SUPPORTING INFORMATION

Mechanochemical Solid-State Synthesis of 2-Aminothiazoles, Quinoxalines and Bezoylbenzofurans from Ketones by One-Pot Sequential Acid- and Base-Mediated Reactions

Honnappa Nagarajaiah,* Abhaya K. Mishra, and Jarugu Narasimha Moorthy*

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, INDIA

E-mail: moorthy@iitk.ac.in

Contents

1.	Spectral data of products	S3-S4
2.	References	S5
3.	¹ H NMR spectrum of 2-amino-4-(<i>p</i> -bromophenyl)thiazole (2a) in $CDCl_3$	S 6
4.	¹ H NMR spectrum of 2-phenylamino-4-(<i>p</i> -bromophenyl)thiazole (2b) in CDCl ₃	S 7
5.	¹ H NMR spectrum of 2-(<i>p</i> -bromophenyl)amino-4-(<i>p</i> -bromophenyl)thiazole (2c) in	S 8
	CDCl ₃	
6.	¹ H NMR spectrum of 2-(<i>p</i> -chlorophenyl)amino-4-(<i>p</i> -bromophenyl)thiazole (2d) in	
	CDCl ₃	S9
7.	¹ H NMR spectrum of 2-(<i>p</i> -tolyl)amino-4-(<i>p</i> -bromophenyl)thiazole (2e) in CDCl ₃	S10
8.	¹ H NMR spectrum of 2-(2,5-dimethylphenyl)amino-4-(<i>p</i> -bromophenyl)thiazole (2f) in	S11
	CDCl ₃	
9.	¹³ C NMR spectrum of 2-(2,5-dimethylphenyl)amino-4-(<i>p</i> -bromophenyl)thiazole (2f) in	S12
	CDCl ₃	
10.	¹ H NMR spectrum of 2-(2-benzylidenehydrazinyl)-4-(<i>p</i> -bromophenyl)thiazole (2g) in	S13
	CDCl ₃	
11.	¹ H NMR spectrum of 2-(2-(<i>p</i> -bromobenzylidene)hydrazinyl)-4-(<i>p</i> -bromophenyl)thiazole	S14
	(2h) in CDCl ₃	
12.	¹ H NMR spectrum of 4-(<i>p</i> -bromophenyl)-2-(2-(<i>p</i> -methoxybenzylidene)hydrazinyl)	S15
	thiazole (2i) in $CDCl_3$	
13.	¹ H NMR spectrum of 2-amino-4,5-diphenylthiazole (2j) in $CDCl_3$	S16
14.	¹ H NMR spectrum of 2-(<i>p</i> -chlorophenyl)amino-4,5-diphenylthiazole (2k) in $CDCl_3$	S17
15.	¹³ C NMR spectrum of 2-(<i>p</i> -chlorophenyl)amino-4,5-diphenylthiazole ($2\mathbf{k}$) in CDCl ₃	S18
16.	¹ H NMR spectrum of 4,5-diphenyl-2-(<i>p</i> -tolyl)aminothiazole (2 I) in CDCl ₃	S19
17.	13 C NMR spectrum of 4,5-diphenyl-2-(<i>p</i> -tolyl)aminothiazole (2l) in CDCl ₃	S20
18.	¹ H NMR spectrum of 2-(2,5-dimethylphenyl)amino-4,5-diphenylthiazole (2m) in CDCl ₃	S21
19.	13 C NMR spectrum of 2-(2,5-dimethylphenyl)amino-4,5-diphenylthiazole (2m) in	S22
	CDCl ₃	

