Supplementary Information

Modifying the phenyl group of PUGNAc: Reactivity tuning to deliver selective inhibitors for N-acetyl-D-glucosaminidases

Mitchell Hattie, a Nevena Cekic, b Aleksandra W. Debowski, a,c David J. Vocadlo, b,d and Keith A. Stubbs a*

a School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, 6009, Australia.
E-mail: keith.stubbs@uwa.edu.au

b Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada

c School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, WA 6009, Australia

d Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
Experimental

General

1H and 13C nuclear magnetic resonance (NMR) spectra were obtained on Bruker ARX500 (500 MHz for 1H and 126 MHz for 13C) or Bruker AV600 or AV600III HD (600 MHz for 1H and 151 MHz for 13C) spectrometers. Solvents used for NMR were: deuteriochloroform (CDCl$_3$) with CHCl$_3$ (1H, δ, 7.26 CDCl$_3$ (13C, δ 77.16) used as an internal standard, tetradeuteriomethanol (CD$_3$OD) with CD$_2$HOD (1H, δ 3.31) or CD$_3$OD (13C, δ 49.00) used as an internal standard, hexadeuteriodimethyl sulfoxide (d$_6$-DMSO) with CD$_2$S(O)CD$_2$H (1H, δ 2.50) or (CD$_3$)$_2$SO (13C, δ 39.52) used as an internal standard, deuterium oxide (D$_2$O) with DHO (1H, δ 4.79) or CH$_3$OH (13C, δ 49.50) used as an internal standard.1 All compounds were dried under vacuum to constant weight before analysis. High resolution mass spectra (HR-MS) were recorded with a Waters LCT Premier XE spectrometer, run in W-mode, using ESI or APCI ionisation methods as indicated, with MeCN:water (9:1) as a matrix. Flash chromatography was performed on BDH silica gel with the specified solvents. Thin layer chromatography (TLC) was performed on Merck silica gel 60 F254 aluminium-backed plates that were stained by heating (>200 °C) with 5% solution of sulfuric acid in EtOH.

O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosylidene)amino O'-(4-nitrophenyl)carbonate 1

N,N-Diisopropylethylamine (37 µL, 0.21 mmol) and 4-nitrophenylchloroformate (0.21 mmol) were added to a stirred solution of hydroximolactone 22 (70 mg, 0.19 mmol) in THF (3.5 mL) at 0°C. After 1.5 h., the reaction mixture was concentrated. Flash chromatography (EtOAc:hexane 7:3) of the residue afforded the carbonate 1 as a colourless oil (43 mg, 36%). 1H NMR (600 MHz, CDCl$_3$): δ 8.27 (AA‘BB’, 2H), 7.41 (AA‘BB’, 2H), 7.07 (d, $J = 8.0$ Hz, 1H), 5.43 (dd, $J = 9.2$, 9.2 Hz, 1H), 5.32 (dd, $J = 8.8$, 8.8 Hz, 1H), 4.80 (dd, $J = 8.2$, 9.2 Hz, 1H), 4.59 (ddd, $J = 2.5$, 3.5, 8.6 Hz, 1H), 4.46 (dd, $J = 3.5$, 13.0 Hz, 1H), 4.31 (dd, $J = 2.5$, 13.0 Hz, 1H), 2.12 (s, 3H), 2.05 (s, 3H), 2.00 (s, 3H), 1.99 (s, 3H). 13C NMR (151 MHz, CDCl$_3$): δ 171.1, 170.3, 170.0, 169.2, 158.8, 155.0, 151.1, 145.6, 125.4, 121.6, 77.6, 71.3, 67.0, 61.2, 49.8, 22.6, 20.6, 20.44, 20.4. HR-MS (APCI) m/z 548.1138; [M+Na]$^+$ requires 548.1129.
O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosylidene)amino N-phenyl carbamate 3

Method 1: Aniline (21 µL, 0.23 mmol) was added to a stirred solution of DIPEA (13 µL, 0.080 mmol) and the 4-nitrophenylcarbonate 1 (40 mg, 0.076 mmol) in THF (2.0 mL) at 0°C. After 24 h., the reaction mixture was concentrated and the residue dissolved in CH₂Cl₂, washed with water (15 mL), brine (15 mL), dried (MgSO₄), filtered and concentrated. Flash chromatography (EtOAc:hexane 7:3) of the residue yielded the triacetate 3 as a colourless oil (30 mg, 50%). The ¹H and ¹³C NMR spectra was consistent with that found in the literature.²

Method 2: N,N-Diisopropylethylamine (37 µL, 0.21 mmol) and 4-nitrophenylchloroformate (43 mg, 0.21 mmol) were added to a stirred solution of hydroximolactone 2² (70 mg, 0.19 mmol) in THF (3.5 mL) at 0°C. After 1.5 h., aniline (0.21 mmol) and DIPEA (37 µL, 0.21 mmol) were added at 0°C and the reaction mixture was concentrated once all the *in situ* carbonate 1 was consumed, as judged by TLC. Flash chromatography of the resultant residue (EtOAc:hexane 7:3) yielded the triacetate 3 as a colourless oil (56 mg, 69%).

General preparation of 3,4,6-tri-O-acetyl carbamates 4-33, using the in situ method.

Procedure 1

N,N-Diisopropylethylamine (1.1 equiv) and 4-nitrophenylchloroformate (1.1 equiv) were added to a stirred solution of 2² (1.0 equiv) in THF (20 mL/mmol) at 0°C. After 1.5 h., the appropriate amine (1.1 equiv) and DIPEA (1.5 equiv) were added at 0°C and the reaction mixture was concentrated once all the *in situ* carbonate 1 was consumed, as judged by TLC.

Procedure 2

N,N-Diisopropylethylamine (1.1 equiv) and 4-nitrophenylchloroformate (1.1 equiv) were added to a stirred solution of 2² (1.0 equiv) in THF (20 mL/mmol) at 0°C. After 1.5 h., the appropriate amine hydrochloride (1.1 equiv) and DIPEA (2.5 equiv) were added at 0°C and the reaction mixture was concentrated once all the *in situ* carbonate 1 was consumed, as judged by TLC.
O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosylidene)amino \(N - (4\text{-methylphenyl}) \) carbamate 4

Using 2 and 4-methylaniline according to Procedure 1 and flash chromatography (EtOAc:hexane 3:1) yielded the triacetate 4 as a colourless oil (60 mg, 64%). \(R_f \) 0.32 (EtOAc:hexane 7:3). \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta \) 7.51 (br s, 1H), 7.29 (AA'BB', 2H), 7.13 (AA'BB', 2H), 6.41 (d, \(J = 8.0 \) Hz, 1H), 5.36-5.32 (m, 2H), 4.96 (dd, \(J = 8.5, 9.0 \) Hz, 1H), 4.47-4.41 (m, 2H), 4.33 (dd, \(J = 2.0, 12.5 \) Hz, 1H), 2.31 (s, 3H), 2.14 (s, 3H), 2.08 (s, 6H), 2.04 (s, 3H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta \) 170.5, 170.4, 170.3, 169.1, 154.8, 151.7, 134.2, 134.0, 129.9, 119.4, 77.4, 71.3, 67.2, 61.3, 49.5, 23.0, 20.8, 20.7, 20.6, 20.5. HR-MS (APCI) \(m/z \) 494.1775; [M+H]\(^+\) requires 494.1775.

O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosylidene)amino \(N - (4\text{-methoxyphenyl}) \) carbamate 5

Using 2 and 4-anisidine according to Procedure 1 and flash chromatography (EtOAc:hexane 4:1) yielded the triacetate 5 as a colourless oil (60 mg, 95%). \(R_f \) 0.30 (EtOAc:hexane, 4:1). \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta \) 7.47 (br s, 1H), 7.32 (AA'BB', 2H), 6.87 (AA'BB', 2H), 6.44 (d, \(J = 8.5 \) Hz, 1H), 5.37-5.31 (m, 2H), 4.97 (dd, \(J = 8.5, 8.5 \) Hz, 1H), 4.46-4.32 (m, 3H), 3.79 (s, 3H), 2.14 (s, 3H), 2.08 (s, 6H), 2.03 (s, 3H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta \) 170.5, 170.4, 170.3, 169.1, 154.8, 141.7, 134.0, 129.9, 119.4, 77.4, 71.3, 67.2, 61.3, 55.5, 49.5, 23.0, 20.7, 20.6, 20.5. HR-MS (APCI) \(m/z \) 532.1525; [M+Na]\(^+\) requires 532.1543.

O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosylidene)amino \(N - (4\text{-bromophenyl}) \) carbamate 6

Using 2 and 4-bromoaniline according to Procedure 1 and flash chromatography (EtOAc:hexane 7:3) yielded the triacetate 6 as a colourless oil (20 mg, 23%). \(R_f \) 0.27 (EtOAc:hexane 7:3). \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta \) 7.76 (br s, 1H), 7.42 (AA'BB', 2H), 7.33 (AA'BB', 2H), 6.87 (d, \(J = 7.5 \) Hz, 1H), 5.39 (dd, \(J = 8.5, 8.5 \) Hz, 1H), 5.33 (dd, \(J = 9.0, 9.0 \) Hz, 1H), 4.84 (d, \(J = 8.5, 8.5 \) Hz, 1H), 4.51 (dd, \(J = 2.5, 3.0, 8.5 \) Hz, 1H), 4.41 (dd, \(J = 3.5, 13.0 \) Hz, 1H), 4.31 (dd, \(J = 2.5, 13.0 \) Hz, 1H), 2.11 (s, 3H), 2.06 (s, 3H), 2.04, (s, 3H), 2.02 (s, 3H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta \) 170.6, 170.4, 170.2, 169.1, 155.6, 154.7, 151.2, 136.1, 132.1, 120.1, 116.8, 77.2, 71.3, 67.1, 61.2,
49.7, 22.9, 20.62, 20.6, 20.5. HR-MS (APCI) m/z 558.0717; [M+H]^+ requires 558.0723.

O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosylidene)amino N-benzyl carbamate 7

Using **2** and BnNH₂ according to Procedure 1 and flash chromatography (EtOAc:hexane 9:1) yielded the triacetate 7 as a colourless oil (54 mg, 55%). *Rf* 0.35 (EtOAc:hexane 9:1).¹H NMR (500 MHz, CDCl₃): δ 7.36-7.27 (m, 5H), 6.14 (d, *J* = 9.0 Hz, 1H), 5.97 (t, *J* = 5.0 Hz, 1H), 5.34 (dd, *J* = 8.5, 8.5 Hz, 1H), 5.26 (dd, *J* = 10.0, 10.0 Hz, 1H), 4.97 (dd, *J* = 8.5, 10.0 Hz, 1H), 4.49-4.37 (m, 3H), 4.29 (dd, *J* = 1.5, 12.5 Hz, 1H), 2.13 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H), 1.95 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 170.5, 170.4, 170.1, 128.8, 127.6, 77.5, 71.4, 67.3, 61.4, 49.4, 45.3, 22.9, 20.64, 20.6, 20.5. HR-MS (APCI) m/z 516.1590; [M+Na]^+ requires 516.1594.

