Supporting Information

Imidazolylpyridine-In(OTf) $)_{3}$ catalyzed enantioselective allylation of ketimines derived from isatins

Tingting Chen ${ }^{\mathrm{a}}$, Chun Cai ${ }^{\text {a }}$ *
${ }^{\text {a }}$ Chemical Engineering College, Nanjing University of Science \& Technology, Nanjing, Jiangsu 210094, P. R. China
E-mail: c.cai@njust.edu.cn.

1. Experimental Section

1.1 General

All reagents were purchased from commercial sources and used without treatment, unless otherwise indicated. The products were purified by column chromatography over silica gel. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AMX500 (500 MHz) spectrometer and tetramethylsilane (TMS) was used as a reference. Most of the products were known compounds and were identified by comparison of their physical and spectra data with those of authentic samples. Mass spectra are taken on a Thermo Scientific ISQ LT GC-MS instrument in the electron ionization (EI) mode. Enantiomeric excesses (ee) were determined by chiral HPLC using a Venusil CA column and Venusil CO column.

1.2 Procedure for the synthesis of ketimines derived from isatins

Isatin ketimines were synthesized by using the standard literature procedures. ${ }^{1}$ To the solution of the isatin (5 mmol) in ethanol (10 mL) was added the corresponding aniline (5 mmol) in one portion. Then, the reaction mixture was reacted in reflux and stirred for 2 h . Once the reaction completed, the contents were cooled to room temperature. The precipitated isatin ketimine was collected by filtration and then washed with a 10% ethanol/hexane mixture. The solid product was then air dried and used without further purification.

1.3 General procedure for the synthesis of 3-allyl 3-aminooxindoles

A mixture of $\operatorname{In}(\mathrm{OTf})_{3}(0.005 \mathrm{mmol})$ and $\mathrm{L} 1(0.005 \mathrm{mmol})$ in methanol $(1 \mathrm{~mL})$ was stirred at room temperature for 1 h . To the mixture were then added isatinimine (0.2 mmol), allyltributyltin (0.3 mmol) (caution! allyltributyltin is toxic and reactions should be conducted in a well-ventilated fume cupboard). After the starting material was consumed as indicated by TLC, the reaction mixture was poured into water and then extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic phase was washed with water $(3 \times 10 \mathrm{~mL})$, dried over anhydrous MgSO 4 , filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography.

2. Characterization of compounds

2.1 3-allyl-3-((4-methoxyphenyl)amino)indolin-2-one (2a)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$

Exact Mass: 294.14

Isolated as a colorless solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+68.8\left(\mathrm{c}=0.50\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The ee (94\%) was determined by HPLC analysis, Venusil CA column, Hexane $/ \mathrm{i}-\mathrm{PrOH} 80: 20$, flow rate $=0.7 \mathrm{~mL} / \mathrm{min}$, UV $=280 \mathrm{~nm}$, minor enantiomer $\mathrm{t}_{1}=16.3 \mathrm{~min}$, major enantiomer $\mathrm{t}_{2}=17.1 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~s}$, $1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=15.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-6.53(\mathrm{~m}, 2 \mathrm{H}), 6.38-6.31(\mathrm{~m}, 2 \mathrm{H}), 5.92-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{t}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.21(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{ddd}, J=21.2,13.3,7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 179.33, 152.42, 138.89, 137.77, 129.42, 127.96, 123.32, 121.92, 119.92, 116.66, 113.41, 109.48, 76.29, 64.26, 54.40, 43.34. MS (EI) m/z: 294 [M+].

信号 1：DAD1 E，Sig＝280，16 Ref＝360，100

峰	保留时间 ［min］	类型	峰宽 ［min］	$\begin{array}{r} \text { 峰面积 } \\ {[m A U * s]} \end{array}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	16.287		0.4307	82.25359	3.18324	3.0464
2	17.136		0.6656	2617.78369	65.55392	96.9536

2．2 3－allyl－3－（phenylamino）indolin－2－one（2b）

Chemical Formula： $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass： 264.13