20.	¹ H NMR spectrum of 2-amino-8 <i>H</i> -indeno[1,2- <i>d</i>]thiazole (4a) in CDCl ₃	S23
21.	¹ H NMR spectrum of 2-phenylamino-8 <i>H</i> -indeno[1,2- <i>d</i>]thiazole (4b) in CDCl ₃	S24
22.	¹ H NMR spectrum of 2-(<i>p</i> -bromophenyl)amino-8 <i>H</i> -indeno[1,2- <i>d</i>]thiazole (4c) in CDCl ₃	S25
23.	¹³ C NMR spectrum of 2-(<i>p</i> -bromophenyl)amino-8 <i>H</i> -indeno[1,2- <i>d</i>]thiazole (4c) in CDCl ₃	S26
24.	¹ H NMR spectrum of 2-(<i>p</i> -chlorophenyl)amino-8 <i>H</i> -indeno[1,2- <i>d</i>]thiazole (4d) in CDCl ₃	S27
25.	¹³ C NMR spectrum of 2-(<i>p</i> -chlorophenyl)amino-8 <i>H</i> -indeno[1,2- <i>d</i>]thiazole (4d) in CDCl ₃	S28
26.	¹ H NMR spectrum of 2-(<i>p</i> -tolyl)amino-8 <i>H</i> -indeno[1,2- <i>d</i>]thiazole (4e) in CDCl ₃	S29
27.	¹³ C NMR spectrum of 2-(p -tolyl)amino-8 H -indeno[1,2- d]thiazole (4 e) in CDCl ₃	S30
28.	¹ H NMR spectrum of $2-(2,5-dimethylphenyl)amino-8H-indeno[1,2-d]thiazole (4f) in$	S31
	CDCl ₃	
29.	13 C NMR spectrum of 2-(2,5-dimethylphenyl)amino-8 <i>H</i> -indeno[1,2- <i>d</i>]thiazole (4f) in	S32
	CDCl ₃	
30.	¹ H NMR spectrum of 2-(<i>p</i> -bromophenyl)quinoxaline (5a) in $CDCl_3$	S33
31.	¹ H NMR spectrum of 2-(<i>p</i> -bromophenyl)-6/7-methylquinoxaline (5b + 5b') in CDCl ₃	S34
32.	¹ H NMR spectrum of 11 <i>H</i> -indeno[2,1- <i>b</i>]quinoxaline (6a) in CDCl ₃	S35
33.	¹ H NMR spectrum of 7/8-methyl-11 <i>H</i> -indeno[2,1- <i>b</i>]quinoxaline (6b + 6b ') in CDCl ₃	S36
34.	¹³ C NMR spectrum of 7/8-methyl-11 <i>H</i> -indeno[2,1- <i>b</i>]quinoxaline (6b + 6b ') in CDCl ₃	S37
35.	¹ H NMR spectrum of 2-benzofuranyl-(p -bromophenyl)methanone (7a) in CDCl ₃	S38
36.	¹ H NMR spectrum of (<i>p</i> -bromophenyl)(5,7-dibromo-2-benzofuranyl)methanone (7b) in	S39
	CDCl ₃	

Spectral Data of Products

2-*Amino-4-(p-bromophenyl)thiazole (2a).*¹ Pale yellow solid; $R_f 0.40$ (25 % EtOAc/petroleum ether); mp 170–172 °C; ¹H NMR (400 MHz, CDCl₃) δ 5.01 (brs, 2H), 6.73 (s, 1H), 7.49 (d, *J* = 8.2 Hz, 2H), 7.64 (d, *J* = 8.2 Hz, 2H).

2-*Phenylamino-4-(p-bromophenyl)thiazole (***2***b)*.² Pale yellow solid; $R_f 0.50$ (5% EtOAc/petroleum ether); mp 132–134 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.83 (s, 1H), 7.07–7.11 (m, 1H), 7.35–7.40 (m, 4H), 7.51 (d, *J* = 8.6 Hz, 2H), 7.72 (d, *J* = 8.6 Hz, 2H).

2-(*p*-Bromophenyl)amino-4-(*p*-bromophenyl)thiazole (2*c*).³ Pale yellow solid; R_f 0.65 (5% EtOAc/petroleum ether); mp 158–160 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.85 (s, 1H), 7.32 (d, *J* = 8.9 Hz, 2H), 7.39 (brs, 1H), 7.46 (d, 8.9 Hz, 2H), 7.52 (d, *J* = 8.7 Hz, 2H), 7.71(d, *J* = 8.7 Hz, 2H).

2-(*p*-*Chlorophenyl*)*amino*-4-(*p*-*bromophenyl*)*thiazole* (**2***d*).² White solid; R_f 0.65 (5% EtOAc/petroleum ether); mp 160–162 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.84 (s, 1H), 7.31 (d, *J* = 8.9 Hz, 2H), 7.37 (d, 8.9 Hz, 2H), 7.41 (brs, 1H), 7.52 (d, *J* = 8.7 Hz, 2H), 7.71(d, *J* = 8.7 Hz, 2H).

