Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Metal-assisted Addition of Nitrate Aanion to Bis(oxy)enamines. A General Approach to the Synthesis of α-Nitroxy-oxime Ethers from Nitronates

Yana A. Naumovich,^a Victoria Emily Buckland,^b Dmitry A. Sen'ko,^c Yulia V. Nelyubina,^d Yulia A. Khoroshutina,^a Alexey Yu. Sukhorukov,^{*a} Sema L. Ioffe^a

^a N.D. Zelinsky Institute of Organic Chemistry, Leninsky prospect 47, 119991, Moscow, Russia. ^b National Junior College, Hillcrest Road 37, 288913, Singapore.

^c Moscow Chemical Lyceum, Tamozhenniy proezd 4, 111033, Moscow, Russia.

^d A.N. Nesmeyanov Institute of Organoelement Compounds, Vavilov str. 28, 119991, Moscow, Russia.

^{*} Corresponding author: E-mail: <u>sukhorukov@ioc.ac.ru</u>; Tel: +7 499 1355329; Fax: +7 499 1355328

Contents

NMR spectra of enamine 1p	S2
NMR spectra of nitronate 8k	S7
NMR, IR, UV spectra of nitrates 2a-2p	S8
NMR, IR spectra of nitrate 6a	S81
NMR, IR spectra of nitrate 6c	S86
NMR, IR spectra of nitrate 6j	S91
NMR, IR spectra of nitrate 6k	S95
NMR spectra of nitrate 4a	S103
NMR spectra of nitrate 5a	S106
NMR, IR, MS spectra of nitrate 9m	S109
NMR, IR, MS spectra of nitrate 9n	S113
NMR, IR spectra of nitrate 90	S119
NMR, IR spectra of reaction mixture with 2m	S123
NMR, IR spectra of reaction mixture with 20	S126
X-Ray of Nitrate Ester 2g	S129
UV-titration of $Cr(NO_3)_3$ solution with bis(oxy)enamine 1a	S130

S13

S14

© Zelinsky Institute of C	Organic Chemistry,	Moscow; Bru	iker AM300 SF	=75.47 MHz {	13C}DEPT135	SI=128K SW=1	5120 O1=6037 I	PW=13.0 AQ=2.	162 RD=2.00 NS	S=24 SR=0.00	TE=299K 5 Oct	ober 2014 Opr:	Homutova	Yu.A.; Sol	lv: CDCl3;			
The Be /ILDT n	y042.201																	
est Ap) • ·=•= • =																	
plied				.05						95		88	89	62 84	19	50		
NMI				129						71.		49.	42.	34.	24.	22.		
1 0				11/						1			Î.	T T		1		
n-L				V											V			
ine:				11						1		l	1 L	1 1	ш	1		
"http) _											1 î					
		-2																
r.ioc)´''																	
	CH ₃																	
	3																	
⁸ 2f																		
													11		L			
															1			
				11														
1		L. d	1					t. i	b.t.	. L.				1.		1	J	
1. An half a line has he half of such	A. A. Handhill M. L. Alb.		WALL ALL IN		A MARINE MAR	HALLANDA.	With Automatic March and A	لتربا البالاربيل الاباري		the Millian	AMARKE AND	MANNER WARAN	al with the		ALAL DAVING	A MULLING	ANNA IN	
la de alle de la	at had and shall be	an of Alle	ALL AND A REAL	ullin , h .	i il discut li i	n i sek hali vi h	and a tal Mater	As Rhated an sta	(Landa haunda	i i i thibut i i d	lade date is head	n hu hu	ala de la composition	AM IN LAND	10, i de litra i uti	had to be de	this .
														11				
170	160	150	140	130	120	110	100	90	80	70	60	50	40	3	0	20	10	ppm

GC-MS Chromatogram

Time: 4.40 min

Time: 4.45 min

EI-MS

C:\OPUS_7.0.122\EDL1\NY-146.0 НАУМОВИЧ. NY-146 , тонкий слой , nn.KBr. 10.02.201	C:\OPUS_7.0.122\EDL1\NY-146.0	НАУМОВИЧ. NY-146, тонкий слой, пл.КВг.		10.02.2016
--	-------------------------------	--	--	------------

