Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information (ESI)

"I2-Mediated Regioselective C-3 Azidation of indoles"

Pragati K. Prasad, Rupali G. Kalshetti, Rambabu N. Reddi, Sanjay P. Kamble and Arumugam

Sudalai*

Chemical Engineering and Process Development Division, National Chemical Laboratory,

Pashan Road, Pune 411008, INDIA.

*Corresponding author. Tel: +91-20-25902174; Fax: +91-20-25902676; e-mail: <u>a.sudalai@ncl.res.in</u>

Table of Contents

Sr.No.	Description	
1	General information	2
2	Experimental section	2-8
3	Spectra	9-24

1. General Information

Solvents were purified and dried by standard procedures before use. IR spectra were recorded on a Perkin-Elmer model 683 B and absorption is expressed in cm⁻¹. ¹H NMR and ¹³C NMR spectra were recorded on Brucker AC-200 spectrometer unless mentioned otherwise. Deuterated solvent DMSO-D₆, MeOH-D₄, Acetone-D₆ and CDCl₃+ CCl₄ (70:30) were used as internal standard and singlet at 96.1 ppm in ¹³C NMR corresponds to carbon of CCl₄. Purification was done using column chromatography (100-200 mesh). ESI-MS were recorded on a Thermo Finnigan LCQ Advantage spectrometer in ESI mode with a spray voltage of 4.8 kV. All chemicals are purchased from Sigma-Aldrich and used without further purification.

2. Experimental section

2.1. General experimental procedure for the azidation of indoles:

To a stirred solution of indole **1a-l** (1 mmol) in dry DMSO (8 mL), was added iodine (1 mmol, 254 mg), triethyl amine (1 mmol, 0.14 mL) and sodium azide (1 mmol, 65 mg) at 0 °C and the reaction mixture was then stirred at 25 °C under open air. After completion of the reaction as monitored by TLC, it was quenched with H₂O (5 mL) at 0 °C. It was then extracted with EtOAc (3 x 20 mL) followed by washing with brine (3 x 20 mL) and the combined organic layers were dried over anhydrous Na₂SO₄. Concentration of organic solvent under reduced pressure gave the crude product, which was purified by column chromatography over silica gel using pet. ether /EtOAc (9:1) as eluent to afford 3-azido indole compounds **2a-l** in high purity.

2.2 General experimental procedure for the reduction of azido indoles:

To a stirred solution of azido indoles (2c and 2h) (1 mmol) in degassed MeOH (6 mL), was added Pd/C (10 wt %) at 25 °C and the reaction mixture was then stirred at 25 °C under H₂ (1 atm) atmosphere for 5 h. After completion of the reaction (as monitored by TLC), the reaction mixture was filtered over celite bed, washed with methanol (25 mL). Concentration of organic solvent under reduced pressure gave the crude product, which was purified by column chromatography over silica gel using pet. ether /EtOAc (7:3) as eluent to afford 3-amino indoles 4c and 4h in high purity.

2.4 Experimental procedure for synthesis of trizole from azido indole:

To a stirred solution of $CuSO_{4.5}H_2O$ (5 mol %), Na ascorbate (20 mol %) in 'BuOH: H₂O (1:1), was added phenylacetylene (1 mmol) followed by the addition of azido indole (1 mmol) at 25 °C. The reaction mixture was then stirred at room temperature in open air for 6 h. After completion of the reaction (6 h), the reaction mixture was concentrated under reduced pressure to remove 'BuOH. The aqueous layer was then extracted with EtOAc (3 x 20 mL) followed by

washing with brine (3 x 20 mL) and the combined organic layers were dried over anhydrous Na_2SO_4 . Concentration of EtOAc under reduced pressure gave the crude product which was purified by column chromatography with pet. ether: ethyl acetate (7:3) as eluent to give pure triazole **6** in 78% yield.

3-Azido-1*H*-indole (2a):

Yield: 92% (150 mg), colorless solid, **mp**: 60 °C decomposed; **IR** (KBr, cm⁻¹): v_{max} 2255, 2128, 1739, 1658, 1468, 1201, 1026; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.09-7.14 (m, 1H), 7.15-7.21 (m, 1H), 7.42 (t, *J* = 8.6 Hz, 2H), 7.53 (d, *J* = 2.7 Hz, 1H),11.45 (br. s., 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 88.7, 112.1, 117.9, 119.9, 122.2, 124.7, 126.1, 135.4; **HRMS (ESI)**: [M+H]⁺ calcd for [C₈H₆N₄+H]⁺: 159.0671; found: 159.0665.