2-(*p*-*Tolyl*)*amino*-4-(*p*-*bromophenyl*)*thiazole* (**2***e*).² Colorless solid; R_f 0.68 (5% EtOAc/petroleum ether); mp 160–162 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.34 (s, 3H), 6.78 (s, 1H), 7.16 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 8.4 Hz, 2H), 7.39 (brs, 1H), 7.50 (d, *J* = 8.3 Hz, 2H), 7.70 (d, *J* = 8.3 Hz, 2H).

2-(2-Benzylidenehydrazinyl)-4-(p-bromophenyl)thiazole (**2g**).⁴ Pale brown solid; R_f 0.40 (10% EtOAc/petroleum ether); mp 216–218 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.88 (s, 1H), 7.34–7.38 (m, 3H), 7.40–7.42 (m, 3H), 7.52 (d, J = 8.7 Hz, 2H), 7.69 (d, J = 8.7 Hz, 2H).

2-(2-(*p*-Bromobenzylidene)hydrazinyl)-4-(*p*-bromophenyl)thiazole (*2h*).⁵ Pale brown solid; $R_f 0.30$ (10% EtOAc/petroleum ether); mp 200–202 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.87 (s, 1H), 7.27 (d, *J* = 8.7 Hz, 2H), 7.36 (s, 1H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.52 (d, *J* = 8.2 Hz, 2H), 7.68 (d, *J* = 8.7 Hz, 2H).

4-(*p*-Bromophenyl)-2-(2-(*p*-methoxybenzylidene)hydrazinyl)thiazole (2*i*).⁵ Pale brown solid; $R_f 0.50 (10\% EtOAc/petroleum ether)$; mp 198–200 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.84 (s, 3H), 6.86 (s, 1H), 6.88 (d, *J* = 8.7 Hz, 2H), 7.39 (d, *J* = 8.7 Hz, 2H), 7.45 (s, 1H), 7.51 (d, *J* = 8.5 Hz, 2H), 7.68 (d, *J* = 8.5 Hz, 2H).

2-Amino-4,5-diphenylthiazole (**2***j*).⁶ Colorless crystalline; $R_f 0.50$ (25% EtOAc/petroleum ether); mp 176–178 °C; ¹H NMR (400 MHz, CDCl₃) δ 5.10 (s, 2H), 7.21–7.29 (m, 8H), 7.44–7.47 (m, 2H).

2-*Amino*-8*H*-*indeno*[1,2-*d*]*thiazole* (**4***a*).⁷ Pale brown solid; $R_f 0.20$ (10% EtOAc/petroleum ether); mp 192–194 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.70 (s, 2H), 5.06 (brs, 2H), 7.19 (t, *J* = 7.3 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.45 (d, *J* = 7.8 Hz, 1H), 7.57 (d, *J* = 7.8 Hz, 1H).

2-*Phenylamino-8H-indeno*[1,2-*d*]*thiazole* (**4b**).⁸ Off-white solid; R_f 0.42 (5% EtOAc/petroleum ether); mp 172–174 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.76 (s, 2H), 7.13–7.16 (m, 1H), 7.22–7.26 (m, 1H), 7.34–7.43 (m, 5H), 7.48 (d, J = 7.3 Hz, 1H), 7.66 (d, J = 7.3 Hz, 1H).

2-(*p*-Bromophenyl)quinoxaline (5*a*).⁹ Pale orange yellow solid; $R_f 0.50$ (10% EtOAc/petroleum ether); mp 122–124 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.2 Hz, 2H), 7.74–7.83 (m, 2H), 8.09 (d, J = 8.2 Hz, 2H), 8.11–8.16 (m, 2H), 9.30 (s, 1H).

2-(*p*-Bromophenyl)-6/7-methylquinoxaline (**5b**+**5b**').¹⁰ Pale yellow solid; $R_f 0.50$ (10% EtOAc/petroleum ether); isomers ratio (ca. 1:1); mp 136–138 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.62 (s, 3H), 7.58–7.64 (m, 1H), 7.68–7.70 (m, 2H), 7.89 (s, 1H), 7.92 (s, 1H), 7.99–8.08 (m, 3H), 9.23 (s, 0.5H), 9.25 (s, 0.5H). (It should be noted that the spectral data are for an inseparable mixture with only the signal at δ ca. 9.2 split up as two signals. For each of these signals, the integration is accounted for 0.5 proton.)

