Supplementary Information

Ruthenium Photoredox-Triggered Phospholipid Membrane Formation

M. D. Hardy,^a D. Konetski^b, C. N. Bowman^b, and N. K. Devaraj^a

^aDepartment of Chemistry and Biochemistry, University of California, San Diego, CA 92093 ^bDepartment of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, CO 80309

Materials and Methods	2-3
Supporting Figures	4-7
References	8

Materials

Triethylamine (\geq 99%), Copper sulfate pentahydrate (\geq 98%), and Ru(bpy₃)²⁺ were purchased from Sigma Aldrich. Rhodhamine DHPE was purchased from Invitrogen. Alkyne lysolipid and alkyl azide were synthesized as reported previously (1, 2).

Methods

Ru(bpy₃)²⁺ Photoredox-Triggered Triazole Phospholipid Synthesis

Preparation of a 1 mM dodecane azide and 650 μ M alkyne lysolipid solution was prepared by adding 43.3 μ L of a 15 mM alkyne lysolipid in chloroform stock and 27 μ M of 40 mM alkyl azide in chloroform stock to a 2 mL LCMS vial. The chloroform was evaporated under a gentle stream of nitrogen. To the remaining residue of pure alkyne lysolipid and alkyl azide, 1 ml of water was added. The solution was briefly vortexed and then sonicated in a bath sonicator (3510 Branson) for 15 minutes.

Reactions were prepared by mixing together the alkyne-azide solution, a triethylamine in ethanol solution, a copper sulfate in water solution, and a Ru(bpy₃)²⁺ in water solution in a 2 mL LCMS vial containing a 250 μ L insert. The 75 μ L reaction consisted of 72 μ L of the alkyne-azide solution, 0.5 μ L of 30 mM triethylamine, 1.0 μ L of 15 mM copper sulfate and 1.5 μ L of 2 mM Ru(bpy₃)²⁺. The reaction was placed on a shaker rotating at 100 rev/min and placed ~8" from an 11 watt CFL. Triethylamine, Ru(bpy₃)²⁺ and alkyne-azide solutions were prepared fresh daily.

Starting reaction conditions: 40 μ M Ru(bpy₃)²⁺, 200 μ M triethylamine, 200 μ M copper sulfate pentahydrate, 1 mM dodecane azide and 650 μ M alkyne lysolipid.

Effect of triethylamine of on Triazole Phospholipid Synthesis

Reactions were prepared as described in the previous section with the following changes. Serial dilutions of a 30 mM triethylamine in ethanol solution were performed to create stock solutions of 22.5 mM, 15 mM and 7.5 mM, corresponding to reaction concentrations of 200 μ M, 150 μ M, 100 μ M and 50 μ M. For the 0 μ M TEA control, 0.5 μ L of pure ethanol was added in place of a triethylamine in ethanol solution.

Starting reaction concentrations: 40 μ M Ru(bpy₃)²⁺, 200 μ M, 150 μ M, 100 μ M, 50 μ M or 0 μ M triethylamine, 200 μ M copper sulfate pentahydrate, 1 mM dodecane azide and 650 μ M alkyne lysolipid.

Liquid Chromatography/Mass Spectrometry/Evaporative Light Scattering Detection (*LC/MS/ELSD*)

Protocols were based upon previously reported settings and procedures (2). Mass identification of alkyne lysolipid and alkyl azide were reported previously(1, 2).

Cryo-EM microscopy

Vesicles for Cryo-EM were prepared with the following conditions: 0 or 40 μ M Ru(bpy₃)²⁺, 200 μ M triethylamine, 200 μ M copper sulfate pentahydrate, 1 mM dodecane azide and 750 μ M alkyne lysolipid. No vesicles were observed in the negative control (reaction without Ru(bpy₃)²⁺). For additional information on negative controls, please see the previously reported discussion on azide emulsions(2). Conditions for freezing: blot time = 5 seconds, glow discharge time = 25 seconds, sample incubation time = 60 seconds.

Fluorescent Microscopy

Reaction conditions: $40 \ \mu\text{M} \ \text{Ru}(\text{bpy}_3)^{2+}$, $200 \ \mu\text{M}$ triethylamine, $200 \ \mu\text{M}$ copper sulfate pentahydrate, 2.5 mM dodecane azide and 2.5 mM alkyne lysolipid. Reactions were exposed to $20 \ \text{mW/cm}^2$ for 1 hour or to $50 \ \text{mW/cm}^2$ for 30 min.

