Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Spacial conservation studies of nucleobases in 10-23 DNAzyme by 2'positioned isonucleotides and enantiomers for increased activity

Electronic Supplementary Information

Xiantao Yang,^{#,a} Zhangping Xiao,^{#,a} Junfei Zhu,^c Zhiwen Li,^c Junlin He,^{b,*} Lihe Zhang,^a Zhenjun Yang^{a,*}

a. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China. Email: yangzj@bjmu.edu.cn
b. Beijing Institute of Pharmacology and Toxicology, Taiping Road 27, Beijing 100850, China. E-mail: hejunlin@bmi.ac.cn.
c. College of Life Sciences, Guizhou University, Guiyang 550025, China.

Table of Contents

Figure S1. HPLC purification of oligonucleotides.

Figure S2. MALDI-TOF spectrum of sequence DZ-05-A_{D.}

Figure S3. MALDI-TOF spectrum of sequence DZ-05-A_L.

Figure S4. MALDI-TOF spectrum of sequence DZ-09-A_D.

Figure S5. MALDI-TOF spectrum of sequence DZ-09-A_L.

Figure S6. MALDI-TOF spectrum of sequence DZ-12-A_D.

Figure S7. MALDI-TOF spectrum of sequence DZ-12-A_L.

Figure S8. MALDI-TOF spectrum of sequence DZ-15-A_D.

Figure S9. MALDI-TOF spectrum of sequence DZ-15-A_L.

Table S1. MALDI-TOF of oligonucleotides with isonucleoside modification in catalytic core.

Table S2. MALDI-TOF of oligonucleotides with isonucleoside modification in recognition arms.

Table S3. Thermal stability of modified DNAzyme-substrate complexes.

Figure S10. CD spectra of complexes of 10-23 DNAzyme with isonucleoside modification in catalytic core and its substrate.

Figure S11. CD spectra of complexes of 10-23 DNAzyme with isonucleoside modification in recognition arm and its substrate.

Figure S12. Denaturing PAGE (20%) of 10-23 DNAzyme cleavage reactions under singleturnover conditions.

Figure S13. RMSD curve of complexes of native, **L-isoA** and **D-isoA** modified at the position 15 and 11 of 10-23DNAzyme and its substrate.

Figure S14. Conformation of the segment at the 5'-terminal of catalytic core. Native, **L-isoA** and **D-isoA** modified at the position 15 and 11 in catalytic core.

Name	Sequences (5'-3')	MW (found) ^a
DZ01	tgc tct cca GGC TAG CTA CAA CGA cct gca cct	9994.4
DZ-05-A _D	tgc tct cca GGC T A_D G CTA CAA CGA cct gca cct	9995.7
DZ-09-A _D	tgc tct cca GGC TAG CTA_D CAA CGA cct gca cct	9995.8
DZ-11-A _D	tgc tct cca GGC TAG CTA CADA CGA cct gca cct	9997.2
DZ-12-A _D	tgc tct cca GGC TAG CTA CAAD CGA cct gca cct	9995.2
DZ-15-A _D	tgc tct cca GGC TAG CTA CAA CGA _D cct gca cct	9995.4
$DZ-05-A_L$	tgc tct cca GGC T A_L G CTA CAA CGA cct gca cct	9995.6
$DZ-09-A_L$	tgc tct cca GGC TAG CTA_L CAA CGA cct gca cct	9995.4
$DZ-11-A_L$	tgc tct cca GGC TAG CTA CALA CGA cct gca cct	9995.4
$DZ-12-A_L$	tgc tct cca GGC TAG CTA CAA_L CGA cct gca cct	9995.4
$DZ-15-A_L$	tgc tct cca GGC TAG CTA CAA CGA _L cct gca cct	9995.1
$DZ-04-T_D$	tgc tct cca GGC T_D AG CTA CAA CGA cct gca cct	9995.7
$DZ-04-T_L$	tgc tct cca GGC T_L AG CTA CAA CGA cct gca cct	9995.8
DZ-08-T _D	tgc tct cca GGC TAG C T_D A CAA CGA cct gca cct	9995.6
$DZ-08-T_L$	tgc tct cca GGC TAG C T_L A CAA CGA cct gca cct	9994.7

Table S1. MALDI-TOF of oligonucleotides with isonucleoside modification in catalytic core.

^a The calculated molecular weight of all the DNAzymes is 9994.4.

Table S2. MALDI-TOF of oligonucleotides with isonucleoside modification in recognition arms.

