile (5m-1)

Yellow solid: m.p. = 189–192 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.58 (t, *J* = 8.4 Hz, 1H), 7.33–7.30 (m, 3H), 7.25–7.23 (m, 2H), 6.92 (d, *J* = 8.4 Hz, 1H), 6.84 (d, *J* = 8.4 Hz, 1H), 5.50 (s, 2H), 4.05 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 157.5, 153.3, 136.0, 135.0, 134.1, 130.8, 129.1, 128.1, 126.9, 124.5, 106.8, 105.9, 56.7, 46.8; HRMS (ESI): calcd. for C₁₇H₁₃N₃O₂+Na = 314.0900, found 314.0905.

4-methyl-3-oxo-3,4-dihydroquinoxaline-2-carbonitrile (5r)

Yellow solid. It is easily oxidized red solid in air . ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.96 (dd, J = 1.6 Hz, J = 8.4 Hz, 1H), 7.78 (dt, J = 1.6 Hz, J = 8.4 Hz, 1H), 7.48 (dt, J = 1.6 Hz, 8.4 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 3.77 (s, 3H); HRMS (ESI): calcd. for C₁₀H₇N₃O+ Na = 208.0481, found: 208.0483.

Reference

- 1. A. T. Parsons, T. D. Senecal, and S. L. Buchwald, *Angew. Chem. Int. Ed*, 2012, **51**, 2947–2950.
- 2. M. Victoria Vita and J. Waser, Org. Lett, 2013, 15, 3246-3249.
- 3. D. Li, T. Yang, H. Su, W. Yu, Adv. Synth. Catal. 2015, 357, 2529–2539.
- P. Truitt, E. E. Richardson, L. M. Long, W. J. Middleton, J. Am. Chem. Soc., 1949, 71, 3479–3480.

5. N. Jiang, J. Fan, T. Liu, J. Cao, B. Qiao, J. Wang, P. Gao and X. Peng, *Chem. Commun.*, 2013, **49**, 10620–10622.

Copies of ¹H NMR and ¹³C NMR spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

0.09

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (mm)

Copies of ¹H NMR and ¹³C NMR spectra of substrates 1

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

0 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

0 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Copies of ¹H NMR , ¹³C NMR and ¹⁹F NMR spectra of the products 2a

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

yth-jiben-cf3 19F_OBSERVE	6988868
STANDARD PARAMETE	RSLLLJJJ

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)

 $\underbrace{ \left\{ \begin{array}{c} -62.78 \\ -62.81 \\ -62.83 \end{array} \right\} }_{0.00}$

-50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 f1 (ppa)

^{190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} fl (ppm)

-170

-180

-190

 $\left\{ \begin{array}{c} -62.89 \\ -62.92 \\ -62.94 \end{array} \right\}$

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

62.71 62.71 62.73 62.75 62.77 62.78

) 180 170 160 150 140 130 120 110 100 90 80 70 60 fl (ppm)

0.00

8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 f1 (ppm) 3.02 2.08 1.99 Too 1-16 T H 86 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 fl (ppm) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 154.17
<151.31
</pre> 135.44 134.23 132.33 130.35 130.35 128.63 128.10 129.10 129.10 129.10 129.10 10 37.72 37.42 37.12 36.82 77. 32 77. 20 76. 68 0

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

^{200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} fl (ppm)

0 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

^{0 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

0 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

^{) 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} fl (ppm)

