Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Synthesis of Polymers and Nanoparticles Bearing Polystyrene Sulfonate Brushes for Chemokine Binding.

Naatasha Isahak, Julie Sanchez, Sébastien Perrier, Martin J. Stone and Richard J. Payne^a

School of Chemistry, The University of Sydney, NSW 2006, Australia

email: richard.payne@sydney.edu.au

Table of contents

Analyses	2
Synthesis of silica nanoparticles via Stöber synthesis	3
Characterisation of CBP-RAFT agent 2	4
Characterisation of triethoxysilane functionalised CBP-RAFT agent 6	7
Characterisation of functionalised particles 9-11	8
Characterisation of functionalised particles 9-11 in 50 mM MOPS buffer vs water	10

References

12

<u>Materials</u>

Tetraethyl orthosilicate (TEOS, 95%) was purchased from Acros Organics. 1-Butanethiol, (3aminopropyl)triethoxysilane (APTS), 4-(Dimethylamino)pyridine (DMAP), 1,1'azobis(cyclohexane-1-carbonitrile) (V40, 98%) and sodium 4-vinylbenzenesulfonate (1) were purchased from Sigma Aldrich. 4,4'-azobis(4-cyanovaleric acid) was purchased from VWR. Ammonia solution (NH₃, 28%), absolute ethanol, silica gel 63 µm, dichloromethane (DCM), carbon disulfide (99.9%), tetrahydrofuran (THF, 99%), dimethylformamide (DMF), magnesium sulfate (MgSO₄) and potassium hydroxide (KOH) were obtained from AJAX Chemicals. Hexane (99%), acetone (99%), methanol (MeOH, 99%) and ethanol (EtOH, 95%) were supplied by Redox Chemicals. Ethyl acetate (99.5%), 1,2 Dimethoxyethane, Toluene (99.5%) and *p*-tosyl chloride (\geq 98%) were obtained from Merck. N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC•HCl) was obtained from GL Biochem.

Analyses

Transmission electron microscope (TEM) images were obtained on a JEOL 1400 120 kV TEM with a LaB6 filament running Gatan Digital Micrograph software. Size distribution of TEM images were also analysed using Image J software. Size distributions of particles in colloidal suspensions in Milli Q water and DMF solvents were analysed using Dynamic Light Scattering (DLS) conducted on a Malvern High Performance Particle Sizer running Dispersion Technology Software (Version 4.00). Mass of tethered RAFT molecules and polymers were analysed *via* Thermogravimetric Analysis (TGA) conducted on a TA Instruments Hi-res TGA 2950 instrument using Thermal Advantage v1.1A software. The instrument was continuously purged with N₂ gas. Samples were heated to 100 °C and equilibrated at 100 °C to remove residual water prior to analysis. Data was analysed using Universal Analysis 2000 software v4.2E by TA Instruments.

Analysis of compounds and polymerization reactions was carried out by ¹H-NMR spectroscopy acquired at 300 or 200 MHz. D_2O , DMSO- D_6 or CDCl₃ were used as the solvents as indicated.

Molecular weight distributions were recorded on a Shimadzu modular GPC system, comprising DGU-12A solvent degasser, an LC-10AT pump, a CTO-10A column oven, and a RID-10A refractive index detector. The analyses were carried out at 50 °C using a flow rate of 1mL/min with an aqueous solution of NaN₃ (0.5%w/v) as the eluent. The system was equipped with a PL5.0 mm guard column (50×7.8 mm²) followed by four linear PL columns (10^5 , 10^4 , 10^3 , and 500). Calibration was performed with PEG/PEO standards ranging from 500 to 10^6 g/mol.

Synthesis of silica nanoparticles via Stöber synthesis

A modification of the Stöber synthesis [1, 2] was used for the synthesis of the silica core. A mixture of 26.9 g of a 28% ammonia solution and 223 mg of absolute EtOH were mixed and stirred in a 70 °C oil bath under a closed system with a condenser at 0 °C and a nitrogen filled balloon. A second solution of 53.3 g of absolute EtOH and 12.5 g of TEOS were mixed before adding to the reaction at a rate of 1.6mL/min with constant stirring. Following addition (after ca. 25 min) the mixture became cloudy and was stirred for a further 1 h before cooling. The reaction was washed with absolute EtOH (4 x 20 mL) *via* centrifugation at 14000rpm for 20 minutes. Washing was deemed satisfactory once the supernatant of the centrifuged sample had a pH of 7.