3-Azido-5-methoxy-1*H*-indole (2b):

Yield: 90% (170 mg), colorless solid, **mp**: 60°C decomposed; **IR** (KBr, cm⁻¹): v_{max} 2252, 2126,1738, 1659, 1490, 1206, 1027 ; ¹H NMR (200 MHz, DMSO-*d*₆) δ 11.31 (br. s., 1H), 7.48 (d, *J* = 2.7 Hz, 1H), 7.26-7.38 (m, 1H), 6.76-6.89 (m, 2H), 3.43 (s, 3H); ¹³C NMR (50 MHz, DMSO-*d*₆) δ 154.1, 130.4, 126.4, 125.1, 112.8, 99.1, 88.3, 55.3; **HRMS (ESI)**: [M+H]⁺ calcd for [C₉H₈N₄O+H]⁺: 189.0776; found: 189.0772.

3-Azido-5-nitro-1*H*-indole (2c):

Yield: 86% (170 mg), yellow solid; mp: 60°C decomposed; IR (KBr, cm⁻¹): v_{max} 2255, 2128, 1658, 1338, 1025; ¹H NMR (200 MHz, DMSO-*d*₆) δ 12.21 (br. s., 1H), 8.31 (d, *J* = 2.3 Hz, 1H), 8.06 (dd, *J* = 9.1, 2.3 Hz, 1H), 7.87 (d, *J* = 2.7 Hz, 1H), 7.63 (d, *J* = 9.0 Hz, 1H); ¹³C NMR (50

MHz, DMSO-*d*₆) δ 140.9, 138.2, 128.6, 125.3, 117.1, 114.6, 112.6, 90.7; **HRMS (ESI)**: [M+H]⁺ calcd for [C₈H₅N₅O₂+H]⁺: 204.0521; found: 204.0526.

3-Azido-5-bromo-1*H*-indole (2d):

Yield: 82% (200 mg), brown solid, **mp**: 60°C decomposed; **IR** (KBr, cm⁻¹): v_{max} 2250, 2124, 1659, 1028; ¹H NMR (200 MHz, DMSO-*d*₆): δ 11.68 (br. s., 1H), 7.54 (d, *J* = 1.8 Hz, 1H), 7.62 (d, *J* = 2.5 Hz, 1H), 7.41 (d, *J* = 8.6 Hz, 1H), 7.29 (dd, *J* = 8.6, 1.9 Hz, 1H); ¹³C NMR (50 MHz, DMSO-*d*₆): δ 134.1, 127.9, 126.51, 124.8, 120.1, 114.2, 112.4, 87.8; **HRMS (ESI)**: [M+H]⁺ calcd for [C₈H₅BrN₄+H]⁺: 236.9776; found: 236.9769.

3-Azido-5-chloro-1*H*-indole (2e):

Yield: 87% (190 mg), colorless solid; mp: 60 °C decomposed; IR (KBr, cm⁻¹): v_{max} 2250, 2124, 1659, 1028; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.69 (br. s., 1H), 7.59 - 7.71 (m, 1H), 7.46 (d, *J* = 8.2 Hz, 1H), 7.40 (s, 1H), 7.16 - 7.21 (m, 1H); ¹³C NMR (50 MHz, DMSO-*d*₆) δ 133.9, 127.2, 126.7, 124.6, 122.3, 117.0, 113.8, 88.0; HRMS (ESI): [M+H]⁺ calcd for [C₈H₅ClN₄+H]⁺: 193.0281; found: 193.0285.

3-Azido-4-bromo-1*H*-indole (2f):

Yield: 81% (195 mg), colorless solid, **mp**: 60 °C decomposed; **IR** (KBr, cm⁻¹): v_{max} 625, 762, 823, 1024, 1658, 2122, 2253, 3436¹**H NMR** (200 MHz, DMSO-*d*₆) δ 11.85 (br. s., 1H), 7.66 (d, *J* = 2.7 Hz, 1H), 7.48 (d, *J* = 8.1 Hz, 1H), 7.27 (d, *J* = 6.8 Hz, 1H), 6.99 - 7.11 (m, 1H); ¹³**C NMR** (50 MHz, DMSO-*d*₆) δ 136.7, 127.6, 124.4, 123.2, 122.3, 112.3, 112.1, 87.7; **HRMS (ESI)**: [M+H]⁺ calcd for [C₈H₅BrN₄+H]⁺: 236.9776; found: 236.9771.