O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosylidene)amino N-cyclopropylcarbamate 8

Using **2** and cyclopropylamine according to Procedure 1 and flash chromatography (EtOAc:hexane 3:1) yielded the triacetate 8 as a colourless oil (68 mg, 89%). *Rf* 0.28 (EtOAc:hexane 3:1).¹H NMR (500 MHz, CDCl₃): δ 6.52 (d, *J* = 6.0 Hz, 1H), 5.49 (s, 1H), 5.34-5.27 (m, 2H), 5.28 (dd, *J* = 8.5, 8.5 Hz, 1H), 4.94 (dd, *J* = 9.0, 9.0 Hz, 1H), 4.45-4.39 (m, 2H), 4.29 (dd, *J* = 3.0, 13.0 Hz, 1H), 2.67-2.61 (m, 1H), 2.12 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H), 0.79-0.73 (m, 2H), 0.58-0.54 (m, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 170.4, 170.3, 169.1, 155.4, 154.3, 71.5, 67.3, 61.4, 49.3, 22.9, 22.6, 20.63, 20.6, 20.5, 6.8. HR-MS (APCI) m/z 444.1603; [M+H]^+ requires 444.1618.

O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosylidene)amino N-cyclobutylcarbamate 9

Using **2** and cyclobutylamine according to Procedure 1 and flash chromatography (EtOAc:hexane 9:1) yielded the triacetate 9 as a colourless oil (72 mg, 53%). *Rf* 0.29 (EtOAc:hexane 9:1).¹H NMR (500 MHz, CDCl₃): δ 6.40 (d, *J* = 8.5 Hz, 1H), 5.78 (d, *J* = 7.5 Hz, 1H), 5.33 (dd, *J* = 8.5, 8.5 Hz, 1H), 5.28 (dd, *J* = 8.5, 8.5 Hz, 1H), 4.96
Using 2 and cyclohexylamine according to Procedure 1 and flash chromatography (EtOAc:hexane 3:1) yielded the triacetate 11 as a colourless oil (67 mg, 76%). Rf 0.25 (EtOAc:hexane 7:3). 1H NMR (500 MHz, CDCl₃): δ 6.18 (d, J = 8.5 Hz, 1H), 5.54 (d, J = 8.0 Hz, 1H), 5.35 (dd, J = 8.5, 8.5 Hz, 1H), 5.25 (dd, J = 10.0, 10.0 Hz, 1H), 5.00 (dd, J = 9.0, 9.0 Hz, 1H), 4.41 (dd, J = 3.5, 12.5 Hz, 1H), 4.35 (ddd, J = 2.5, 3.5, 12.5 Hz, 1H), 4.30 (dd, J = 2.5, 12.5 Hz, 1H), 3.58-3.56 (m, 1H), 2.14 (s, 3H), 2.08 (br s, 2H), 2.07 (s, 3H), 2.03, (s, 3H), 1.97-1.94 (m, 2H), 1.72-1.68 (m, 2H), 1.41-1.31 (m, 3H), 1.22-1.15 (m, 3H). 13C NMR (126 MHz, CDCl₃): δ 170.44, 170.4, 170.1, 169.1, 153.6, 153.4, 71.4, 67.3, 61.4, 50.1, 49.5, 33.0, 25.4, 24.6, 23.0, 20.7, 20.6, 20.5. HR-MS (APCI) m/z 486.2081; [M+H]^+ requires 486.2088.
Using 2 and adamant-1-ylamine according to Procedure 1 and flash chromatography (EtOAc:hexane 3:1) yielded the triacetate 12 as a colourless oil (99 mg, 86%). R_f 0.29 (EtOAc:hexane 3:1). 1H NMR (500 MHz, CDCl$_3$): δ 6.22 (d, J = 7.0 Hz, 1H), 5.44 (br s, 1H), 5.36 (dd, J = 9.0, 10.0 Hz, 1H), 5.00 (dd, J = 9.0, 10.0 Hz, 1H), 4.40 (dd, J = 3.0, 12.0 Hz, 1H), 4.35-4.29 (m, 2H), 2.14 (s, 3H), 2.09 (br s, 2H), 2.07 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H), 1.96 (br s, 6H), 1.68 (br s, 6H). 13C NMR (126 MHz, CDCl$_3$): δ 170.43, 170.4, 170.3, 153.2, 152.0, 77.4, 71.5, 67.3, 61.4, 51.4, 49.4, 41.5, 36.2, 29.4, 23.0, 20.7, 20.6, 20.5. HR-MS (APCI) m/z 538.2423; [M+H]$^+$ requires 538.2401.

Using 2 and glycinamide 3 according to Procedure 1 and flash chromatography (MeOH:EtOAc 1:9) yielded the triacetate 13 as a colourless oil (43 mg, 61%). R_f 0.15 (EtOAc:hexane:MeOH 75:23:2). 1H NMR (600 MHz, CDCl$_3$): δ 7.17 (d, J = 8.4 Hz, 1H), 7.15 (dd, J = 5.4, 6.0 Hz, 1H), 6.62 (br s, 1H), 6.17 (br s, 1H), 5.38 (dd, J = 9.0, 9.0 Hz, 1H), 5.34 (dd, J = 9.0, 9.0 Hz, 1H), 4.98 (dd, J = 9.0, 9.0 Hz, 1H), 4.58-4.55 (m, 1H), 4.41 (dd, J = 2.4, 12.6 Hz, 1H), 4.31 (dd, J = 1.8, 12.6 Hz, 1H), 3.96 (dd, J = 6.0, 16.2 Hz, 1H), 3.82 (dd, J = 5.4, 16.2 Hz, 1H), 2.12 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 2.02, (s, 3H). 13C NMR (151 MHz, CDCl$_3$): δ 171.9, 171.1, 170.6, 170.4, 169.2, 155.8, 154.8, 71.4, 67.2, 61.2, 49.2, 43.9, 22.8, 20.6, 20.5. HR-MS (APCI) m/z 461.1514; [M+H]$^+$ requires 461.1520.

Using 2 and (S)-alaninamide 4 according to Procedure 1 and flash chromatography (MeOH:EtOAc 3:97) yielded the triacetate 14 as a colourless oil (90 mg, 89%). R_f 0.40 (MeOH:EtOAc 1:19). 1H NMR (500 MHz, CDCl$_3$): δ 7.00-6.98 (m, 2H), 6.12 (br s, 1H), 5.71 (br s, 1H), 5.39 (dd, J = 9.0, 9.0 Hz, 1H), 5.33 (dd, J = 10.0, 10.0 Hz, 1H), 5.01 (dd, J = 9.5, 9.5 Hz, 1H), 4.67-4.64 (m, 1H), 4.40 (dd, J = 2.5, 13.0 Hz, 1H), 4.30 (dd, J = 1.5, 13.0 Hz, 1H), 4.22 (quintet, J = 6.5 Hz, 1H), 2.12 (s, 3H), 2.07
Using 2 and (S)-2-amino-3-hydroxypropanamide\(^5\) according to Procedure 1 and flash chromatography (MeOH/EtOAc 3:47) gave the triacetate 15 as a colourless oil (70 mg, 64%). \(R_f\) 0.15 (MeOH/EtOAc 3:47). \(^1\)H NMR (500 MHz, CD\(_3\)OD) \(\delta\) 5.44 (dd, \(J = 8.9, 8.9\) Hz, 1H), 5.34 (dd, \(J = 8.9, 8.9\) Hz, 1H), 4.87 (dd, \(J = 9.1, 9.1\) Hz, 1H), 4.60-4.56 (m, 3H), 4.45 (dd, \(J = 4.0, 12.9\) Hz, 1H), 4.41-4.28 (m, 2H), 4.25 (dd, \(J = 4.6, 4.6\) Hz, 1H), 3.85 (dd, \(J = 4.7, 11.2\) Hz, 1H), 3.80 (dd, \(J = 4.7, 11.2\) Hz, 1H), 2.10 (s, 3H), 2.06 (s, 3H), 2.04 (s, 3H), 2.01 (s, 3H). \(^{13}\)C NMR (126 MHz, CD\(_3\)OD) \(\delta\) 174.6, 173.7, 172.1, 171.4, 171.0, 156.9, 156.4, 78.4, 72.5, 62.7, 57.8, 50.6, 22.6, 20.6, 20.5, 20.5. HR-MS (APCI) \(m/z\) 491.1619; [M+H]\(^+\) requires 491.1625.

Using 2 and (S)-phenylalaninamide\(^6\) according to Procedure 1 and flash chromatography (MeOH:EtOAc 1:39) yielded the triacetate 16 as a colourless oil (83 mg, 78%). \(R_f\) 0.17 (EtOAc:hexane:MeOH 75:23:2). \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta\) 7.31-7.24 (m, 6H), 7.02 (d, \(J = 8.4\) Hz, 1H), 5.95 (br s, 1H), 5.72 (br s, 1H), 5.38 (dd, \(J = 9.0, 9.0\) Hz, 1H), 5.28 (dd, \(J = 9.6, 9.6\) Hz, 1H), 5.01 (dd, \(J = 9.0, 9.0\) Hz, 1H), 4.68-4.66 (m, 1H), 4.39-4.34 (m, 2H), 4.29 (dd, \(J = 2.4, 12.0\) Hz, 1H), 4.20 (dd, \(J = 7.2, 14.8\) Hz, 1H), 3.10 (dd, \(J = 7.8, 13.8\) Hz, 1H), 2.11 (s, 3H), 2.03 (s, 3H), 2.02 (s, 6H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)): \(\delta\) 174.2, 170.7, 170.6, 170.4, 169.1, 155.4, 154.3, 72.0, 66.7, 60.8, 57.1, 49.2, 38.0, 22.8, 20.7, 20.6, 20.5. HR-MS (APCI) \(m/z\) 551.1979; [M+H]\(^+\) requires 551.1989.

Using 2 and the hydrochloride\(^7\) according to Procedure 2 and flash chromatography
(MeOH/EtOAc 1:19) gave the triacetate 17 as a white solid (85 mg, 70%). R_t 0.35 (EtOAc). 1H NMR (600 MHz, CDCl$_3$) δ 7.10 (t, J = 5.7 Hz, 1H), 6.91 (d, J = 8.5 Hz, 1H), 6.21 (t, J = 5.6 Hz, 1H), 5.38 (dd, J = 9.0, 9.0 Hz, 1H), 5.33 (dd, J = 8.6, 8.6 Hz, 1H), 4.98 (dd, J = 8.9, 8.9 Hz, 1H), 4.58 (ddd, J = 2.9, 2.9, 8.7 Hz, 1H), 4.42 (dd, J = 3.3, 12.9 Hz, 1H), 4.28 (dd, J = 2.5, 12.9 Hz, 1H), 3.94 (dd, J = 5.9, 16.4 Hz, 1H), 3.77 (dd, J = 5.2, 16.3 Hz, 1H), 3.36-3.12 (m, 2H), 2.12 (s, 3H), 2.05 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H), 1.52-1.47 (m, 2H), 1.38-1.18 (m, 6H), 0.88 (app t, J = 6.8 Hz, 3H).