Isolated as a colorless solid．$[\alpha]_{\mathrm{D}}{ }^{25}=+60.0\left(\mathrm{c}=0.72\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ ．The ee（ 84% ）was determined by HPLC analysis，Venusil CA column，Hexane $/ \mathrm{i}-\mathrm{PrOH} 80: 20$ ，flow rate $=0.7 \mathrm{~mL} / \mathrm{min}$ ，UV $=280 \mathrm{~nm}$ ， minor enantiomer $\mathrm{t}_{1}=21.3 \mathrm{~min}$ ，major enantiomer $\mathrm{t}_{2}=17.3 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.90(\mathrm{~s}$ ， $1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{td}, J=7.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$ ， $6.65(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.89-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.38-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 2.68$（ddd，$J=64.3$ ， 13．3，7．4 Hz，2H）．${ }^{13} \mathrm{C}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 180.44,145.22,139.81,130.38,129.16,124.15$ ， 123．13，121．30，119．06，114．65，110．82，64．24，44．79．MS（EI）$m / z: 264\left[\mathrm{M}^{+}\right]$．

信号 1：DAD1 E，Sig＝280，16 Ref＝360，100

峰	保留时间 ［min］	类型	峰宽 [min]	$\begin{array}{r} \text { 峰面积 } \\ \text { [mAU*s] } \end{array}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	17.276	BB	0.6193	1202.56042	28.79307	92.2915
2	23.270	MM	0.7513	100.44203	2.22831	7.7085

2.3 3－allyl－3－（p－tolylamino）indolin－2－one（2c）

Chemical Formula： $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass： 278.14

Isolated as a colorless solid．$[\alpha]_{\mathrm{D}}{ }^{25}=+68.7\left(\mathrm{c}=0.61\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ ．The ee (72%) was determined by

HPLC analysis, Venusil CA column, Hexane $/ \mathrm{i}-\mathrm{PrOH} 80: 20$, flow rate $=0.7 \mathrm{~mL} / \mathrm{min}$, UV $=254 \mathrm{~nm}$, minor enantiomer $\mathrm{t}_{1}=13.3 \mathrm{~min}$, major enantiomer $\mathrm{t}_{2}=11.5 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.89(\mathrm{~s}$, $1 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{ddt}, J=14.8,10.1,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{t}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H})$, 2.67 (ddd, $J=64.4,13.3,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.39,142.86$, $139.87,130.54,129.70,129.01,128.41,124.19,123.05,121.13,115.09,110.76,44.37,20.48 . \mathrm{MS}$ (EI) $m / z: 278\left[\mathrm{M}^{+}\right]$.

信号 1：DAD1 E，Sig＝280，16 $\operatorname{Ref}=360,100$

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	$\begin{aligned} & \text { 峰面积 } \\ & \text { [mAU*s] } \end{aligned}$	$\begin{array}{r} \text { 峰高 } \\ \text { [mAU] } \end{array}$	峰面积 \％
1	11.513		0.3872	452.04260	17.50709	86.1199
2	13.277	BB	0.4280	72.85679	2.52954	13.8801

2．4 3－allyl－3－（（4－chlorophenyl）amino）indolin－2－one（2d）

Chemical Formula： $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{CIN}_{2} \mathrm{O}$
Exact Mass： 298.09

Isolated as a brown solid．$[\alpha]_{\mathrm{D}}{ }^{25}=+87.3\left(\mathrm{c}=0.81\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ ．The ee（94\％）was determined by HPLC analysis，Venusil CA column，Hexane／i－PrOH 80：20，flow rate $=0.7 \mathrm{~mL} / \mathrm{min}$ ，UV $=280 \mathrm{~nm}$ ，minor enantiomer $\mathrm{t}_{1}=12.7 \mathrm{~min}$ ，major enantiomer $\mathrm{t}_{2}=17.1 \mathrm{~min} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~s}, 1 \mathrm{H})$ ， $7.28(\mathrm{dd}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-6.97(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$ ， $6.20-6.07$（m，2H）， 5.77 （ddt，$J=17.4,10.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}$ ）， $5.31-5.18$（m，2H）， 4.49 （s，1H）， 2.64 （ddd， $J=61.0,13.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 179.61,144.22,139.57,131.97,130.12$ ， $129.85,129.40,124.18,123.32,121.58,116.27,111.07,110.78,64.04,44.70$ ．MS（EI）$m / z: 298\left[\mathrm{M}^{+}\right]$．