3-Azido-2-methyl-1*H*-indole (2g):

Yield: 85% (155 mg), brown oil; **IR** (KBr, cm⁻¹): v 700, 747, 798, 949, 1057, 1311, 1429, 1662, 2096, 2220, 2913, 2995, 3442; ¹H NMR (200 MHz, DMSO-*d*₆) δ 11.41 (br. s., 1H), 7.28-7.37 (m, 2H), 7.03-7.16 (m, 2H), ¹³C NMR (50 MHz, DMSO-*d*₆) δ 135.0, 133.5, 127.1, 121.7, 119.9, 117.4, 111.5, 88.0, 12.1; **HRMS (ESI)**: [M+H]⁺ calcd for [C₉H₈N₄+H]⁺: 173.0827; found: 173.0821

3-Azido-2-phenyl-1*H*-indole (2h):

Yield: 87% (210 mg), brown solid, **mp**: 60°C decomposed; IR (KBr, cm-1): v 700, 798, 949, 1060, 1312, 1429, 1661, 2096, 2221, 2912, 2995, 3440; ¹H NMR (200 MHz, DMSO-*d*₆) δ 11.87 (s, 1H), 7.85-7.93 (m, 2H), 7.51-7.60 (m, 2H), 7.41-7.48 (m, 3H), 7.09-7.27 (m, 2H); ¹³C NMR (50 MHz, DMSO-*d*₆) δ 134.7, 133.4, 130.3, 127.9, 127.5, 126.9, 122.2, 119.5, 117.6, 111.1, 86.8, 38.7; **HRMS (ESI)**: [M+H]⁺ calcd for [C₁₄H₁₀N₄+H]⁺: 235.0984; found: 235.0986.

Ethyl 3-azido-1*H*-indole-2-carboxylate (2i):

Yield: 89% (216 mg), colorless solid, **mp**: 60°C decomposed; IR (KBr, cm-1): v 685, 745, 1020, 1197, 1261, 1377, 1458, 1685, 2111, 2856, 2922, 3294; ¹**H NMR** (400 MHz, MeOH- d_4) δ 7.93 (d, J = 8.2 Hz, 1H), 7.85 (d, J = 8.7 Hz, 1H), 7.71 (t, J = 7.8 Hz, 1H), 7.46-7.61 (m, 1H), 4.77 (q, J = 7.0 Hz, 2H), 1.78 (t, J = 7.1 Hz, 3H); ¹³C **NMR** (100 MHz, MeOH- d_4) δ 161.9, 137.5, 128.8, 127.4, 125.6, 122.5, 121.7, 114.1, 97.8, 62.3, 40.0, 15.1; **HRMS** (**ESI**): [M+H]⁺ calcd for [C₁₁H₁₀N₄O₂+H]⁺: 231.0882; found: 231.0885.

3-Azido-1-methyl-1*H*-indole (2j):

Yield: 54% (93 mg), colorless oil; IR (KBr, cm-1): v 701, 747, 1055, 1244, 1314, 1428, 2094, 2913, 2995; ¹H NMR (200 MHz, DMSO-*d*₆) δ 7.34-7.62 (m, 3H), 7.06-7.30 (m, 2H), 3.77 (s, 3H); ¹³C NMR (50 MHz, DMSO-*d*₆) δ 135.54, 128.2, 126.0, 121.8, 119.5, 117.8, 109.9, 87.0,

39.9, 39.1, 38.7, 38.3, 32.8; **HRMS (ESI)**: [M+H]⁺ calcd for [C₉H₈N₄+H]⁺: 173.0827; found: 173.0831.