13C NMR (151 MHz, CDCl$_3$) δ 170.9, 170.6, 170.3, 169.3, 169.01, 155.8, 154.7, 77.4, 71.6, 67.4, 61.3, 49.4, 44.6, 40.0, 31.6, 29.5, 26.7, 23.0, 22.7, 20.8, 20.7, 14.1. HR-MS (APCI) m/z 545.2458; [M+H]$^+$ requires 545.2459.

O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosylidene)amino N-methyl carbamate 18

Using 2 and methylamine hydrochloride according to Procedure 2 and flash chromatography (MeOH/EtOAc 3:97) gave the triacetate 18 as a white solid (40 mg, 57%). The 1H NMR spectrum was consistent with that found in the literature.8

O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosylidene)amino N-ethyl carbamate 19

Using 2 and ethylamine hydrochloride according to Procedure 2 and flash chromatography (EtOAc) gave the triacetate 19 as a colourless oil (59 mg, 83%). R_t 0.32 (EtOAc). 1H NMR (500 MHz, CDCl$_3$) δ 6.54 (d, J = 8.5 Hz, 1H), 5.69 (br s, 1H), 5.46-5.22 (m, 2H), 4.97 (dd, J = 8.9, 8.9 Hz, 1H), 4.45-4.26 (m, 3H), 3.36 – 3.25 (m, 2H), 2.13 (s, 3H), 2.07 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H), 1.18 (app t, J = 7.2 Hz, 3H).

13C NMR (126 MHz, CDCl$_3$) δ 170.5, 170.5, 169.3, 154.8, 154.2, 71.7, 67.5, 61.5, 49.4, 36.3, 23.1, 20.8, 20.8, 20.7, 15.1. HR-MS (APCI) m/z 432.1621; [M+H]$^+$ requires 432.1618.

O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosylidene)amino N-(prop-1-yl)carbamate 20

Using 2 and 1-propylamine according to Procedure 1 and flash chromatography (EtOAc:hexane 17:3) yielded the triacetate 20 as a colourless oil (64 mg, 71%). R_t 0.26 (EtOAc:hexane 4:1). 1H NMR (500 MHz, CDCl$_3$): δ 7.01 (d, J = 8.5 Hz, 1H),
5.93 (t, \(J = 5.5\) Hz, 1H), 5.32 (dd, \(J = 8.0, 8.0\) Hz, 1H), 5.28 (dd, \(J = 8.5, 8.5\) Hz, 1H), 4.88 (dd, \(J = 8.5, 8.5\) Hz, 1H), 4.50 (ddd, \(J = 2.5, 3.5, 8.0\) Hz, 1H), 4.40 (dd, \(J = 3.5, 12.5\) Hz, 1H), 4.27 (dd, \(J = 2.5, 13.0\) Hz, 1H), 3.19-3.15 (m, 2H), 2.09 (s, 3H), 2.04 (s, 6H), 1.99 (s, 3H), 1.54 (heptet, \(J = 7.5\) Hz, 2H) 0.91 (t, \(J = 7.5\) Hz, 3H). 13C NMR (126 MHz, CDCl3): \(\delta\) 170.4, 170.4, 170.0, 169.1, 155.1, 154.1, 76.7, 71.4, 67.3, 61.2, 49.3, 42.8, 22.8, 22.76, 20.5, 20.55, 20.5, 11.1. HR-MS (APCI) \(m/z\) 446.1781; [M+H]+ requires 446.1775.

O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosylidene)amino \(N\)-(but-1-yl)carbamate 21

Using 2 and 1-butylamine according to Procedure 1 and flash chromatography (EtOAc:hexane 9:1) yielded the triacetate 21 as a colourless oil (67 mg, 71%). \(R_f\) 0.28 (EtOAc:hexane 4:1). 1H NMR (500 MHz, CDCl3): \(\delta\) 6.96 (d, \(J = 8.0\) Hz, 1H), 5.87 (t, \(J = 5.5\) Hz, 1H), 5.32 (dd, \(J = 8.5, 8.5\) Hz, 1H), 5.29 (dd, \(J = 8.0, 8.0\) Hz, 1H), 4.89 (dd, \(J = 8.5, 8.5\) Hz, 1H), 4.90 (ddd, \(J = 2.5, 3.5, 8.0\) Hz, 1H), 4.40 (dd, \(J = 3.5, 12.5\) Hz, 1H), 4.28 (dd, \(J = 2.5, 12.5\) Hz, 1H), 3.23-3.18 (m, 2H), 2.10 (s, 3H), 2.04 (s, 6H), 2.00 (s, 3H), 1.52-1.47 (m, 2H), 1.37-1.31 (m, 2H), 0.91 (t, \(J = 7.5\) Hz, 3H). 13C NMR (126 MHz, CDCl3): \(\delta\) 170.41, 170.4, 170.0, 169.1, 155.0, 154.1, 71.4, 67.3, 61.2, 49.3, 40.9, 31.6, 22.8, 20.6, 20.5, 19.8, 13.6. HR-MS (APCI) \(m/z\) 460.1938; [M+H]+ requires 460.1931.

O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosylidene)amino \(N\)-(hex-1-yl)carbamate 22

Using 2 and 1-hexylamine according to Procedure 1 and flash chromatography (EtOAc:hexane 4:1) yielded the triacetate 22 as a colourless oil (69 mg, 69%). \(R_f\) 0.33 (EtOAc:hexane 4:1). 1H NMR (600 MHz, CDCl3): \(\delta\) 6.99 (d, \(J = 8.4\) Hz, 1H), 5.88 (t, \(J = 5.4\) Hz, 1H), 5.32 (dd, \(J = 8.4, 8.4\) Hz, 1H), 5.28 (dd, \(J = 7.8, 7.8\) Hz, 1H), 4.87 (dd, \(J = 7.8, 7.8\) Hz, 1H), 4.99 (ddd, \(J = 2.4, 3.0, 8.4\) Hz, 1H), 4.40 (dd, \(J = 3.0, 12.6\) Hz, 1H), 4.28 (dd, \(J = 2.4, 12.6\) Hz, 1H), 3.24-3.17 (m, 2H), 2.09 (s, 3H), 2.04 (s, 6H), 1.99 (s, 3H), 1.51-1.49 (m, 2H), 1.33-1.23 (m, 6H), 0.86 (t, \(J = 6.6\) Hz, 3H). 13C NMR (151 MHz, CDCl3): \(\delta\) 170.4, 170.0, 169.1, 155.0, 154.1, 76.7, 71.4, 67.3, 61.2, 49.3, 41.2, 31.3, 29.5, 26.3, 22.8, 22.5, 20.6, 20.54, 20.5, 13.9. HR-MS (APCI) \(m/z\) 488.2259; [M+H]+ requires 488.2244.
Using 2 and 2-propylamine according to Procedure 1 and flash chromatography (EtOAc:hexane 4:1) yielded the triacetate 23 as a colourless oil (48 mg, 67%). *R*$_f$ 0.34 (EtOAc:hexane 4:1). ¹H NMR (500 MHz, CDCl$_3$): δ 6.23 (d, *J* = 8.0 Hz, 1H), 5.47 (d, *J* = 7.0 Hz, 1H), 5.34 (dd, *J* = 8.5, 8.5 Hz, 1H), 5.27 (dd, *J* = 9.5, 9.5 Hz, 1H), 4.97 (dd, *J* = 9.5, 9.5 Hz, 1H), 4.43-4.37 (m, 2H), 4.30 (dd, *J* = 2.5, 12.5 Hz, 1H), 3.92-3.84 (m, 1H), 2.13 (s, 3H), 2.08 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H), 1.20 (t, *J* = 6.5 Hz, 6H). ¹³C NMR (126 MHz, CDCl$_3$): δ 170.4, 170.2, 169.1, 153.7, 153.7, 71.5, 67.3, 61.4, 49.4, 43.5, 23.0, 22.8, 22.7, 20.7, 20.6, 20.5. HR-MS (APCI) *m/z* 446.1776; [M+H]$^+$ requires 446.1775.

Using 2 and 2-methylpropylamine according to Procedure 1 and flash chromatography (EtOAc:hexane 4:1) yielded the triacetate 24 as a colourless oil (73 mg, 74%). *R*$_f$ 0.23 (EtOAc:hexane 4:1). ¹H NMR (500 MHz, CDCl$_3$): δ 6.22 (d, *J* = 8.5 Hz, 1H), 5.78 (t, *J* = 5.5 Hz, 1H), 5.35 (dd, *J* = 8.5, 8.5 Hz, 1H), 5.27 (dd, *J* = 9.0, 9.0 Hz, 1H), 4.98 (dd, *J* = 8.5, 8.5 Hz, 1H), 4.44-4.38 (m, 2H), 4.30 (dd, *J* = 2.0, 12.5 Hz, 1H), 3.13-3.04 (m, 2H), 2.13 (s, 3H), 2.08 (s, 3H), 2.07 (s, 3H), 1.81 (septet, *J* = 7.5 Hz, 1H) 0.93 (d, *J* = 6.5 Hz, 6H). ¹³C NMR (126 MHz, CDCl$_3$): δ 170.4, 170.4, 170.2, 169.1, 154.8, 153.7, 77.3, 71.4, 67.3, 61.4, 49.4, 48.5, 28.5, 23.0, 20.6, 20.6, 20.5, 19.9. HR-MS (APCI) *m/z* 460.1943; [M+H]$^+$ requires 460.1931.