2-(Trimethylsilyloxyimino)ethyl nitrate (2m). Yield: c.a. 15% (procedure *iii*, determined by ¹H NMR with internal standard). Characterized in reaction mixture containing **2m** (18%), [(trimethylsilyl)oxy]acetaldehyde *O*-(trimethylsilyl)oxime^{*} (23%) and unidentified products by ¹H NMR and GC-MS. Mixture of E/Z-isomers, ratio 1.2 : 1. ¹H NMR (CDCl₃, 300.13 MHz, E-isomer): 5.06 (d, J = 5.5 Hz, 2 H, CH_2ONO_2), 7.56 (t, J = 5.5 Hz, 1 H, CH). ¹H NMR (CDCl₃, 300.13 MHz, Z-isomer): 5.28 (d, J = 3.7 Hz, 2 H, CH_2ONO_2), 7.02 (t, J = 3.7 Hz, 1 H, CH). FTIR (thin layer): 1633 (s, ONO_2). MS (EI): m/z = 192 (1) [M]⁺⁺, 177 (70) [M–CH₃]⁺, 130 (80) [M–NO₃]⁺, 116 (80) [M–CH₂ONO₂]⁺, 76 (20) [CH₂ONO₂]⁺, 73 (100) [(CH₃)₃Si]⁺.

^{*} A. A. Tabolin, A. V. Lesiv, Yu. A. Khomutova, P. A. Belyakov, Yu. A. Strelenko, S. L. Ioffe, Synthesis, 2005, 1656-1662.

MS-spectra (EI)

Methyl 5-(nitrooxy)-4-(trimethylsilyloxyimino)pentanoate (20). Yield: c.a. 10% (procedure *iii*, determined by ¹H NMR with internal standard). Characterized in reaction mixture containing **20** (16%), methyl -5-[(trimethylsilyl)oxy]-4-{[(trimethylsilyl)oxy]imino}pentanoate[†] (24%) and unidentified products by ¹H NMR and GC-MS. Mixture of E/Z-isomers, ratio 2.3 : 1. ¹H NMR (CDCl₃, 300.13 MHz, E-isomer): 0.18 ((CH₃)₃Si), 2.54-2.71 (m, 4 H, CH₂-CH₂), 5.07 (s, 2 H, CH₂ONO₂). Characteristic signals of Z-**20**: 5.30 (s, 2 H, CH₂ONO₂). FTIR (thin layer): 1740 (s, C=O), 1641 (s, ONO₂). MS (EI): m/z = 263 (5) [M–CH₃], 76 (15) [CH₂ONO₂]⁺, 75 (100) [(CH₃)₂SiOH]⁺.

[†] A. A. Tabolin, A. V. Lesiv, Yu. A. Khomutova, P. A. Belyakov, Yu. A. Strelenko, S. L. Ioffe, *Synthesis*, 2005, 1656-1662.

X-Ray of Nitrate Ester 2g

Fig. S1. General view of the compound 2g from X-ray diffraction data.

Crystallographic data: Crystals of **2g** ($C_{14}H_{18}N_2O_6$, M = 310.30) are triclinic, space group P-1, at 120 K: a = 5.1957(4), b = 12.0390(9), c = 12.8927(10) Å, α = 112.826(2), β = 90.743(2), γ = 102.195(2)°, V = 722.48(10) Å³, Z = 2 (Z' = 1), d_{calc} = 1.426 gcm⁻³, μ (MoK α) = 1.13 cm⁻¹, F(000) = 328. Intensities of 8717 reflections were measured with a Bruker SMART APEX2 CCD diffractometer [λ (MoK α) = 0.71072Å, ω -scans, 2 θ <58°], and 3824 independent reflections [R_{int} = 0.0253] were used in further refinement. The structure was solved by direct method and refined by the full-matrix least-squares technique against F² in the anisotropic-isotropic approximation. The H(C) atom positions were calculated, and they were refined in the isotropic approximation within the riding model. The refinement converged to wR2 = 0.1493 and GOF = 1.009 for all independent reflections (R1 = 0.0442 was calculated against F for 3020 observed reflections with I>2 σ (I)). All calculations were performed using SHELXTL PLUS 5.0. [Sheldrick, G. M. *SHELXTL v. 5.10, Structure Determination Software Suit*. Bruker AXS, Madison, Wisconsin, USA].

CCDC 1419082 contains the supplementary crystallographic data for **2g**. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge, CB21EZ, UK; or <u>deposit@ccdc.cam.ac.uk</u>).

UV titration of $Cr(NO_3)_3 \bullet 9H_2O$ solution in THF with bis(oxy)enamine 1a solution in CH_2Cl_2