信号 1：DAD1 E，Sig＝280，16 Ref＝360，100

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	12.730		0.4378	35.90672	1.36705	2.6770
2	17.150	BB	0.6455	1305.40759	29.89285	97.3230

2.5 3－allyl－3－（（4－bromophenyl）amino）indolin－2－one（2e）

Chemical Formula： $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}$
Exact Mass： 342.04

Isolated as a brown solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+81.5\left(\mathrm{c}=0.79\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.The ee (91\%) was determined by HPLC analysis, Venusil CA column, Hexane $/ \mathrm{i}-\mathrm{PrOH} 80: 20$, flow rate $=0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=280 \mathrm{~nm}$, minor enantiomer $\mathrm{t}_{1}=12.0 \mathrm{~min}$, major enantiomer $\mathrm{t}_{2}=15.5 \mathrm{~min} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36(\mathrm{~s}, 1 \mathrm{H})$, $7.28(\mathrm{dd}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{td}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.2$, $6.1 \mathrm{~Hz}, 3 \mathrm{H}), 6.29-6.01(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{ddt}, J=17.3,10.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=12.9,5.7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.48(\mathrm{~s}, 1 \mathrm{H}), 2.65$ (ddd, $J=61.1,13.3,7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.59,143.79$, $139.61,130.15,129.93,129.36,129.09,124.21,123.96,123.30,121.51,115.94,110.73,64.16,44.70$. MS (EI) m/z: $342\left[\mathrm{M}^{+}\right]$.

信号 1：DAD1 E，Sig＝280，16 $\operatorname{Ref}=360,100$

峰	保留时间 ［min］	类型	峰宽 ［min］	峰面积 [mAU*s]	$\begin{gathered} \text { 峰高 } \\ {[\mathrm{mAU}]} \end{gathered}$	峰面积 \％
1	11.962		0.4017	56.85746	2.14203	4.4940
2	15.516	BB	0.5484	1208．34241	33.21575	95.5060

2.6 3－allyl－3－（m－tolylamino）indolin－2－one（2g）
 Chemical Formula： $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ Exact Mass： 278.14

Isolated as a colorless solid．$[\alpha]_{\mathrm{D}}{ }^{25}=+62.5\left(\mathrm{c}=0.79\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ ．The ee (97%) was determined by HPLC analysis，Venusil CA column，Hexane $/ \mathrm{i}-\mathrm{PrOH} 80: 20$ ，flow rate $=0.7 \mathrm{~mL} / \mathrm{min}$ ，UV $=280 \mathrm{~nm}$ ， minor enantiomer $\mathrm{t}_{1}=8.0 \mathrm{~min}$ ，major enantiomer $\mathrm{t}_{2}=8.8 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.88(\mathrm{~s}$ ， $1 \mathrm{H}), 7.23(\mathrm{td}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}$ ， $1 \mathrm{H}), 6.70(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{ddt}, J=17.4,10.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{ddd}, J=13.6,11.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 2.69$（ddd，$J=64.9,13.4,7.5 \mathrm{~Hz}$ ， 2H）， $2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 180.69,143.12,139.69,130.88,130.57,130.39$ ， $129.04,127.05,123.91,123.19,123.09,121.42,118.40,111.55,110.90,63.46,45.05,17.49 . \mathrm{MS}$（EI） m／z： $278\left[\mathrm{M}^{+}\right]$.

信号 1：DAD1 E，Sig＝280，16 Ref＝360，100

峰 \#	保留时间 ［min］	类型	峰宽 ［min］	$\begin{aligned} & \text { 峰面积 } \\ & \text { [mAU*s] } \end{aligned}$	$\begin{gathered} \text { 峰高 } \\ {[\mathrm{mAU}]} \end{gathered}$	峰面积 \％
1	7.980		0.2650	15.28968	$9.61651 \mathrm{e}-1$	1.4013
2	8.775	BB	0.3145	1075.77979	49.30687	98.5987

