Supporting Information.....

PIDA-I₂ Mediated Direct Vicinal Difunctionalization of Olefins: Iodoazidation, Iodoetherification and Iodoacyloxylation

Tapas Kumar Achar, Saikat Maiti and Prasenjit Mal*

School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India; Tel: +919439613856; E-mail: <u>pmal@niser.ac.in</u>

Email: pmal@niser.ac.in Phone: +91-9439613856

Content:

	Page No.
Safety issues for handling azido compounds	S2
2D HSQC NMR spectrum for 8d	\$3
References	S 4
¹ H, ¹⁹ F and ¹³ C NMR spectra	S5 – S52
Diasteriomeric ratio of compounds 3h and 3p	S53

Safety issues for handling azido compounds¹

Sodium Azide (NaN₃): Sodium azide or any azide derivatives are highly toxic (similar toxicity as cyanide ion; $LD_{50} = 27$ mg/kg for rats) and therefore personal protective equipment's should be always used while doing any experiments. In addition, above 275 °C, sodium azide decomposes via explosion. Chlorinated solvents (basically chloroform, dichloromethane) also should be avoided in reaction with NaN₃, because they liberates unstable tri- and di- azidomethanes which are toxic. In addition, acids should be avoided due to liberation of highly toxic HN₃.

Organic Azides: Organic azides decompose with explosion in presence of heat, light and pressure. Azide should be stored under -20 °C at in the dark. The following equation was followed while synthesizing the azide molecules.

$$\frac{N_C + N_O}{N_N} \ge 3$$

 N_C : Number of carbon atoms; N_O : Number of oxygen atoms; N_N : Number of nitrogen atoms in the azido group.

All organic azides were synthesized could satisfy the above equation except for **2b** and **2l**. These halogenated azide derivatives were found to be stable under -20 °C over couple of months. Still, general safety at laboratory should be carefully implemented and suggested that all reactions should be done in a well-ventilated fume hood behind a blast shield.

2D HSQC experiment of 8d

References

 (a) T. Keicher, S. Löbbecke, In Organic Azides: Syntheses and Applications; S. Bräse, K. Banert, Eds.; Wiley: Chichester, U.K., 2010; p 3; (b) P. A. S. Smith, The Chemistry of Open-Chain Organic Nitrogen Compounds; Vol. 2, 1966, W.A. Benjamin Inc., New York, USA, p. 211.

NMR spectra of the synthesized compounds:

Figure S2: ¹³C NMR spectrum of 1-(1-azido-2-iodoethyl)-4-methoxybenzene (2a).

Figure S3: ¹H NMR spectrum of 1-(1-azido-2-iodoethyl)-4-bromobenzene (2b).

Figure S4: ¹³C NMR spectrum of 1-(1-azido-2-iodoethyl)-4-bromobenzene (2b).

Figure S5: ¹H NMR spectrum of 4-(1-azido-2-iodoethyl)-1,2-dimethoxybenzene (2c).

Figure S6: ¹³C NMR spectrum of 4-(1-azido-2-iodoethyl)-1,2-dimethoxybenzene (2c).

Figure S7: ¹H NMR spectrum of 2-(1-azido-2-iodoethyl)-1,5-dimethoxy-3-methylbenzene (2d).

Figure S8: ¹³C NMR spectrum of 2-(1-azido-2-iodoethyl)-1,5-dimethoxy-3-methylbenzene (2d).

Figure S10: ¹³C NMR spectrum of 4-(1-azido-2-iodoethyl)-1,1'-biphenyl (2e).

. 170 130 120

Figure S12: ¹³C NMR spectrum of 2-(1-azido-2-iodoethyl)naphthalene (2f).

Figure S13: ¹H NMR spectrum of 2-(1-azido-2-iodoethyl)-1,3,5-trimethylbenzene (2g).

03 00 03	ω 0 4	4	40	
0000	4 – 0	<u>-</u> .	0, M.	ő
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2 2 9	4	00	
		0		LC)
$\langle \rangle$	\checkmark		\checkmark	

N₃

Solvent: CDCl₃

Figure S14: ¹³C NMR spectrum of 2-(1-azido-2-iodoethyl)-1,3,5-trimethylbenzene (2g).

Figure S15: ¹H NMR spectrum of 4-(1-azido-2-iodoethyl)benzonitrile (2h).

Figure S16: ¹³C NMR spectrum of 4-(1-azido-2-iodoethyl)benzonitrile (2h).

Figure S17: ¹H NMR spectrum of 2-(1-azido-2-iodoethyl)isoindoline-1,3-dione (2i).