11H-indeno[2,1-*b*]*quinoxaline* (*6a*).¹¹ Pale yellow solid; $R_f 0.35$ (10% EtOAc/petroleum ether); mp 148–150 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.15 (s, 2H), 7.52–7.57 (m, 2H), 7.65–7.67 (m, 1H), 7.70–7.77 (m, 2H), 8.10 (d, J = 9.6 Hz, 1H), 8.17 (d, J = 7.2 Hz, 1H), 8.26 (d, J = 7.2 Hz, 1H).

2-*Benzofuranyl-(p-bromophenyl)methanone* (**7***a*).¹² White solid; R_f 0.75 (5% EtOAc/petroleum ether); mp 170–172 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (t, *J* = 7.3 Hz, 1H), 7.52 (t, *J* = 7.2 Hz, 1H), 7.55 (s, 1H), 7.64 (d, *J* = 8.1 Hz, 1H), 7.69 (d, *J* = 8.5 Hz, 2H), 7.74 (d, *J* = 8.1 Hz, 1H), 7.95 (d, *J* = 8.5 Hz, 2H).

(p-Bromophenyl)(5,7-dibromo-2-benzofuranyl)methanone (**7b**).¹³ White solid; R_f 0.80 (5% EtOAc/petroleum ether); mp 198–200 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.71 (d, J = 8.6 Hz, 2H), 7.79 (d, J = 1.6 Hz, 1H), 7.82 (d, J = 1.7 Hz, 1H), 8.03 (d, J = 8.6 Hz, 2H).

References

- Y-P. Zhu, J-J. Yuan, Q. Zhao, M. Lian, Q-H. Gao, M-C. Liu, Y. Yang and A-X. Wu, *Tetrahedron*, 2012, 68, 173.
- [2] K. S. Jain, J. B. Bariwal, M. K. Kathiravan, V. K. Raskar, G. S. Wankhede, N. A. Londhe and S. N. Dighe, *Green Sustainable Chem.*, 2011, 1, 36.
- [3] R. Gupta, D. Sharma and S. Singh, *Phosphorus Sulfur Silicon Relat. Elem.*, 2010, 185, 1321.
- [4] S. K. Bharti and S. K. Singh, Med. Chem. Res., 2014, 23, 1004.
- [5] L. Lohrey, T. N. Uehara, S. Tani, J. Yamaguchi, H-U. Humpf and K. Itami, *Eur. J. Org. Chem.*, 2014, 3387.
- [6] A. Kamal, M. Balakrishna, V. L. Nayak, T. B. Shaik, S. Faazil and V. D. Nimbart, *ChemMedChem.*, 2014, 9, 2766.
- [7] A. Goblyos, S. N. Santiago, D. Pietra, T. Mulder-Krieger, J. F. D. Kunzel, J. Brussee and A. P. IJzerman, *Bioorg. Med. Chem.*, 2005, 13, 2079.
- [8] C. M. Thompson, J. L. Poole, J. L. Cross, I. Akritopoulou-Zanze and S. W. Djuric, *Molecules*, 2011, 16, 9161.
- [9] P. Ghosh and A. Mandal, Green Chem. Lett. Rev., 2013, 6, 45.
- [10] F. Pan, T-M. Chen, J-J Cao, J-P Zou and W. Zhang, Tetrahedron Lett., 2012, 53, 2508.
- [11] F. Lassagne, F. Chevallier and F. Mongin, Synth. Commun., 2014, 44, 141.
- [12] Y. Shang, C. Wang, X. He, K. Ju, M. Zhang, S. Yu and J. Wu, Tetrahedron, 2010, 66, 9629.
- [13] M. L. N. Rao, D. K. Awasthi and D. Banerjee, Tetrahedron Lett., 2007, 48, 431.

Figure S1. ¹H NMR spectrum of 2-amino-4-(*p*-bromophenyl)thiazole in CDCl₃.

Figure S2. ¹H NMR spectrum of 2-phenylamino-4-(*p*-bromophenyl)thiazole in CDCl₃.

Figure S3. ¹H NMR spectrum of 2-(*p*-bromophenyl)amino-4-(*p*-bromophenyl)thiazole in CDCl₃.

Figure S4. ¹H NMR spectrum of 2-(*p*-chlorophenyl)amino-4-(*p*-bromophenyl)thiazole in CDCl₃.

Figure S5. ¹H NMR spectrum of 2-(*p*-tolyl)amino-4-(*p*-bromophenyl)thiazole in CDCl₃.

Figure S6. ¹H NMR spectrum of 2-(2,5-dimethylphenyl)amino-4-(*p*-bromophenyl)thiazole in CDCl₃.