Using 2 and 2-methylprop-2-ylamine according to Procedure 1 and flash chromatography (EtOAc:hexane 7:3) yielded the triacetate 25 as a colourless oil (62 mg, 62%). *R*$_f$ 0.45 (EtOAc:hexane 7:3). ¹H NMR (500 MHz, CDCl$_3$): δ 6.84 (d, *J* = 6.5 Hz, 1H), 5.61 (br s, 1H), 5.32-5.30 (m, 2H), 4.93 (dd, *J* = 9.0, 9.0 Hz, 1H), 4.43-4.38 (m, 2H), 4.28 (dd, *J* = 2.0, 12.5 Hz, 1H), 2.10 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H), 2.00 (s, 3H), 1.40 (s, 9H). ¹³C NMR (126 MHz, CDCl$_3$): δ 170.7, 170.4, 170.2, 169.1, 153.7, 153.1, 77.1, 71.5, 67.3, 61.3, 51.1, 49.4, 28.6, 22.8, 20.6, 20.5, 20.5. HR-MS
O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosylidene)amino N-(prop-2-en-1-yl)carbamate 26

Using 2 and allylamine according to Procedure 1 and flash chromatography (EtOAc:hexane 4:1) yielded the triacetate 26 as a colourless oil (66 mg, 63%). R\textsubscript{f} 0.32 (EtOAc:hexane 4:1). 1H NMR (600 MHz, CDCl\textsubscript{3}): \delta 6.94 (d, \textit{J} = 8.4 Hz, 1H), 6.00 (t, \textit{J} = 5.4 Hz, 1H), 5.83 (ddt, \textit{J} = 5.2, 10.2, 16.8 Hz, 1H), 5.33 (dd, \textit{J} = 8.4, 8.4 Hz, 1H), 5.29 (dd, \textit{J} = 8.4, 8.4 Hz, 1H), 5.19 (dd, \textit{J} = 1.2, 16.8 Hz, 1H), 5.14 (dd, \textit{J} = 1.2, 10.2 Hz, 1H), 4.88 (dd, \textit{J} = 8.4, 8.4 Hz, 1H), 4.51 (ddd, \textit{J} = 1.2, 3.6, 16.8 Hz, 1H), 4.41 (dd, \textit{J} = 3.6, 13.2 Hz, 1H), 4.28 (dd, \textit{J} = 2.4, 13.2 Hz, 1H), 3.84 (dd, \textit{J} = 2.5, 5.4 Hz, 2H) 2.10 (s, 3H), 2.04 (s, 6H), 1.99 (s, 3H). 13C NMR (151 MHz, CDCl\textsubscript{3}): \delta 170.4, 170.4, 170.0, 169.1, 154.9, 154.4, 133.6, 116.5, 71.4, 67.2, 61.2, 49.3, 43.4, 22.9, 20.6, 20.6, 20.5. HR-MS (APCI) \textit{m/z} 444.1619; [M+H]+ requires 444.1618.

O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosylidene)amino N-(prop-2-yn-1-yl)carbamate 27

Using 2 and propargylamine according to Procedure 1 and flash chromatography (EtOAc:hexane 17:3) yielded the triacetate 27 as a colourless oil (65 mg, 79%). R\textsubscript{f} 0.39 (EtOAc:hexane 9:1). 1H NMR (600 MHz, CDCl\textsubscript{3}): \delta 7.11 (d, \textit{J} = 8.1 Hz, 1H), 6.32 (t, \textit{J} = 5.4 Hz, 1H), 5.34 (dd, \textit{J} = 8.6, 8.6 Hz, 1H), 5.28 (dd, \textit{J} = 8.6, 8.6 Hz, 1H), 4.89 (dd, \textit{J} = 8.5, 8.5 Hz, 1H), 4.51 (ddd, \textit{J} = 2.5, 3.4, 8.8 Hz, 1H), 4.40 (dd, \textit{J} = 3.4, 12.8 Hz, 1H), 4.27 (dd, \textit{J} = 2.5, 12.8 Hz, 1H), 4.08-3.91 (m, 2H), 2.28 (t, \textit{J} = 2.5 Hz, 1H), 2.09 (s, 3H), 2.03 (s, 6H), 2.00 (s, 3H). 13C NMR (151 MHz, CDCl\textsubscript{3}): \delta 170.6, 170.4, 169.9, 169.1, 154.9, 154.4, 79.2, 76.9, 72.0, 71.3, 67.2, 61.2, 49.1, 30.8, 22.8, 20.5, 20.5, 20.4. HR-MS (APCI) \textit{m/z} 442.1447; [M+H]+ requires 442.1462.

O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosylidene)amino N-(2-chloroethyl) carbamate 28

Using 2 and 2-chloroethanolamine hydrochloride according to Procedure 2 and flash chromatography (EtOAc:hexane 9:1) gave the triacetate 28 as a colourless oil (65 mg, 64%). R\textsubscript{f} 0.35 (EtOAc:hexane 9:1). 1H NMR (500 MHz, CDCl\textsubscript{3}) \delta 6.26 (s, 1H), 6.14 (d, \textit{J} = 8.6 Hz, 1H), 5.35 (dd, \textit{J} = 8.3, 8.3 Hz, 1H), 5.28 (dd, \textit{J} = 9.3, 9.3 Hz, 1H), 4.99
Using 2 and dimethylamine hydrochloride according to Procedure 2 and flash chromatography (EtOAc) gave the triacetate 29 as a colourless oil (77 mg, 88%). R_f 0.34 (EtOAc). 1H NMR (600 MHz, CDCl$_3$) δ 7.23 (d, $J = 8.2$ Hz, 1H), 5.38 (dd, $J = 9.4$, 9.4 Hz, 1H), 5.31 (dd, $J = 9.1$, 9.1 Hz, 1H), 4.88 (dd, $J = 8.2$, 9.6 Hz, 1H), 4.41 (ddd, $J = 2.4$, 4.0, 9.0 Hz, 1H), 4.37 (dd, $J = 4.0$, 12.6 Hz, 1H), 4.29 (dd, $J = 2.4$, 12.6 Hz, 1H), 2.96 (s, 6H), 2.11 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H), 1.98 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 171.0, 170.5, 170.3, 169.4, 156.4, 154.8, 77.4, 72.2, 67.6, 61.7, 49.8, 37.0, 36.1, 23.0, 20.8, 20.7, 20.7. HR-MS (APCI) m/z 432.1638; [M+H]$^+$ requires 432.1618.

O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosylidene)amino N,N-(diethyl) carbamate 30

Using 2 and diethylamine according to Procedure 2 and flash chromatography (EtOAc) gave the triacetate 30 as a colourless oil (64 mg, 63%). R_f 0.37 (EtOAc). 1H NMR (500 MHz, CDCl$_3$) δ 7.03 (s, 1H), 5.46-5.26 (m, 2H), 4.99 – 4.85 (m, 1H), 4.39 (ddd, $J = 2.4$, 3.9, 8.6 Hz, 1H), 4.34 (dd, $J = 4.1$, 12.5 Hz, 1H), 4.28 (dd, $J = 2.4$, 12.7 Hz, 1H), 3.31 (br s, 4H), 2.11 (s, 3H), 2.05 (s, 6H), 1.99 (s, 3H), 1.16 (app t, $J = 7.1$ Hz, 6H). 13C NMR (126 MHz, CDCl$_3$) δ 170.8, 170.5, 170.3, 169.3, 156.3, 154.2, 77.4, 72.3, 67.5, 61.8, 49.8, 42.7, 41.9, 23.1, 20.8, 20.8, 20.7, 14.1, 13.5. HR-MS (APCI) m/z 460.1922; [M+H]$^+$ requires 460.1931.

O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosylidene)amino N,N-(dibutyl) carbamate 31

Using 2 and dibutylamine according to Procedure 1 and flash chromatography (EtOAc:hexane 17:3) gave the triacetate 31 as a white solid (69 mg, 60%). R_f 0.59 (EtOAc). 1H NMR (600 MHz, CDCl$_3$) δ 7.65 (d, $J = 8.0$ Hz, 1H), 5.44 (dd, $J = 9.3$, 14.4 Hz, 2H), 4.98 (dd, $J = 8.0$, 14.4 Hz, 2H), 4.35 (dd, $J = 8.0$, 12.4 Hz, 2H), 4.25 (dd, $J = 8.0$, 12.4 Hz, 2H), 2.18 (br s, 6H), 1.34 (app t, $J = 7.1$ Hz, 6H). 13C NMR (126 MHz, CDCl$_3$) δ 171.0, 170.5, 170.3, 169.3, 156.3, 154.2, 77.4, 72.3, 67.5, 61.8, 49.8, 42.7, 41.9, 23.1, 20.8, 20.8, 20.7, 14.1, 13.5. HR-MS (APCI) m/z 504.2245; [M+H]$^+$ requires 504.2234.
9.3 Hz, 1H), 5.29 (dd, J = 9.4, 9.4 Hz, 1H), 4.79 (dd, J = 8.6, 8.6 Hz, 1H), 4.44 (ddd, J = 3.0, 3.0, 9.4 Hz, 1H), 4.35 (dd, J = 3.6, 12.7 Hz, 1H), 4.23 (dd, J = 2.4, 12.7 Hz, 1H), 3.33-3.11 (m, 4H), 2.08 (s, 3H), 2.02 (s, 3H), 2.01 (s, 3H), 1.93 (s, 3H), 1.51 (br s, 4H), 1.29 (br s, 4H), 0.90 (app t, J = 7.3 Hz, 6H). 13C NMR (151 MHz, CDCl 3) δ 171.0, 170.4, 170.1, 169.3, 156.5, 154.5, 76.4, 72.4, 67.3, 61.4, 49.9, 47.9, 47.1, 30.8, 30.2, 22.8, 20.7, 20.7, 20.6, 20.1, 13.9, 13.9. HR-MS (APCI) m/z 516.2574; [M+H]+ requires 516.2557.

O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosylidene)amino N,N-(pentylene) carbamate 32

Using 2 and piperidine according to Procedure 1 and flash chromatography (EtOAc) gave the triacetate 32 as a colourless oil (90 mg, 86%). Rf 0.35 (EtOAc). 1H NMR (500 MHz, CDCl 3) δ 7.44 (d, J = 8.3 Hz, 1H), 5.39 (dd, J = 9.4, 9.4 Hz, 1H), 5.30 (dd, J = 9.1, 9.1 Hz, 1H), 4.83 (dd, J = 8.2, 9.5 Hz, 1H), 4.42 (dd, J = 2.4, 4.1, 9.0 Hz, 1H), 4.37 (dd, J = 4.1, 12.6 Hz, 1H), 4.28 (dd, J = 2.4, 12.7 Hz, 1H), 3.44 (br s, 4H), 2.11 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H), 1.97 (s, 3H), 1.69-1.46 (m, 6H). 13C NMR (126 MHz, CDCl 3) δ 171.0, 170.5, 170.3, 169.4, 156.3, 153.7, 77.4, 72.2, 67.5, 61.7, 49.8, 45.3, 25.7, 24.3, 22.9, 20.8, 20.8, 20.7. HR-MS (APCI) m/z 472.1984; [M+H]+ requires 472.1931.