2．73－allyl－3－（o－tolylamino）indolin－2－one（2h）

Chemical Formula： $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$

Exact Mass： 278.14
f
Isolated as a colorless solid．$[\alpha]_{\mathrm{D}}^{25}=+106.4\left(\mathrm{c}=0.55\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ ．The $e e(83 \%)$ was determined by HPLC analysis，Venusil CA column，Hexane／i－PrOH 80：20，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ ，UV $=280 \mathrm{~nm}$ ， minor enantiomer $\mathrm{t}_{1}=17.8 \mathrm{~min}$ ，major enantiomer $\mathrm{t}_{2}=9.0 \mathrm{~min} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.03(\mathrm{~s}$ ， $1 \mathrm{H}), 7.32-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{td}, J=7.8,3.8 \mathrm{~Hz}, 1 \mathrm{H})$ ， $6.47(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.77$（dddd，$J=17.3,9.9,7.5,2.6 \mathrm{~Hz}$ ， $1 \mathrm{H}), 5.37-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 2.66(\mathrm{ddd}, J=65.8,13.3,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.61,145.21,139.84,138.85,130.56,130.42,129.07,124.14,123.09,121.22$ ， 120．03，115．91，111．21，110．75，64．25，44．79，21．60．MS（EI）$m / z: 278\left[\mathrm{M}^{+}\right]$.

信号 1：DAD1 E，Sig＝280，16 Ref＝360，100

峰	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	9.055		0.3644	428.94345	17.35337	91.4689
2	17.871		0.6210	40.00675	1.07376	8.5311

2.8 3－allyl－3－（（4－methoxyphenyl）amino）－1－methylindolin－2－one（2i）

Chemical Formula： $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$
Exact Mass： 308.15

Isolated as a colorless solid．$[\alpha]_{D^{25}}=+103.7\left(\mathrm{c}=0.60\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ ．The ee（43\％）was determined by

HPLC analysis, Venusil CA column, Hexane/i-PrOH 95:5, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV $=254 \mathrm{~nm}$, minor enantiomer $\mathrm{t}_{1}=70.0 \mathrm{~min}$, major enantiomer $\mathrm{t}_{2}=61.9 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{dt}, J=$ $7.1,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.78-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=17.5,13.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}$, $3 \mathrm{H}), 2.63$ (ddd, $J=66.2,13.2,7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.00,153.66,143.10$, $138.90,130.68,130.05,129.12,124.12,123.02,120.80,118.04,114.49,108.54,65.07,55.56,44.41$, 26.38. MS (EI) $m / z: 308\left[\mathrm{M}^{+}\right]$.

信号 1：DAD1 A，Sig＝254， 4 Ref＝360，100

峰	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	61.967		5.0990	3854.99023	12.60041	71.5693
2	70.060	FM	3.7098	1531.38123	6.87986	28.4307

2.9 3－allyl－3－（（4－methoxyphenyl）amino）－1－phenylindolin－2－one（2j）

Chemical Formula： $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$
Exact Mass： 370.17

Isolated as a colorless solid．$[\alpha]_{\mathrm{D}}{ }^{25}=+113.2\left(\mathrm{c}=0.75\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ ．The $e e(63 \%)$ was determined by HPLC analysis，Venusil CO column，Hexane／i－PrOH 65：35，flow rate $=0.7 \mathrm{~mL} / \mathrm{min}$ ，UV $=254 \mathrm{~nm}$ ， minor enantiomer $\mathrm{t}_{1}=5.2 \mathrm{~min}$ ，major enantiomer $\mathrm{t}_{2}=4.7 \mathrm{~min}$ ．${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.39(\mathrm{~m}, 4 \mathrm{H}), 5.78(\mathrm{td}, J=16.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dd}, J=$ $22.4,13.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{ddd}, J=21.3,13.1,7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR（ 125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.40,143.35,138.82,134.47,130.58,129.73,129.06,128.27,126.65,124.49$ ， 123．47，120．92，118．93，114．46，109．78，65．54，55．62，44．40．MS（EI）$m / z: 370\left[\mathrm{M}^{+}\right]$．

信号 1：DAD1 A，Sig＝254， 4 Ref＝360，100

峰	保留时间 ［min］	类型	峰宽 ［min］	$\begin{aligned} & \text { 峰面积 } \\ & {[\mathrm{mAU} \text { *s] }} \end{aligned}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 。
1	4.717		0.2013	． 14909 e 4	886.35156	81.4924
2	5.154	VB	0.1680	2609.67896	237.86870	18.5076