Figure S18: ¹³C NMR spectrum of 2-(1-azido-2-iodoethyl)isoindoline-1,3-dione (2i).

Figure S19: ¹H NMR spectrum of 1-(1-azido-2-iodoethyl)-2-methylbenzene (2j).

Figure S20: ¹³C NMR spectrum of 1-(1-azido-2-iodoethyl)-2-methylbenzene (2j).

Figure S21: ¹H NMR spectrum of 9-(1-azido-2-iodoethyl)-9H-carbazole (2k).

Figure S22: ¹³C NMR spectrum of 9-(1-azido-2-iodoethyl)-9H-carbazole (2k).

Figure S23: ¹H NMR spectrum of 1-(1-azido-2-iodoethyl)-4-chlorobenzene (2l).

Figure S24: ¹³C NMR spectrum of 1-(1-azido-2-iodoethyl)-4-chlorobenzene (21).

Figure S25: ¹H NMR spectrum of 1-(1-azido-2-iodoethyl)-4-methylbenzene (2m).

Figure S26: ¹³C NMR spectrum of 1-(1-azido-2-iodoethyl)-4-methylbenzene (2m).

Figure S29: ¹H NMR spectrum of (1-azido-2-iodoethane-1,2-diyl)dibenzene (20).

Figure S30: ¹³C NMR spectrum of (1-azido-2-iodoethane-1,2-diyl)dibenzene (20).

Figure 31: ¹⁹F spectrum of (2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)benzene (3a)

Figure 32: ¹H spectrum of (2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)benzene (3a)

Figure 33: ¹³C spectrum of (2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)benzene (3a)

Figure 34: ¹⁹F spectrum of 4-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)-1,1'-biphenyl (3b)

Figure 35: ¹H spectrum of 4-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)-1,1'-biphenyl (3b)

Figure 36: ¹³C spectrum of 4-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)-1,1'-biphenyl (3b)

Figure 37: ¹⁹F spectrum of (1-iodo-2-(2,2,2-trifluoroethoxy)propan-2-yl)benzene (3c)

Figure 38: ¹H spectrum of (1-iodo-2-(2,2,2-trifluoroethoxy)propan-2-yl)benzene (3c)

Figure 39: ¹³C spectrum of (1-iodo-2-(2,2,2-trifluoroethoxy)propan-2-yl)benzene (3c)

Figure 40: ¹⁹F spectrum of 1-chloro-4-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)benzene (3d)

Figure 41: ¹H spectrum of 1-chloro-4-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)benzene (3d)

Figure 42: ¹³C spectrum of 1-chloro-4-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)benzene (3d)

Figure 43: ¹⁹F spectrum of 2-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)-1,3,5-trimethylbenzene (3e)

Figure 44: ¹H spectrum of 2-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)-1,3,5-trimethylbenzene (3e)

Figure 45: ¹³C spectrum of 2-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)-1,3,5-trimethylbenzene (3e)

Figure 46: ¹⁹F spectrum of 1-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)-4-isopropylbenzene (3f)

Figure 47: ¹H spectrum of 1-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)-4-isopropylbenzene (3f)

Figure 48: ¹³C spectrum of 1-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)-4-isopropylbenzene (3f)

Figure 49: ¹⁹F spectrum of 1-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)-4-methylbenzene (3g)

Figure 50: ¹H spectrum of 1-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)-4-methylbenzene (3g)

Figure 51: ¹³C spectrum of 1-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)-4-methylbenzene (3g)

Figure 52: ¹⁹F spectrum of 2-iodo-1-(2,2,2-trifluoroethoxy)-2,3-dihydro-1H-indene (3h)

Figure 53: ¹H spectrum of 2-iodo-1-(2,2,2-trifluoroethoxy)-2,3-dihydro-1H-indene (3h)

Figure 54: ¹³C spectrum of 2-iodo-1-(2,2,2-trifluoroethoxy)-2,3-dihydro-1H-indene (3h)

Figure 55: ¹⁹F spectrum of 1-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)-4-methoxybenzene (3i)

Figure 56: ¹H spectrum of 1-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)-4-methoxybenzene (3i)

Figure 57: ¹³C spectrum of 1-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)-4-methoxybenzene (3i)

Figure 58: ¹⁹F spectrum of 2-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)isoindoline-1,3-dione (3j)

Figure 59: ¹H spectrum of 2-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)isoindoline-1,3-dione (3j)

Figure 60: ¹³C spectrum of 2-(2-iodo-1-(2,2,2-trifluoroethoxy)ethyl)isoindoline-1,3-dione (3j)