O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosylidene)amino N,N-(ethyleneoxyethylene) carbamate 33

Using 2 and morpholine according to Procedure 1 and flash chromatography (MeOH/EtOAc 1:24) gave the triacetate 33 as a colourless oil (71 mg, 68%). Rf 0.41 (MeOH/EtOAc 1:19). 1H NMR (600 MHz, CDCl 3) δ 7.09 (d, J = 8.1 Hz, 1H), 5.40 (dd, J = 9.4, 9.4 Hz, 1H), 5.30 (dd, J = 9.1, 9.1 Hz, 1H), 4.82 (dd, J = 8.1, 9.5 Hz, 1H), 4.44 (dd, J = 2.4, 3.8, 8.9 Hz, 1H), 4.37 (dd, J = 3.9, 12.7 Hz, 1H), 4.31 (dd, J = 2.5, 12.7 Hz, 1H), 3.69 (s, 4H), 3.51 (s, 4H), 2.11 (s, 3H), 2.06 (s, 3H), 2.04 (s, 3H), 1.99 (s, 3H). 13C NMR (151 MHz, CDCl 3) δ 170.9, 170.4, 170.2, 169.4, 156.7, 153.5, 72.0, 67.5, 66.6, 61.6, 49.9, 44.4, 44.2, 23.0, 20.8, 20.8, 20.7. HR-MS (APCI) m/z 474.1725; [M+H]+ requires 474.1724.
General preparation of carbamates 34-63

A saturated solution of NH₃ in MeOH (10 mL) prepared at 0°C was added to a solution of the appropriate 3,4,6-tri-O-acetyl carbamate (1.0 equiv) in MeOH (25 mL/mmol) at 0°C. After 2 h. at 0°C, the reaction mixture was concentrated.

O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-(4-methylphenyl) carbamate 34

Using 4 and flash chromatography (MeOH:EtOAc 3:17) of the resultant residue gave a clear oil which was precipitated with EtOAc to yield the title compound 34 as a white solid (15 mg, 26%). m.p. 182-184°C (dec.). Rₖ 0.21 (MeOH:EtOAc 3:17). ¹H NMR (500 MHz, CD₃OD): δ 7.31 (AA'BB', 2H), 7.10 (AA'BB', 2H), 4.57 (d, J = 9.0 Hz, 1H), 3.97-3.94 (m, 2H), 3.85 (dd, J = 4.5, 13.0 Hz, 1H), 3.75 (dd, J = 8.5, 8.5 Hz, 1H), 3.73 (dd, J = 8.5, 8.5 Hz, 1H), 2.28 (s, 3H), 2.07 (s, 3H). ¹³C NMR (126 MHz, CD₃OD): δ 173.8, 159.3, 154.8, 136.7, 134.4, 130.4, 120.4, 84.1, 74.5, 69.8, 61.7, 52.9, 22.8, 20.8. HR-MS (APCI) m/z 368.1462; [M+H]+ requires 368.1458.

O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-(4-methoxyphenyl) carbamate 35

Using 5 and flash chromatography (MeOH:EtOAc 9:91) of the resultant residue gave a clear oil which was precipitated with EtOAc to yield the title compound 5 as a white solid (20 mg, 28%). m.p. 136-140°C (dec.). Rₖ 0.15 (MeOH:EtOAc 3:17). ¹H NMR (600 MHz, CD₃OD): δ 7.34 (AA'BB', 2H), 6.88 (AA'BB', 2H), 4.59 (d, J = 9.6 Hz, 1H), 4.57 (s, 1H), 3.98-3.95 (m, 2H), 3.86 (dd, J = 4.8, 13.2 Hz, 1H), 3.80-3.72 (m, 5H), 2.06 (s, 3H). ¹³C NMR (126 MHz, CD₃OD): δ 173.8, 159.2, 157.7, 155.1, 132.1, 122.2, 115.1, 84.1, 74.5, 69.8, 61.7, 55.9, 52.9, 22.8. HR-MS (APCI) m/z 384.1418; [M+H]+ requires 384.1407.

O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-(4-bromophenyl) carbamate 36

Using 6 and flash chromatography (MeOH:EtOAc 3:17) of the resultant residue gave a clear oil which was precipitated with EtOAc to yield the title compound 36 as a white solid (30 mg, 43%). m.p. 176-180°C (dec.). Rₖ 0.30 (MeOH:EtOAc 3:17). ¹H NMR (600 MHz, (CD₃)₂SO): δ 9.81 (s, 1H), 8.32 (d, J = 8.0 Hz, 1H), 7.53-7.39 (m,
6H), 5.50 (t, J = 5.1 Hz 1H), 4.52 (dd, J = 6.5, 14.2 Hz, 1H), 4.37 (t, J = 8.2 Hz, 1H), 3.97-3.91 (m, 1H), 3.79-3.74 (m, 1H), 3.70-3.61 (m, 2H), 3.58 (t, J = 7.3 Hz, 1H), 1.88 (s, 3H). 13C NMR (151 MHz, (CD3)2SO): δ 169.2, 158.4, 151.7, 138.1, 131.6, 120.5, 114.4, 82.4, 72.2, 68.6, 60.0, 51.1, 22.7. HR-MS (APCI) m/z 432.0414; [M+H]+ requires 432.0406.

O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-benzylcarbamate 37

Using 7 and flash chromatography (MeOH:EtOAc 1:9) of the resultant residue gave a clear oil which was precipitated with EtOAc to yield the title compound 37 as a white solid (15 mg, 40%). m.p. 150-156°C (dec.). Rf 0.23 (MeOH:EtOAc 3:17). 1H NMR (600 MHz, CD3OD): δ 7.33-7.25 (m, 5H), 4.57 (s, 1H), 4.54 (d, J = 9.3 Hz, 1H), 4.39-4.34 (m, 2H), 3.95-3.91 (m, 2H) 3.84 (dd, J = 4.4, 12.9 Hz, 1H), 3.75 (dd, J = 9.0, 9.0 Hz, 1H), 3.71 (dd, J = 8.4, 8.4 Hz, 1H), 1.99 (s, 3H). 13C NMR (126 MHz, CD3OD): δ 173.8, 158.6, 158.1, 140.0, 129.6, 128.4, 84.1, 74.4, 69.7, 61.6, 52.8, 45.6, 22.7. HR-MS (APCI) m/z 368.1460; [M+H]+ requires 368.1458.

O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-cyclopropylcarbamate 38

Using 8 and flash chromatography (MeOH:EtOAc 3:17) of the resultant residue gave a clear oil which was precipitated with EtOAc to yield the title compound 38 as a white solid (21 mg, 46%). m.p. 148-152°C (dec.). Rf 0.15 (MeOH:EtOAc 3:17). 1H NMR (600 MHz, CD3OD): δ 4.57 (s, 1H), 4.53 (d, J = 9.0 Hz, 1H), 3.93-3.91 (m, 2H), 3.84 (dd, J = 4.2, 12.6 Hz, 1H), 3.74 (dd, J = 8.4, 8.4 Hz, 1H), 3.70 (dd, J = 9.0, 9.0 Hz, 1H), 2.59 (tt, J = 3.8, 7.2 Hz, 1H), 2.04 (s, 3H), 0.73-0.71 (m, 2H), 0.53-0.51 (m, 2H). 13C NMR (126 MHz, CD3OD): δ 173.8, 158.7, 158.6, 84.0, 74.5, 69.7, 61.6, 52.8, 24.0, 22.8, 6.8. HR-MS (APCI) m/z 318.1297; [M+H]+ requires 318.1301.

O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-cyclobutylcarbamate 39

Using 9 and flash chromatography (MeOH:EtOAc 3:17) of the resultant residue gave a clear oil which was precipitated with EtOAc to yield the title compound 39 as a white solid (38 mg, 77%). m.p. 130-134°C (dec.). Rf 0.17 (MeOH:EtOAc 3:17). 1H NMR (600 MHz, CD3OD): δ 4.57 (s, 1H), 4.54 (d, J = 9.6 Hz, 1H), 4.12 (q, J = 8.3 Hz, 1H), 3.94-3.92 (m, 2H), 3.84 (dd, J = 3.6, 12.6 Hz, 1H), 3.75 (dd, J = 9.0, 9.0 Hz, 1H), 3.71 (dd, J = 9.0, 9.0 Hz, 1H), 2.31-2.25 (m, 2H), 2.05 (s, 3H), 2.01-1.96 (m,
2H), 1.75-1.67 (m, 2H). 13C NMR (151 MHz, CD$_3$OD): δ 173.8, 158.5, 156.7, 84.0, 74.2, 69.8, 61.7, 52.9, 47.5, 31.5, 22.8, 15.6. HR-MS (APCI) m/z 332.1473; [M+H]$^+$ requires 332.1458.

O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-cyclopentylcarbamate 40
Using 10 and flash chromatography (MeOH:EtOAc 3:22) of the resultant residue gave a clear oil which was precipitated with EtOAc to yield the title compound 40 as a white solid (24 mg, 50%). m.p. 140-144°C (dec.). R_f 0.17 (MeOH:EtOAc 3:17). 1H NMR (600 MHz, CD$_3$OD): δ 4.56 (s, 1H), 4.52 (d, $J = 9.6$ Hz, 1H), 3.97-3.90 (m, 3H), 3.84 (dd, $J = 4.2$, 12.6 Hz, 1H), 3.75 (dd, $J = 8.4$, 8.4 Hz, 1H), 3.71 (dd, $J = 9.0$, 9.0 Hz, 1H), 2.04 (s, 3H), 1.96-1.91 (m, 2H), 1.75-1.68 (m, 2H), 1.65-1.58 (m, 2H), 1.53-1.47 (m, 2H). 13C NMR (151 MHz, CD$_3$OD): δ 173.7, 158.2, 157.3, 84.0, 74.3, 69.8, 61.6, 54.1, 52.9, 33.7, 24.5, 22.8. HR-MS (APCI) m/z 346.1611; [M+H]$^+$ requires 346.1614.

O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-cyclohexylcarbamate 41
Using 11 and flash chromatography (MeOH:EtOAc 1:9) of the resultant residue gave a clear oil which was precipitated with EtOAc to yield the title compound 41 as a white solid (32 mg, 66%). m.p. 158-162°C (dec.). R_f 0.24 (MeOH:EtOAc 3:17). 1H NMR (600 MHz, CD$_3$OD): δ 4.57 (s, 1H), 4.53 (d, $J = 8.0$ Hz, 1H), 3.94-3.90 (m, 3H), 3.84 (dd, $J = 4.2$, 12.6 Hz, 1H), 3.75 (dd, $J = 9.0$, 9.0 Hz, 1H), 3.70 (dd, $J = 9.0$, 9.0 Hz, 1H), 3.49-3.42 (m, 1H), 2.04 (s, 3H), 1.92-1.86 (m, 2H), 1.76-1.71 (m, 2H), 1.64-1.60 (m, 1H), 1.41-1.34 (m, 2H), 1.31-1.22 (m, 3H). 13C NMR (126 MHz, CD$_3$OD): δ 173.7, 158.2, 157.0, 84.0, 74.3, 69.8, 61.6, 52.9, 51.4, 33.8, 26.6, 25.9, 22.8. HR-MS (APCI) m/z 360.1765; [M+H]$^+$ requires 360.1771.