Name	Sequences (5'-3')	MW (found) ^a			
DZ-07'-C _D	tgc tct C_D ca GGC TAG CTA CAA CGA cct gca	9995.6			
cct					
DZ-07'-C _L	tgc tet C_L ca GGC TAG CTA CAA CGA cet gea cet	9995.8			
DZ-08'-C _D	tgc tct c C_D a GGC TAG CTA CAA CGA cct gca	9995.3			
cct					
DZ-08'-C _L	tgc tct c C_L a GGC TAG CTA CAA CGA cct gca cct	9995.3			
DZ-09'-A _D	tgc tct ccA_D GGC TAG CTA CAA CGA cct gca	9996.2			
cct					
DZ-09'-A _L	tgc tct ccA_L GGC TAG CTA CAA CGA cct gca cct	9995.8			
DZ-10'-C _D	tgc tct cca GGC TAG CTA CAA CGA C_D ct gca	9995.0			
cct					
DZ-10'-C _L	tgc tct cca GGC TAG CTA CAA CGA C_L ct gca cct	9995.3			

DZ-11'-C _D	tgc tct cca GGC TAG CTA CAA CGA c C_D t gca	9995.3
	cct	
DZ-11'-C _L	tge tet eca GGC TAG CTA CAA CGA e C_L t gea eet	9994.1
DZ-12'-T _D	tgc tct cca GGC TAG CTA CAA CGA cc T_D gca	9995.3
	cct	
DZ-12'-T _L	tgc tct cca GGC TAG CTA CAA CGA cc T_L gca	9994.7
	cct	

Table S3. Thermal stability of modified DNAzyme-substrate complexes

Name	$T_m(^{\circ}C)$	Name	$T_m(^{\circ}C)$
DZ01	51.0	DZ-07'-C _D	48.4
$DZ-05-A_D$	51.0	$DZ-07'-C_L$	46.8
DZ-09-A _D	51.0	DZ-08'-C _D	46.9
DZ-11-A _D	50.0	DZ-08'-C _L	46.5
DZ-12-A _D	51.0	DZ-09'-A _D	48.1
DZ-15-A _D	51.0	DZ-09'-A _L	47.9
		DZ-10'-C _D	47.8
$DZ-05-A_L$	50.0	DZ-10'-C _L	48.4
$DZ-09-A_L$	50.0	DZ-11'-C _D	47.1
$DZ-11-A_L$	50.0	DZ-11'-C _L	47.1
$DZ-12-A_L$	51.0	DZ-12'-T _D	46.6
$DZ-15-A_L$	50.0	DZ-12'-T _L	44.2
$DZ-04-T_D$	51.0	$DZ-08-T_D$	50.5
$DZ-04-T_L$	51.0	$DZ-08-T_L$	50.4

Figure S1. HPLC purification of oligonucleotides, DZ-08-ⁱT_D as example. (Linear gradient using 5–60% acetonitrile–TEAB 100 mM in 40 min, Phenomenex Oligo-RP C18 250×10.0 mm 5 μ m, 40°C, 1.2 mL/min, 260 nm).

Figure S2. MALDI-TOF spectrum of sequence DZ-05-A_D.

Figure S3. MALDI-TOF spectrum of sequence DZ-05-A_L.

Figure S4. MALDI-TOF spectrum of sequence DZ-09-A_D.

Figure S5. MALDI-TOF spectrum of sequence DZ-09-A_L.

Figure S6. MALDI-TOF spectrum of sequence DZ-12-A_D.

Figure S7. MALDI-TOF spectrum of sequence DZ-12-A_L.

Figure S8. MALDI-TOF spectrum of sequence DZ-15-A_D.

Figure S9. MALDI-TOF spectrum of sequence DZ-15-A_L.

Figure S10. CD spectra of complexes of 10-23 DNAzyme with isonucleoside modification in catalytic core and its substrate.

Figure S11. CD spectra of complexes of 10-23 DNAzyme with isonucleoside modification in recognition arm and its substrate.

Figure S12. Denaturing PAGE (20%) of 10-23 DNAzyme cleavage reactions under single-turnover condition. Samples were set at 0, 10, 20, 30, 60, 90, 120, 180, 240, 360, 480 and 600 min.

Figure S13. RMSD curve of native, **L-isoA** (B) and **D-isoA** (C) modified at the position 15 and **L-isoA** (B) and **D-isoA** (C) modified at the position 11 of 10-23DNAzyme and substrate complex. Modification at position 15 with **D-isoA** and position 11 with **L-isoA** bring more influence to the structure and consume relatively longer time for adjustment.

Figure S14. Conformation of the segment at the 5'-terminal of catalytic core. Compared to the native one (A), that segment of **L-isoA** (B) and **D-isoA** (C) modified at the position 15 of the DNAzyme core roughly maintain the same. However, modification at position 11 cause larger influence in both **L-isoA** (D) and **D-isoA** (E), the conformation and stack style of bases are quite different from the native one.