Design and synthesis of a novel fluorescent benzo[g]imidazo[4,5-c]quinoline nucleoside for monitoring base-pair-induced protonation with cytosine: Distinguishing cytosine*via*changes in the intensity and wavelength of fluorescence

Shogo Siraiwa, Azusa Suzuki, Ryuzi Katoh and Yoshio Saito*

Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Fukushima 963-8642, Japan

E-mail Address: <u>saitoy@chem.ce.nihon-u.ac.jp</u>

List of Contents

- 1. Page S1: Figure S1: HPLC profiles of ^{BIQ}A-containing single-stranded ODNs
- 2. **Page S2: Figure S2:** CD spectra of ^{BIQ}A-containing ODN hybridized with complementary strand cODN1(C) at various pH values
- Page S3: Figure S3: Plots of the absorbance of ^{BIQ}A monomer (10 μM, 390 nm) and ^{BIQ}A-containing ODNs as a function of pH
- 4. **Page S4: Figure S4:** Absorption and fluorescence spectra of ^{BIQ}A-containing ODN2 hybridized with complementary strands
- 5. Page S4: Table S1: Thermal melting temperatures (T_m) and photophysical properties of ODN2(^{BIQ}A)
- 6. Page S5-S18: Figure S5-S18: ¹H- and ¹³C-NMR spectra of the newly synthesized compounds.

Figure S1. HPLC profiles determinded at 260 nm of single-strandede oligonucleotides. (a) $ODN1(^{BIQ}A)$, (b) $ODN2(^{BIQ}A)$, and (c) $Probe_{(BRCA1)}$. HPLC analysis was performed on a CHEMCOBOND 5-ODS-H columm (10 × 150 nm) eluted with 50mM ammonium formate buffer containing acetonitrile. Gradient: from 3 to 20 % acetonitrile at a frow rate 2.0 ml/min over 45min.

Figure S2. CD spectra of ODN1(^{BIQ}A) hybridized with complementary strand cODN1(C) at various pH values. Various buffer solutions with 5 μ M ODN were used to access range of pH values: 0.1 M NaCl and 10 mM sodium acetate (pH = 5.0), 10 mM sodium phosphate (pH = 7.0), and 10 mM ammonium (pH = 9.0). Black line indicates unmodified duplex ODN1(A)/cODN1(T) at pH = 7.0.

Figure S3. Plots of the absorbance of (a) ^{BIQ}A monomer (10 μ M, 390 nm) and (b) ^{BIQ}A-containing ODNs (ssODN1(^{BIQ}A), ODN1(^{BIQ}A)/cODN1(N), N = A, G, T, and C, 5 μ M, 396 nm) as a function of pH.

Figure S4. (a) Absorption and (b) fluorescence spectra of ODN2(^{BIQ}A) hybridized with cODN2(N) at pH = 8.5. Measurements were made in buffer with 0.1 M NaCl and 10 mM ammonium; concentration of ODN was 5 μ M.

ODNs	$T_{\rm m}$ (°C)	$\lambda_{\max}^{abs}(nm)$	$\lambda_{max}^{em}(nm)$	${{ { { $
ODN2(^{BIQ} A)	-	363, 399*	442	0.126
ODN2(^{BIQ} A)/cODN2(A)	61.2	371, 398*	435	0.028
/cODN2(G)	60.4	369, 398*	440	0.033
/cODN2(T)	63.9	371, 400*	449	0.059
/cODN2(C)	64.6	341, 355, 371	438	0.006
ODN2(A)/cODN2(T)	63.3	-	-	-
				* shoulder

Table S1. Thermal melting temperatures (T_m) and photophysical properties of oligonucleotides^a

 a ODNs (5 $\mu M)$ were measured in buffer with 0.1 M NaCl and 10 mM ammonium (pH 8.5) at r.t.

^b Fluorescence quantum yields were calculated according to ref.12

Figure S5. ¹H-NMR spectrum of compound **3** (DMSO-*d*₆)

Figure S6. ¹³C-NMR spectrum of compound 3 (DMSO-*d*₆)

Figure S7. ¹H-NMR spectrum of compound 4 (CDCl₃)

Figure S8. ¹³C-NMR spectrum of compound 4 (CDCl₃)

Figure S9. ¹H-NMR spectrum of compound 5 (CDCl₃)

Figure S10. ¹³C-NMR spectrum of compound 5 (CDCl₃)

Figure S11. ¹H-NMR spectrum of compound 7 (CDCl₃)

Figure S12. ¹³C-NMR spectrum of compound 7 (CDCl₃)

Figure S13. ¹H-NMR spectrum of compound **1** (DMSO-*d*₆)

Figure S14. ¹³C-NMR spectrum of compound 1 (DMSO-*d*₆)

Figure S15. ¹H-NMR spectrum of compound **8** (DMSO-*d*₆)

Figure S16. ¹³C-NMR spectrum of compound 8 (DMSO-*d*₆)

Figure S17. ¹H-NMR spectrum of compound **9** (acetone-*d*₆)

Figure S18. ¹³C-NMR spectrum of compound 9 (acetone-*d*₆)