O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-(adamant-1-yl)carbamate 42
Using 12 and flash chromatography (MeOH:EtOAc 1:9) of the resultant residue gave a clear oil which was precipitated with EtOAc to yield the title compound 42 as a white solid (46 mg, 63%). m.p. 154-160°C (dec.). R_f 0.19 (MeOH:EtOAc 3:17). 1H NMR (600 MHz, CD$_3$OD): δ 4.57 (s, 1H), 4.51 (d, $J = 10.2$ Hz, 1H), 3.93 (dd, $J = 2.4$, 12.6 Hz, 1H), 3.89 (ddd, $J = 2.4$, 3.6, 9.0 Hz, 1H), 3.84 (dd, $J = 3.6$, 12.6 Hz, 1H),
3.74 (dd, \(J = 9.0, 9.0 \) Hz, 1H), 3.70 (dd, \(J = 9.0, 9.0 \) Hz, 1H), 2.08 (br s, 3H), 2.04 (s, 3H), 2.00-1.97 (m, 6H), 1.75-1.70 (m, 6H). \(^{13}\)C NMR (126 MHz, CD\(_3\)OD): \(\delta \) 174.0, 157.6, 155.4, 84.0, 74.2, 69.8, 61.7, 52.9, 52.0, 42.5, 37.4, 30.9, 22.8. HR-MS (APCI) \(m/z \) 412.2077; [M+H]\(^+\) requires 412.2084.

\(\text{O-}(2\text{-Acetamido-2-deoxy-D-glucopyranosylidene})\text{amino N-}(2\text{-amino-2-oxoeth-1-yl})\text{carbamate 43} \)

Using 13 and flash chromatography (MeOH:EtOAc 3:7) of the resultant residue gave a clear oil which was precipitated with EtOAc to yield the title compound 43 as a white solid (16 mg, 55%). m.p. 136-140°C (dec.). \(R_f \) 0.17 (MeOH:EtOAc 3:7). \(^1\)H NMR (600 MHz, CD\(_3\)OD): \(\delta \) 4.55 (d, \(J = 9.0 \) Hz, 1H), 3.96-3.93 (m, 2H), 3.89-3.83 (m, 3H), 3.76 (dd, \(J = 8.4, 8.4 \) Hz, 1H), 3.72 (dd, \(J = 9.0, 9.0 \) Hz, 1H), 2.06 (s, 3H). \(^{13}\)C NMR (126 MHz, CD\(_3\)OD): \(\delta \) 173.91, 173.86, 158.7, 158.0, 84.2, 74.3, 69.7, 61.6, 52.8, 44.4, 22.8. HR-MS (APCI) \(m/z \) 335.1200; [M+H]\(^+\) requires 335.1203.

\(\text{O-}(2\text{-Acetamido-2-deoxy-D-glucopyranosylidene})\text{amino (S)-N-}(1\text{-amino-1-oxoprop-2-yl})\text{carbamate 44} \)

Using 14 and flash chromatography (MeOH:EtOAc 1:4) of the resultant residue gave a clear oil which was precipitated with EtOAc to yield the title compound 44 as a white solid (35 mg, 56%). m.p. 108-112°C (dec.). \(R_f \) 0.24 (MeOH:EtOAc 3:7). \(^1\)H NMR (600 MHz, CD\(_3\)OD): \(\delta \) 4.57 (s, 1H), 4.53 (d, \(J = 9.0 \) Hz, 1H), 4.22 (q, \(J = 7.2 \) Hz, 1H), 3.97-3.92 (m, 2H), 3.85 (dd, \(J = 3.6, 12.4 \) Hz, 1H), 3.75 (dd, \(J = 9.0, 9.0 \) Hz, 1H), 3.72 (dd, \(J = 9.0, 9.0 \) Hz, 1H), 2.07 (s, 3H), 1.39 (d, \(J = 7.2 \) Hz, 3H). \(^{13}\)C NMR (126 MHz, CD\(_3\)OD): \(\delta \) 177.1, 173.9, 158.4, 157.0, 84.2, 74.1, 69.7, 61.6, 52.9, 51.4, 22.8, 19.2. HR-MS (APCI) \(m/z \) 349.1352; [M+H]\(^+\) requires 349.1359.

\(\text{O-}(2\text{-Acetamido-2-deoxy-D-glucopyranosylidene})\text{amino (S)-1-amino-3-hydroxy-1-oxo-prop-2-yl) carbamate 45} \)

Using 15 and flash chromatography (MeOH/EtOAc 3:7) of the resultant residue gave a colourless oil which was treated with EtOAc to give 45 as a white solid (16 mg, 31%). \(R_f \) 0.26 (MeOH/EtOAc 7:13). \(^1\)H NMR (600 MHz, D\(_2\)O) \(\delta \) 4.62 (d, \(J = 9.9 \) Hz, 1H), 4.30 (dd, \(J = 4.6, 4.6 \) Hz, 1H), 4.13-4.07 (m, 1H), 4.01 (dd, \(J = 2.2, 12.9 \) Hz, 1H), 3.94-3.77 (m, 5H), 2.09 (s, 3H). \(^{13}\)C NMR (151 MHz, D\(_2\)O) \(\delta \) 175.5, 175.3,
O-(2-Acetamido-2-deoxy-d-glucopyranosylidene)amino \((S)-N\)-(1-amino-1-oxo-3-phenylprop-2-yl)carbamate 46

Using 16 and flash chromatography (MeOH:EtOAc 3:7) of the resultant residue gave a clear oil which was precipitated with EtOAc to yield the title compound 46 as a white solid (28 mg, 46%). m.p. 118-122°C (dec.). Rf 0.32 (MeOH:EtOAc 3:7). \(^1\)H NMR (600 MHz, CD\(_3\)OD): \(\delta\) 7.29-7.18 (m, 5H), 4.57 (s, 1H), 4.53 (d, \(J = 9.6\) Hz, 1H), 4.46 (dd, \(J = 5.4, 7.8\) Hz, 1H), 3.93-3.89 (m, 2H), 3.83 (dd, \(J = 4.2, 12.6\) Hz, 1H), 3.75 (dd, \(J = 8.4, 8.4\) Hz, 1H), 3.69 (dd, \(J = 9.6, 9.6\) Hz, 1H), 3.14 (dd, \(J = 5.4, 13.8\) Hz, 1H), 2.94 (dd, \(J = 8.4, 13.8\) Hz, 1H), 2.01 (s, 3H). \(^{13}\)C NMR (151 MHz, CD\(_3\)OD): \(\delta\) 175.7, 173.8, 158.4, 157.0, 137.9, 130.4, 129.5, 127.9, 84.2, 74.2, 69.7, 61.6, 57.1, 52.8, 39.6, 22.8. HR-MS (APCI) \(m/z\) 425.1679; [M+H]\(^+\) requires 425.1672.

O-(2-Acetamido-2-deoxy-d-glucopyranosylidene)amino \(N\)-(2-hexylamino-2-oxoeth-1-yl) carbamate 47

Using 17 and flash chromatography (MeOH:EtOAc 1:3) of the resultant residue gave a colourless oil which was treated with EtOAc to give 47 as a white solid (21 mg, 34%). Rf 0.33 (MeOH:EtOAc 1:3). \(^1\)H NMR (600 MHz, CD\(_3\)OD) \(\delta\) 4.56 (d, \(J = 9.3\) Hz, 1H), 3.99-3.91 (m, 2H), 3.88-3.68 (m, 5H), 3.20 (app t, \(J = 7.2\) Hz, 2H), 2.06 (s, 3H), 1.55-1.45 (m, 2H), 1.39-1.23 (m, 6H), 0.91 (app t, \(J = 6.7\) Hz, 3H). \(^{13}\)C NMR (151 MHz, CD\(_3\)OD) \(\delta\) 173.8, 171.1, 158.7, 158.0, 84.1, 74.3, 69.7, 61.6, 52.8, 44.7, 40.5, 32.7, 30.4, 27.6, 23.6, 22.8, 14.4. HR-MS (APCI) \(m/z\) 419.2124; [M+H]\(^+\) requires 419.2142.

O-(2-Acetamido-2-deoxy-d-glucopyranosylidene)amino \(N\)-methyl carbamate 48

Using 18 and flash chromatography (MeOH:EtOAc 1:3) of the resultant residue gave a colourless oil which was treated with EtOAc to give 48 as a white solid (18 mg, 65%). The \(^1\)H NMR spectrum was consistent with that found in the literature.\(^8\)

O-(2-Acetamido-2-deoxy-d-glucopyranosylidene)amino \(N\)-ethyl carbamate 49

Using 19 and flash chromatography (MeOH:EtOAc 1:4) of the resultant residue gave
a colourless oil which was treated with EtOAc to give 49 as a white solid (9 mg, 22%). \(R_f \) 0.26 (MeOH/EtOAc 1:4). \(^1\text{H}\) NMR (600 MHz, CD\(_3\)OD) \(\delta \) 4.61-4.48 (m, 2H), 3.99-3.89 (m, 2H), 3.84 (dd, \(J = 4.5, 13.0 \) Hz, 1H), 3.75 (dd, \(J = 8.7, 8.7 \) Hz, 1H), 3.71 (dd, \(J = 9.0, 9.0 \) Hz, 1H), 3.21 (q, \(J = 7.2 \) Hz, 2H), 2.04 (s, 3H), 1.14 (t, \(J = 7.2 \) Hz, 3H). \(^{13}\text{C}\) NMR (151 MHz, CD\(_3\)OD) \(\delta \) 173.8, 158.4, 157.8, 84.0, 74.4, 69.7, 61.6, 52.8, 36.8, 22.8, 15.2. HR-MS (APCI) \(m/z \) 306.1311; \([\text{M+H}]^+\) requires 306.1301.

\textit{O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-(prop-1-yl)carbamate} 50

Using 20 and flash chromatography (MeOH:EtOAc 3:17) of the resultant residue gave a clear oil which was precipitated with EtOAc to yield the title compound 50 as a white solid (31 mg, 72%). m.p. 130-136°C (dec.). \(R_f \) 0.11 (MeOH:EtOAc 3:17). \(^1\text{H}\) NMR (600 MHz, CD\(_3\)OD): \(\delta \) 4.54 (d, \(J = 9.6 \) Hz, 1H), 3.94-3.91 (m, 2H), 3.84 (dd, \(J = 4.2, 13.2 \) Hz, 1H), 3.75 (dd, \(J = 8.4, 8.4 \) Hz, 1H), 3.71 (dd, \(J = 9.0, 9.0 \) Hz, 1H), 3.14 (t, \(J = 7.2 \) Hz, 2H), 2.04 (s, 3H), 1.54 (tq, \(J = 7.2, 7.2 \) Hz, 2H), 0.93 (t, \(J = 7.2 \), Hz, 3H). \(^{13}\text{C}\) NMR (151 MHz, CD\(_3\)OD): \(\delta \) 173.7, 158.3, 158.0, 84.0, 74.4, 69.7, 61.6, 52.8, 43.7, 23.9, 22.8, 11.5. HR-MS (APCI) \(m/z \) 320.1453; \([\text{M+H}]^+\) requires 320.1458.