Figure 61: ¹H spectrum of 1-(2-iodo-1-trideuteriomethoxyethyl)-4-methoxybenzene (3k)

Figure 62: ¹³C spectrum of 1-(2-iodo-1-trideuteriomethoxyethyl)-4-methoxybenzene (3k)

Figure 63: ¹H spectrum of (2-iodo-1-trideuteriomethoxyethyl)benzene (3l)

Figure 64: ¹³C spectrum of (2-iodo-1-trideuteriomethoxyethyl)benzene (31)

Figure 65: ¹H spectrum of 1-(2-iodo-1-trideuteriomethoxyethyl)-2-methylbenzene (**3m**)

Figure 66: ¹³C spectrum of 1-(2-iodo-1-trideuteriomethoxyethyl)-2-methylbenzene (**3m**)

Figure 67: ¹H spectrum of 4-(2-iodo-1-trideuteriomethoxyethyl)-1,1'-biphenyl (3n)

Figure 68: ¹³C spectrum of 4-(2-iodo-1-trideuteriomethoxyethyl)-1,1'-biphenyl (3n)

Figure 69: ¹H spectrum of 2-(2-iodo-1-trideuteriomethoxyethyl)naphthalene (30)

Figure 70: ¹³C spectrum of 2-(2-iodo-1-trideuteriomethoxyethyl)naphthalene (30)

Figure 71: ¹H spectrum of 2-iodo-1-trideuteriomethoxy-2,3-dihydro-1H-indene (**3p**)

Figure 72: ¹³C spectrum of 2-iodo-1-trideuteriomethoxy-2,3-dihydro-1H-indene (**3p**)

Figure 73: ¹H spectrum of 2-(2-iodo-1-trideuteriomethoxyethyl)isoindoline-1,3-dione (3q)

Figure 74: ¹³C spectrum of 2-(2-iodo-1-trideuteriomethoxyethyl)isoindoline-1,3-dione (**3q**)

Figure S76: ¹³C NMR spectrum of 2-iodo-1-(*p*-tolyl)ethyl acetate (8a).

Figure S77: ¹H NMR spectrum of 1-(4-bromophenyl)-2-iodoethyl acetate (8b).

Figure S78: ¹³C NMR spectrum of 1-(4-bromophenyl)-2-iodoethyl acetate (8b).

Figure S80: ¹³C NMR spectrum of 2-iodo-1-(*o*-tolyl)ethyl acetate (8c).

Figure S82: ¹³C NMR spectrum of 2-iodo-1-phenylethyl acetate (8d).

Figure S83: ¹H NMR spectrum of 1-(4-chlorophenyl)-2-iodoethyl acetate (8e).

Figure S84: ¹³C NMR spectrum of 1-(4-chlorophenyl)-2-iodoethyl acetate (8e).

Figure S85: ¹H NMR spectrum of 2-iodo-1-(4-methoxyphenyl)ethyl acetate (8f).

Figure S86: ¹³C NMR spectrum of 2-iodo-1-(4-methoxyphenyl)ethyl acetate (8f).

Figure S88: ¹³C NMR spectrum of 2-iodo-1-(naphthalen-2-yl)ethyl acetate (8g).

Figure S90: ¹³C NMR spectrum of 2-iodo-1-mesitylethyl acetate (8h).

Figure S91: ¹H NMR spectrum of 1-(2-iodo-1-(*p*-tolyl)ethyl)-4-phenyl-1*H*-1,2,3-triazole (9).

Figure S92: ¹³C NMR spectrum of 1-(2-iodo-1-(*p*-tolyl)ethyl)-4-phenyl-1*H*-1,2,3-triazole (9).

Figure S93: ¹H NMR spectrum of 1-(1-azidovinyl)-4-methylbenzene (10).

Figure S94: ¹³C NMR spectrum of 1-(1-azidovinyl)-4-methylbenzene (10).

Figure S95: ¹H NMR spectrum of 1-methyl-3-(*p*-tolyl)isoquinoline (12).

Figure S96: ¹³C NMR spectrum of 1-methyl-3-(*p*-tolyl)isoquinoline (12).

Diasteriomeric ratio of compounds 3h and 3p

Figure S97: ¹H NMR spectrum of 2-iodo-1-(2,2,2-trifluoroethoxy)-2,3-dihydro-1H-indene (**3h**), **d.r.** > **19:1**

Figure S98: ¹H NMR spectrum of crude 2-iodo-1-trideuteriomethoxy-2,3-dihydro-1H-indene (**3p**).