Figure 1: TEM images of silica particles synthesised by Stöber synthesis.

Mean	92.13757
Standard Error	0.776431
Median	91.69611
Mode	93.35091
Standard Deviation	6.259788
Minimum	78.50219
Maximum	108.7547

Table 1 : Results from Image J analysis of TEM images of synthesised silica particles

Figure 2: Size distribution of silica particles in EtOH measured by DLS

Figure 3: ¹³C NMR spectrum of CBP-RAFT agent 2 in CDCl₃

Figure 4: ¹H NMR spectrum of CBP-RAFT agent 2 in CDCl₃

Characterisation of triethoxysilane functionalised CBP-RAFT agent 6

Figure 5: ¹H NMR spectrum of CBP-RAFT functionalised with triethoxysilane groups 6.

Characterisation of functionalised particles 9-11

Figure 7: TGA of silica particles before and after functionalisation with triethoxysilane CBP-RAFT agent.

Figure 8: TGA of particles modified with pSS brushes

A grafting density of 0.967 chains/nm² of polymer was calculated from the values obtained from TGA using equation 1. This unusually high grafting density is due to the functionalisation of silica particles with a triethoxysilane functionalised RAFT agent forming a possible multi-layer.

$$\sigma = \frac{\rho DN_A m_{(organic)}}{6M_{CTA} m_{(Si)}} \tag{1}$$

 σ is the grafting density in groups/nm², ρ is the density of silica nanoparticles (1.9 x 10⁻²¹ g/nm³), D is the average diameter of core particles, m_(organic) and m_(Si) are the mass for RAFT agents and bare silica nanoparticles acquired from TGA.

Figure 9: Polymer brush configurations on curved surfaces

The effective grafting density of the polymer brush, $\sigma_{eff,}$, decreases with increasing radial distance (shown in Figure 9b) and can be calculated accordingly using equation (2). Here, σ_0 , the graft density on the core surface is 0.967 groups/nm², and r is the distance from the core center. When the σ_{eff} is high enough (greater than 0.03), the polymer brushes are said to fall within the concentrated polymer brush (CPB) regime, where the excluded-volume effect is screened out [3, 4].

$$\sigma_{eff} = \sigma_0 \left(\frac{r_0}{r}\right)^2 \tag{2}$$

Using the following equation, the σ_{eff} for particles decorated with p(SS) brush of DP 50, 100 and 500; the σ_{eff} of these particles are 0.310 chains/nm², 0.240 chains/nm² and 0.208 chains/nm², respectively. With a σ_{eff} falling well above 0.03, it suggests that the polymer brushes on these particles exhibit a CPB regime even if the charges of the polymer brushes were neutralized by counterions [4], thus removing the possible problems of changes in polymer brush conformations due to its radius of gyration (R_g) affecting access to sulfonate groups within the brush layers.

Characterisation of functionalised particles 9-11 in 50 mM MOPS buffer vs water

1 wt% of particles were measured in 50 mM MOPS buffer and water to provide a direct comparison of brush conformations in the presence of buffering salts used in the fluorescence anisotropy chemokine binding assay.

Figure 11: Size distribution of 1 wt% of hybrid nanoparticles in 50 mM MOPS buffer.

Figure 12: Size distribution of hybrid nanoparticles indicating change in hydrodynamic volume due to increased ionic strength in 50 mM MOPS buffer. A) SiP-p(SS)₅₀, B)SiP-p(SS)₁₀₀ and C)SiP-p(SS)₅₀₀.

References

- 1. C.A.R. Costa,, C.A.P. Leite, and F. Galembeck, J. Phys. Chem. B, 2003. 107, 4747-4755.
- 2. W. Stöber, A. Fink, and E. Bohn, J. Coll. Inter. Sci. 1968. 26, 62-69.
- 3. D. Dukes, L. Yu, S. Lewis, B. Benicewicz, L. Schadler, S. K. Kumar, *Macromolecules*, 2010. **43**, 1564-1570.
- 4. K. Ohno, T. Morinaga, S. Takeno, Y. Tsujii, T. Fukada, *Macromolecules*, 2007. 40, 9143-9150.