\textit{O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-(but-1-yl)carbamate} 51

Using 21 and flash chromatography (MeOH:EtOAc 3:22) of the resultant residue gave a clear oil which was precipitated with EtOAc to yield the title compound 51 as a white solid (32 mg, 68%). m.p. 84-88°C. \(R_f \) 0.24 (MeOH:EtOAc 3:17). \(^1\text{H}\) NMR (600 MHz, CD\(_3\)OD): \(\delta \) 4.54 (d, \(J = 9.3 \) Hz, 1H), 3.94-3.91 (m, 2H), 3.84 (dd, \(J = 3.6, 12.0 \) Hz, 1H), 3.75 (dd, \(J = 8.6, 8.6 \) Hz, 1H), 3.71 (dd, \(J = 9.0, 9.0 \) Hz, 1H), 3.18 (t, \(J = 7.0 \) Hz, 2H), 2.04 (s, 3H), 1.51 (tt, \(J = 7.0, 7.0 \) Hz, 2H), 1.36 (tq, \(J = 7.0, 7.4 \) Hz, 2H), 0.94 (t, \(J = 7.4 \) Hz, 3H). \(^{13}\text{C}\) NMR (151 MHz, CD\(_3\)OD): \(\delta \) 173.7, 158.3, 158.0, 84.0, 74.4, 69.7, 61.6, 52.8, 41.6, 32.8, 22.8, 20.9, 14.0. HR-MS (APCI) \(m/z \) 334.1611; \([\text{M+H}]^+\) requires 334.1614.

\textit{O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-(hex-1-yl)carbamate} 52

Using 22 and flash chromatography (MeOH:EtOAc 3:22) of the resultant residue gave a clear oil which was precipitated with EtOAc to yield the title compound 52 as a
white solid (30 mg, 62%). m.p. 134-138°C (dec.). \(R_f \) 0.14 (MeOH:EtOAc 3:22). \(^1\)H NMR (600 MHz, CD\(_3\)OD): \(\delta \) 4.54 (d, \(J = 9.0 \) Hz, 1H), 3.94-3.91 (m, 2H), 3.84 (dd, \(J = 4.2, 13.2 \) Hz, 1H), 3.75 (dd, \(J = 8.4, 8.4 \) Hz, 1H), 3.71 (dd, \(J = 9.0, 9.0 \) Hz, 1H), 3.18 (t, \(J = 6.6 \) Hz, 2H), 2.04 (s, 3H), 1.54-1.49 (m, 2H), 1.38-1.29 (m, 6H), 0.91 (t, \(J = 7.2 \) Hz, 3H). \(^{13}\)C NMR (151 MHz, CD\(_3\)OD): \(\delta \) 173.7, 158.3, 158.0, 84.0, 74.4, 69.7, 61.6, 52.8, 42.0, 32.7, 30.7, 27.5, 23.6, 22.8, 14.4. HR-MS (APCI) \(m/z \) 362.1915; [M+H]\(^+\) requires 362.1927.

\(O-(2\text{-Acetamido}-2\text{-deoxy-}\text{D-glucopyranosylidene})\text{amino} \) \(N-(\text{prop-2-yl})\text{carbamate} \) 53

Using 23 and flash chromatography (MeOH:EtOAc 3:17) of the resultant residue gave a clear oil which was precipitated with EtOAc to yield the title compound 53 as a white solid (23 mg, 71%). m.p. 132-136°C (dec.). \(R_f \) 0.14 (MeOH:EtOAc 3:17). \(^1\)H NMR (600 MHz, CD\(_3\)OD): \(\delta \) 4.56 (s, 1H), 4.53 (d, \(J = 8.4 \) Hz, 1H), 3.94-3.91 (m, 2H), 3.84 (dd, \(J = 3.6, 12.6 \) Hz, 1H), 3.80-3.69 (m, 3H), 2.04 (s, 3H), 1.17 (d, \(J = 6.6 \) Hz, 6H). \(^{13}\)C NMR (151 MHz, CD\(_3\)OD): \(\delta \) 173.7, 158.3, 157.0, 84.0, 74.4, 69.8, 61.7, 52.9, 44.5, 22.8. HR-MS (APCI) \(m/z \) 320.1464; [M+H]\(^+\) requires 320.1458.

\(O-(2\text{-Acetamido}-2\text{-deoxy-}\text{D-glucopyranosylidene})\text{amino} \) \(N-(2\text{-methylprop-1-yl})\text{carbamate} \) 54

Using 24 and flash chromatography (MeOH:EtOAc 3:17) of the resultant residue gave a clear oil which was precipitated with EtOAc to yield the title compound 54 as a white solid (32 mg, 63%). m.p. 120-124°C (dec.). \(R_f \) 0.18 (MeOH:EtOAc 3:17). \(^1\)H NMR (600 MHz, CD\(_3\)OD): \(\delta \) 4.54 (d, \(J = 9.6 \) Hz, 1H), 3.97-3.93 (m, 2H), 3.84 (dd, \(J = 3.0, 12.0 \) Hz, 1H), 3.75 (dd, \(J = 9.0, 9.0 \) Hz, 1H), 3.71 (dd, \(J = 8.4, 8.4 \) Hz, 1H), 3.01 (d, \(J = 6.0 \) Hz, 2H), 2.04 (s, 3H), 1.81-1.76 (m, 1H), 0.91 (d, \(J = 6.6 \) Hz, 6H). \(^{13}\)C NMR (151 MHz, CD\(_3\)OD): \(\delta \) 173.7, 158.3, 158.1, 84.0, 74.3, 69.7, 61.6, 52.9, 49.4, 29.9, 22.8, 20.2. HR-MS (APCI) \(m/z \) 334.1605; [M+H]\(^+\) requires 334.1614.

\(O-(2\text{-Acetamido}-2\text{-deoxy-}\text{D-glucopyranosylidene})\text{amino} \) \(N-(2\text{-methylprop-2-yl})\text{carbamate} \) 55

Using 25 and flash chromatography (MeOH:EtOAc 3:17) of the resultant residue gave a clear oil which was precipitated with EtOAc to yield the title compound 55 as a white solid (23 mg, 51%). m.p. 112-116°C (dec.). \(R_f \) 0.15 (MeOH:EtOAc 4:21). \(^1\)H
NMR (600 MHz, CD$_3$OD): δ 4.52 (d, $J = 9.6$ Hz, 1H), 3.93 (dd, $J = 2.4$, 12.6 Hz, 1H), 3.90 (ddd, $J = 2.4$, 3.6, 9.0 Hz, 1H), 3.84 (dd, $J = 3.6$, 12.6 Hz, 1H), 3.74 (dd, $J = 9.0$, 9.0 Hz, 1H), 3.70 (dd, $J = 9.6$, 9.6 Hz, 1H), 2.04 (s, 3H), 1.33 (s, 9H). 13C NMR (151 MHz, CD$_3$OD): δ 173.7, 157.7, 155.9, 84.0, 74.3, 69.8, 61.7, 52.9, 51.6, 28.9, 22.7. HR-MS (APCI) m/z 334.1627; [M+H]$^+$ requires 334.1614.

O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-(prop-2-en-1-yl)carbamate 56

Using 26 and flash chromatography (MeOH:EtOAc 3:22) of the resultant residue gave a clear oil which was precipitated with EtOAc to yield the title compound 56 as a white solid (28 mg, 58%). m.p. 80-84°C. R_f 0.14 (MeOH:EtOAc 9:4). 1H NMR (600 MHz, CD$_3$OD): δ 5.87 (ddt, $J = 4.8$, 10.8, 17.4 Hz, 1H), 5.20 (dd, $J = 1.2$, 17.4 Hz, 1H), 5.11 (dd, $J = 1.2$, 10.8 Hz, 1H), 4.54 (d, $J = 9.6$ Hz, 1H), 3.94-3.92 (m, 2H), 3.85 (dd, $J = 4.2$, 13.2 Hz, 1H), 3.80 (d, $J = 4.8$ Hz, 2H), 3.76 (dd, $J = 9.0$, 9.0 Hz, 1H), 3.71 (dd, $J = 9.0$, 9.0 Hz, 1H), 2.03 (s, 3H). 13C NMR (151 MHz, CD$_3$OD): δ 173.7, 158.5, 157.8, 135.6, 116.1, 84.1, 74.4, 69.7, 61.6, 52.8, 44.2, 22.8. HR-MS (APCI) m/z 318.1297; [M+H]$^+$ requires 318.1301.

O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-(prop-2-yn-1-yl)carbamate 57

Using 27 and flash chromatography (MeOH:EtOAc 3:17) of the resultant residue gave a clear oil which was precipitated with EtOAc to yield the title compound 57 as a white solid (26 mg, 56%). m.p. 104-110°C (dec.). R_f 0.19 (MeOH:EtOAc 4:1). 1H NMR (600 MHz, CD$_3$OD): δ 4.56 (d, $J = 9.0$ Hz, 1H), 3.96 (d, $J = 3.0$ Hz, 2H), 3.95-3.92 (m, 2H), 3.85 (dd, $J = 4.8$, 13.2 Hz, 1H), 3.76 (dd, $J = 9.0$, 9.0 Hz, 1H), 3.72 (dd, $J = 9.0$, 9.0 Hz, 1H), 2.61 (t, $J = 2.5$ Hz, 1H), 2.05 (s, 3H). 13C NMR (151 MHz, CD$_3$OD): δ 173.8, 158.9, 157.5, 84.1, 80.6, 74.4, 72.4, 69.7, 61.6, 52.8, 31.2, 22.8. HR-MS (APCI) m/z 316.1137; [M+H]$^+$ requires 316.1145.

O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-(2-chloroethyl) carbamate 58

Using 28 and flash chromatography (MeOH:EtOAc 3:17) of the resultant residue gave a colourless oil which was treated with EtOAc to give 58 as a white solid (27 mg,
O-(2-Acetamido-2-deoxy-d-glucopyranosylidene)amino N,N-(dimethyl) carbamate 59
Using 29 and flash chromatography (MeOH/EtOAc 1:3) of the resultant residue gave a colourless oil which was treated with EtOAc to give 59 as a white solid (37 mg, 74%). \(R_f \) 0.16 (MeOH/EtOAc 4:21). \(^1\)H NMR (600 MHz, CD\(_2\)OD) \(\delta \) 4.58 (d, \(J = 9.8 \) Hz, 1H), 3.93 (dd, \(J = 2.2, 12.3 \) Hz, 1H), 3.90 (dddd, \(J = 2.2, 3.9, 9.2 \) Hz, 1H), 3.85 (dd, \(J = 4.0, 12.3 \) Hz, 1H), 3.76 (dd, \(J = 9.0, 9.0 \) Hz, 1H), 3.69 (dd, \(J = 9.6, 9.6 \) Hz, 1H), 2.96 (m, 6H), 2.04 (s, 3H). \(^{13}\)C NMR (151 MHz, CD\(_2\)OD) \(\delta \) 173.8, 160.1, 156.5, 83.9, 74.8, 69.8, 61.7, 52.8, 36.9, 36.1, 22.8. HR-MS (APCI) \(m/z \) 306.1301; [M+H]\(^+ \) requires 306.1301.