1-Benzylindoline-2,3-dione (2k):

Yield: 60% (142 mg), orange solid, **mp.** 135-136 °C; IR (KBr, cm-1): v 626, 753, 1003, 1077, 1175, 1470, 1614, 1732, 3029, 3084, 3454; ¹**H NMR** (200 MHz,CDCl₃) δ 7.60-7.66 (m, 1H), 7.44-7.55 (m, 1H), 7.31-7.38 (m, 5H), 7.12 (d, *J* = 8.2 Hz, 1H), 6.78 (d, *J* = 8.0 Hz, 1H), 4.95 (s, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 183.2, 158.3, 150.7, 138.3, 134.5, 129.1, 128.2, 127.4, 125.4, 123.9, 117.7, 110.9, 44.1; **HRMS (ESI)**: [M+H]⁺ calcd for [C₁₅H₁₁NO₂+H]⁺: 238.0868; found: 238.0872.

3-azido-5-nitro-1*H*-indazole (21):

Yield: 60% (135 mg), colorless solid, **mp**: 60 °C decomposed; IR (KBr, cm-1): v 745, 1084, 1341, 1457, 1528, 1619, 2105, 2856, 2923, 3400; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.46 (d, *J* = 1.8 Hz, 1H), 8.25 (dd, *J* = 9.2, 1.8 Hz, 1H), 7.77 (d, *J* = 9.2 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 142.9, 142.3, 123.7, 122.3, 121.5, 117.1, 112.2; **HRMS (ESI)**: [M+H]⁺ calcd for [C₇H₄N₆O₂H+]⁺: 205.0474; found: 205.0469.

5-nitro-1*H*-indol-3-amine (4c):

Yield: 92% (200 mg), brown sticky gum; ¹**H NMR** (200 MHz, CDCl₃) δ 10.83-11.03 (m, 1H), 7.56 (br. s., 1H), 7.40-7.50 (m, 1H), 7.28 (br. s., 1H), 7.09 (br. s., 1H), 6.35-6.45 (m, 2H); ¹³**C NMR** (50 MHz, CDCl₃) δ 133.6, 126.7, 125.5, 122.9, 114.2, 112.3, 111.2, 100.1, 38.6; **HRMS (ESI)**: [M+H]⁺ calcd for [C₈H₈N₃O₂H+]⁺: 178.0617; found: 178.0620.

2-phenyl-1*H*-indol-3-amine (4h):

Yield: 92% (198 mg), gum; ¹H NMR (400 MHz, DMSO- d_6) δ 6.69 (t, J = 7.6 Hz, 1H), 6.93-7.03 (m, 2H), 7.27-7.39 (m, 2H), 7.46 (t, J = 7.6 Hz, 3H), 7.64-7.70 (m, 2H), 11.18 (s, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 136.1, 134.4, 133.1, 128.8, 128.7, 128.2, 127.3, 121.2, 119.2, 118.5, 111.1, 110.8; HRMS (ESI): [M+H]⁺ calcd for [C₁₄H₁₂N₂+H]⁺: 209.1079 ; found: 209.1084.

3-(4-phenyl-1*H***-1,2,3-triazol-1-yl)-1***H***-indole (5):**

Yield: 92% (245 mg), amber colored gum; ¹**H NMR** (400 MHz, CDCl₃) δ 8.28 (br. s., 2H), 8.02 (d, *J* = 7.8 Hz, 1H), 7.65 (d, *J* = 8.2 Hz, 1H), 7.37-7.48 (m, 4H), 7.24-7.34 (m, 4H), 7.10-7.21 (m, 3H), 6.80 (d, *J* = 1.8 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 136.5, 136.1, 133.2, 129.5, 125.4, 122.9, 121.4, 121.4, 120.8, 119.9, 119.9, 111.5, 110.5, 99.4; **HRMS (ESI)**: [M+H]⁺ calcd for [C₁₆H₁₂N₄H+]⁺: 261.1140; found: 261.1146.

3-iodo-1H-indole (7):

Yield: 75% (183 mg), brown oil: ¹H NMR (500 MHz, DMSO-d6) δ 7.10 (t, J = 7.4 Hz, 1H), 7.16 (t, J = 7.9 Hz, 1H), 7.27 (d, J = 7.6 Hz, 1H), 7.40 (d, J = 8.2 Hz, 1 H), 7.54 (d, J=2.7 Hz, 1H), 11.5 (br. s., 1 H): δ ¹³C NMR (126 MHz, DMSO-d6) 56.0, 112.0, 119.8, 120.0, 122.2, 129.4, 129.7, 136.0: HRMS (ESI): [M+H]+ calcd for [C8H6NIH+]+: 243.9623; found: 243.9619.