Figure S7. ¹³C NMR spectrum of 2-(2,5-dimethylphenyl)amino-4-(*p*-bromophenyl)thiazole in CDCl₃.

Figure S8. ¹H NMR spectrum of 2-(2-benzylidenehydrazinyl)-4-(*p*-bromophenyl)thiazole in CDCl₃.

Figure S9. ¹H NMR spectrum of 2-(2-(*p*-bromobenzylidene)hydrazinyl)-4-(*p*-bromophenyl)thiazole in CDCl₃.

Figure S10. ¹H NMR spectrum of 4-(*p*-bromophenyl)-2-(2-(*p*-methoxybenzylidene)hydrazinyl) thiazole in CDCl₃.

Figure S11. ¹H NMR spectrum of 2-amino-4,5-diphenylthiazole in CDCl_{3.}

Figure S12. ¹H NMR spectrum of 2-(*p*-chlorophenyl)amino-4,5-diphenylthiazole in CDCl₃.

Figure S13. ¹³C NMR spectrum of 2-(*p*-chlorophenyl)amino-4,5-diphenylthiazole in CDCl_{3.}

Figure S14. ¹H NMR spectrum of 4,5-diphenyl-2-(*p*-tolyl)aminothiazole in CDCl₃.

Figure S15. ¹³C NMR spectrum of 4,5-diphenyl-2-(*p*-tolyl)aminothiazole in CDCl₃.

Figure S16. ¹H NMR spectrum of 2-(2,5-dimethylphenyl)amino-4,5-diphenylthiazole in CDCl₃.

Figure S17. ¹³C NMR spectrum of 2-(2,5-dimethylphenyl)amino-4,5-diphenylthiazole in CDCl_{3.}

Figure S18. ¹H NMR spectrum of 2-amino-8*H*-indeno[1,2-*d*]thiazole in CDCl₃.

Figure S19. ¹H NMR spectrum of 2-phenylamino-8*H*-indeno[1,2-*d*]thiazole in CDCl₃.

Figure S20. ¹H NMR spectrum of 2-(*p*-bromophenyl)amino-8*H*-indeno[1,2-*d*]thiazole in CDCl₃.

Figure S21. ¹³C NMR spectrum of 2-(*p*-bromophenyl)amino-8*H*-indeno[1,2-*d*]thiazole in CDCl₃.

Figure S22. ¹H NMR spectrum of 2-(*p*-chlorophenyl)amino-8*H*-indeno[1,2-*d*]thiazole in CDCl₃.

Figure S23. ¹³C NMR spectrum of 2-(*p*-chlorophenyl)amino-8*H*-indeno[1,2-*d*]thiazole in CDCl₃.

Figure S24. ¹H NMR spectrum of 2-(*p*-tolyl)amino-8*H*-indeno[1,2-*d*]thiazole in CDCl₃.

Figure S25. ¹³C NMR spectrum of 2-(*p*-tolyl)amino-8*H*-indeno[1,2-*d*]thiazole in CDCl₃.

Figure S26. ¹H NMR spectrum of 2-(2,5-dimethylphenyl)amino-8*H*-indeno[1,2-*d*]thiazole in CDCl₃.

Figure S27. ¹³C NMR spectrum of 2-(2,5-dimethylphenyl)amino-8*H*-indeno[1,2-*d*]thiazole in CDCl₃.

Figure S28. ¹H NMR spectrum of 2-(*p*-bromophenyl)quinoxaline in CDCl_{3.}

Figure S29. ¹H NMR spectrum of 2-(*p*-bromophenyl)-6/7-methylquinoxaline in CDCl_{3.}

Figure S30. ¹H NMR spectrum of 11*H*-indeno[2,1-*b*]quinoxaline in CDCl₃.

Figure S31. ¹H NMR spectrum of 7/8-methyl-11*H*-indeno[2,1-*b*]quinoxaline in CDCl₃.

Figure S32. ¹³C NMR spectrum of 7/8-methyl-11*H*-indeno[2,1-*b*]quinoxaline in CDCl₃.

Figure S33. ¹H NMR spectrum of 2-benzofuranyl-(*p*-bromophenyl)methanone in CDCl₃.

Figure S34. ¹H NMR spectrum of (*p*-bromophenyl)(5,7-dibromo-2-benzofuranyl)methanone in CDCl₃.