O-(2-Acetamido-2-deoxy-d-glucopyranosylidene)amino N,N-(diethyl) carbamate 60
Using 30 and flash chromatography (MeOH/EtOAc 4:21) of the resultant residue gave a colourless oil which was treated with EtOAc to give 60 as a white solid (37 mg, 85%). \(R_f \) 0.23 (MeOH/EtOAc 4:21). \(^1\)H NMR (600 MHz, CD\(_2\)OD) \(\delta \) 4.59 (d, \(J = 9.9 \) Hz, 1H), 3.93-3.83 (m, 3H), 3.77 (dd, \(J = 8.9, 8.9 \) Hz, 1H), 3.69 (dd, \(J = 9.6, 9.6 \) Hz, 1H), 3.41-3.32 (m, 4H), 2.04 (s, 3H), 1.17 (br s, 6H). \(^{13}\)C NMR (151 MHz, CD\(_2\)OD) \(\delta \) 173.8, 160.2, 156.5, 84.0, 74.8, 69.8, 61.7, 52.8, 43.5, 42.9, 22.8, 14.3, 13.7. HR-MS (APCI) \(m/z \) 334.1619; [M+H]\(^+ \) requires 334.1614.

O-(2-Acetamido-2-deoxy-d-glucopyranosylidene)amino N,N-(dibutyl) carbamate 61
Using 31 and flash chromatography (MeOH/EtOAc 3:17) of the resultant residue gave a colourless oil which was treated with EtOAc to give 61 as a white solid (38 mg, 79%). \(R_f \) 0.22 (MeOH/EtOAc 7:43). \(^1\)H NMR (600 MHz, CD\(_2\)OD) \(\delta \) 4.59 (d, \(J = 10.0 \) Hz, 1H), 4.02-3.84 (m, 3H), 3.80 (dd, \(J = 8.8, 8.8 \) Hz, 1H), 3.69 (dd, \(J = 9.4, 9.4 \) Hz, 1H), 3.29-3.13 (m, 2H), 2.04 (s, 3H), 1.62-1.49 (m, 4H), 1.41-1.23 (m, 4H), 0.95 (ap t, \(J = 7.3 \) Hz, 6H). \(^{13}\)C NMR (151 MHz, CD\(_2\)OD) \(\delta \) 173.8, 160.1, 156.9, 83.9, 74.8, 69.7, 61.6, 52.8, 48.1, 31.8, 31.2, 22.8, 21.0, 14.2. HR-MS (APCI) \(m/z \) 390.2236; [M+H]\(^+ \) requires 390.2240.
Using 32 and flash chromatography (MeOH/EtOAc 1:4) of the resultant residue gave a colourless oil which was treated with EtOAc to give 62 as a white solid (45 mg, 72%). R_f 0.21 (MeOH/EtOAc 1:4). 1H NMR (600 MHz, D$_2$O) δ 4.68 (d, J = 8.8 Hz, 1H), 4.10-4.07 (m, 1H), 4.05-3.98 (m, 1H), 3.95-3.84 (m, 3H), 3.57-3.42 (m, 4H), 2.12 (s, 3H), 1.70-1.44 (m, 6H). 13C NMR (151 MHz, D$_2$O) δ 175.1, 159.9, 155.8, 82.5, 72.8, 68.4, 60.5, 51.8, 46.0, 25.8, 24.1, 22.7. HR-MS (APCI) m/z 346.1625; [M+H]$^+$ requires 346.1614.

Using 33 and flash chromatography (MeOH/EtOAc 3:17) of the resultant residue gave a colourless oil which was treated with EtOAc to give 63 as a white solid (20 mg, 42%). R_f 0.25 (MeOH/EtOAc 1:4). 1H NMR (600 MHz, D$_2$O) δ 4.68 (d, J = 9.6 Hz, 1H), 4.10 (ddd, J = 2.2, 4.3, 9.4 Hz, 1H), 4.02 (dd, J = 2.3, 13.0 Hz, 1H), 3.95-3.84 (m, 3H), 3.77 (br s, 4H), 3.57 (br s, 4H), 2.12 (s, 3H). 13C NMR (151 MHz, D$_2$O) δ 175.2, 160.2, 155.6, 82.6, 72.7, 68.3, 66.7, 60.5, 51.8, 44.6, 22.7. HR-MS (APCI) m/z 348.1396; [M+H]$^+$ requires 348.1407.

Kinetic Analysis of Inhibitors

Assays against β-hexosaminidase B and NAGLU were carried out in triplicate at 37 ºC for 30 minutes using a stopped assay procedure in which the enzymatic reactions were quenched by the addition of a 4-fold excess of quenching buffer (200 mM glycine, pH 10.75). Assays against OGA were carried out in triplicate at 37°C for 20 minutes using a continuous assay procedure where reactions were initiated by the addition of substrate. Assays against β-hexosaminidase B were conducted in buffer (50 mM citrate, 100 mM NaCl, pH 4.25) and OGA (PBS, pH 7.4 buffer, 0.03% BSA) using 4-methylumbelliferyl N-acetyl-β-D-glucosaminide as substrate. For NAGLU, assays were performed in acetate buffer (100 mM, pH 4.3), containing bovine serum albumin (0.5 mg ml$^{-1}$) using 4-methylumbelliferyl N-acetyl-α-D-glucosaminide as substrate. For β-hexosaminidase B and NAGLU assays, release of 4-methylumbelliferone was monitored using a Varian CARY Eclipse Fluorescence Spectrophotometer 96-well plate system with readings taken at excitation and
emission wavelengths of 368 nm and 450 nm respectively, with 5 mm slit openings. For OGA the extent of 4-methylumbelliferone release was determined using a BioTek Synergy Plate Reader at excitation and emission wavelengths of 350 and 445 nm respectively. Assays contained substrate at the previously determined K_m value of the substrate for the enzyme, and the enzyme was at a concentration of 0.5-10 nM for β-hexosaminidase B, 10-100 nM for NAGLU and 10 nM for OGA. For K_I analysis, inhibitors were tested at a range of concentrations that encompassed their K_I values. The rates at each inhibitor concentration were plotted and a best fit line through the points was ascertained. The $-1/K_I$ was taken as the point where the line of best fit intersected with $1/V_{max}$.

References
^{1}H NMR spectrum of 1

^{13}C NMR spectrum of 1
\textbf{1H NMR spectrum of 4}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{1H_NMR_spectrum.png}
\end{figure}

\textbf{13C NMR spectrum of 4}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{13C_NMR_spectrum.png}
\end{figure}
1H NMR spectrum of 5

13C NMR spectrum of 5
1H NMR spectrum of 6

13C NMR spectrum of 6
1H NMR spectrum of 7

13C NMR spectrum of 7
1H NMR spectrum of 8

13C NMR spectrum of 8
1H NMR spectrum of 9

13C NMR spectrum of 9
1H NMR spectrum of 10

13C NMR spectrum of 10
1H NMR spectrum of 11

13C NMR spectrum of 11
1H NMR spectrum of 12

13C NMR spectrum of 12
^{1}H NMR spectrum of 13

^{13}C NMR spectrum of 13
1H NMR spectrum of 14

13C NMR spectrum of 14
1H NMR spectrum of 15

13C NMR spectrum of 15
1H NMR spectrum of 16

13C NMR spectrum of 16
1H NMR spectrum of 17

13C NMR spectrum of 17
1H NMR spectrum of 19

13C NMR spectrum of 19
1H NMR spectrum of 20

13C NMR spectrum of 20
1H NMR spectrum of 21

13C NMR spectrum of 21
1H NMR spectrum of 22

13C NMR spectrum of 22
1H NMR spectrum of 23

13C NMR spectrum of 23
1H NMR spectrum of 24

13C NMR spectrum of 24
1H NMR spectrum of 25

13C NMR spectrum of 25
^{1}H NMR spectrum of 26

^{13}C NMR spectrum of 26
\(^1\)H NMR spectrum of 27

\(^{13}\)C NMR spectrum of 27
1H NMR spectrum of 28

13C NMR spectrum of 28
$^{1} \text{H NMR spectrum of 29}$

$^{13} \text{C NMR spectrum of 29}$
1H NMR spectrum of 30

13C NMR spectrum of 30
1H NMR spectrum of 31

13C NMR spectrum of 31
1H NMR spectrum of 32

13C NMR spectrum of 32
1H NMR spectrum of 33

13C NMR spectrum of 33
1H NMR spectrum of 34

13C NMR spectrum of 34
1H NMR spectrum of 35

13C NMR spectrum of 35
1H NMR spectrum of 36

13C NMR spectrum of 36
1H NMR spectrum of 37

13C NMR spectrum of 37
1H NMR spectrum of 38

13C NMR spectrum of 38
1H NMR spectrum of 39

13C NMR spectrum of 39
1H NMR spectrum of 40

13C NMR spectrum of 40
1H NMR spectrum of **41**

13C NMR spectrum of **41**
1H NMR spectrum of 42

13C NMR spectrum of 42
1H NMR spectrum of 43

13C NMR spectrum of 43
1H NMR spectrum of 44

13C NMR spectrum of 44
1H NMR spectrum of 45

13C NMR spectrum of 45
1H NMR spectrum of 46

13C NMR spectrum of 46
1H NMR spectrum of 47

13C NMR spectrum of 47
1H NMR spectrum of 49

13C NMR spectrum of 49
1H NMR spectrum of 50

13C NMR spectrum of 50
1H NMR spectrum of 51

13C NMR spectrum of 51
1H NMR spectrum of 52

13C NMR spectrum of 52
1H NMR spectrum of 53

13C NMR spectrum of 53
1H NMR spectrum of 54

13C NMR spectrum of 54
1H NMR spectrum of 55

13C NMR spectrum of 55
1H NMR spectrum of 56

13C NMR spectrum of 56
1H NMR spectrum of 57

13C NMR spectrum of 57
^{1}H NMR spectrum of 58

^{13}C NMR spectrum of 58
^{1}H NMR spectrum of 59

^{13}C NMR spectrum of 59
1H NMR spectrum of 60

13C NMR spectrum of 60
1H NMR spectrum of 61

13C NMR spectrum of 61
1H NMR spectrum of 63

13C NMR spectrum of 63