Supporting Figures

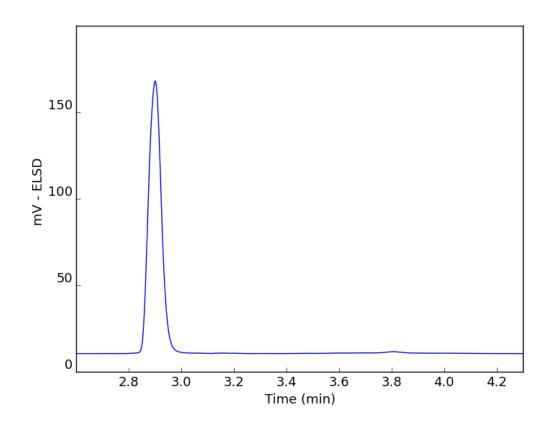


Figure S1. Triazole lipid Synthesis in the absence of $Ru(bpy_3)^{2+}$. Conditions: 200 μ M CuSO₄, 200 μ M TEA, 625 μ M alkyne lysolipid, and 1 mM alkyl azide. Alkyne lysolipid retention time = 2.9 min; triazole phospholipid rentention time = 3.8 min.

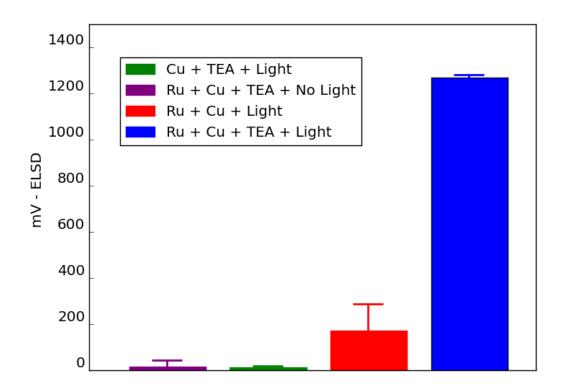


Figure S2. Triazole Lipid Synthesis monitored via ELSD. Conditions: 215 μ M CuSO₄, 33 μ M Ru(bpy₃)²⁺, 200 μ M TEA, 625 μ M alkyne lysolipid, and 1 mM alkyl azide. Results recapitulate absorbance data shown in Figure 1 of the main text.

Figure S3. An oxidative quenching $Ru(bpy_3)^{2+}$ scheme. The photoexcited $Ru^*(bpy_3)^{2+}$ is quenched by copper (II), yielding copper(I) and $Ru(bpy_3)^{3+}$. $Ru(bpy_3)^{3+}$ is a strong oxidant (+1.29V) and can oxidize copper(I) back to copper(II).

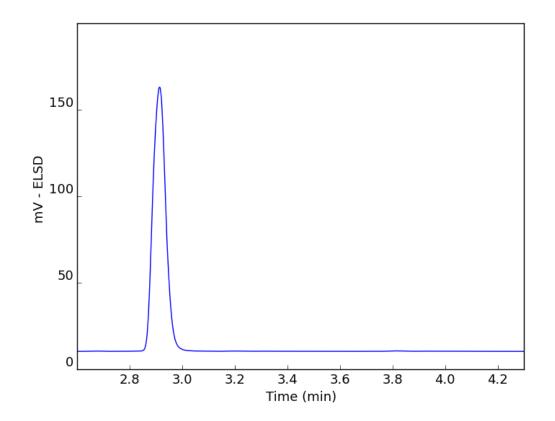


Figure S4. Triazole Lipid Synthesis with 0 μ M TEA. Conditions: 200 μ M CuSO₄, 40 μ M Ru(bpy₃)²⁺, 625 μ M alkyne lysolipid, and 1 mM alkyl azide. Alkyne lysolipid retention time = 2.9 min; triazole phospholipid rentention time = 3.8 min.

References

- 1. Budin I & Devaraj NK (2012) Membrane assembly driven by a biomimetic coupling reaction. *Journal of the American Chemical Society* 134(2):751-753.
- 2. Hardy MD, *et al.* (2015) Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth. *Proceedings of the National Academy of Sciences of the United States of America* 112(27):8187-8192.