2.10 3－allyl－1－benzyl－3－（（4－methoxyphenyl）amino）indolin－2－one（2k）

Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$

Exact Mass: 384.18

Isolated as a colorless solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+97.6\left(\mathrm{c}=0.68\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The ee (74%) was determined by HPLC analysis, Venusil CA column, Hexane $/ \mathrm{i}-\mathrm{PrOH} 85: 15$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=280 \mathrm{~nm}$, minor enantiomer $\mathrm{t} 1=21.0 \mathrm{~min}$, major enantiomer $\mathrm{t} 2=28.2 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=98.0$, $8.7 \mathrm{~Hz}, 4 \mathrm{H}), 5.77(\mathrm{td}, J=17.3,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=29.8,13.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.71(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{ddd}, J=21.4,13.2,7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.84,142.41,138.64,135.57,130.78,129.96,129.08,128.70,127.64,127.47$, 124.37, 122.97, 120.79, 119.99, 114.38, 109.68, 77.00, 65.79, 55.52, 44.23, 43.92. MS (EI) m/z: 384 [M^{+}.

信号 1：DAD1 E，Sig＝280，16 Ref＝360，100

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	峰面积 [mAU*s]	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	21.027		0.7710	112.82544	2.43887	13.1001
2	28.167	MM	1.1903	748.42957	10.47948	86.8999

2．11 3－allyl－3－（（4－methoxyphenyl）amino）－5－methylindolin－2－one（2l）

Chemical Formula： $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$
Exact Mass： 308.15

Isolated as a white solid．$[\alpha]_{\mathrm{D}}{ }^{25}=+59.3\left(\mathrm{c}=0.84\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ ．The ee (60%) was determined by HPLC analysis，Venusil CA column，Hexane $/ \mathrm{i}-\mathrm{PrOH} 80: 10$ ，flow rate $=0.7 \mathrm{~mL} / \mathrm{min}$ ，UV $=280 \mathrm{~nm}$ ，minor enantiomer $\mathrm{t}_{1}=13.3 \mathrm{~min}$ ，major enantiomer $\mathrm{t}_{2}=14.8 \mathrm{~min} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.01(\mathrm{~s}, 1 \mathrm{H})$ ， $6.96(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.55(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.67$ （dt，$J=17.5,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$（dd，$J=19.2,13.6 \mathrm{~Hz}, 2 \mathrm{H}$ ）， $4.25(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 2.59$（ddd，$J=$ $63.1,13.3,7.4 \mathrm{~Hz}, 2 \mathrm{H}$ ）， $2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR（ $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 180.87,153.32,139.15,137.63$ ， $132.53,130.66,129.42,124.91,120.90,117.17,114.57,110.50,65.32,55.50,44.56,21.32 . \mathrm{MS}$（EI） $m / z: 308\left[\mathrm{M}^{+}\right]$．

信号 1：DAD1 E，Sig＝280，16 Ref＝360，100

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	13.286	BB	0.4587	188.15355	6.08632	19.6725
2	14.825	MM	0.5579	768.27759	22.94965	80.3275

2．12 3－allyl－5－methoxy－3－（（4－methoxyphenyl）amino）indolin－2－one（2m）

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$

Exact Mass: 324.15

Isolated as a white solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+73.2\left(\mathrm{c}=0.88\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The ee (71%) was determined by HPLC analysis, Venusil CA column, Hexane $/ \mathrm{i}-\mathrm{PrOH} 80: 20$, flow rate $=0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=280 \mathrm{~nm}$, minor enantiomer $\mathrm{tl}=20.4 \mathrm{~min}$, major enantiomer $\mathrm{t} 2=23.7 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H})$, $6.97(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.51(\mathrm{~m}, 2 \mathrm{H}), 6.51-6.21(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{td}, J=$ $17.0,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{t}, J=14.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{ddd}, J=21.4$, 13.3, $7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.82,156.28,138.92,133.16,132.00,130.47$, $121.04,117.74,114.57,113.93,111.11,110.88,65.68,55.86,55.57,44.57 . \mathrm{MS}(\mathrm{EI}) m / z: 324[\mathrm{M}+$.

信号 1：DAD1 E，Sig＝280，16 Ref＝360，100

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ {[\mathrm{mAU}]} \end{gathered}$	峰面积 \％
1	20.410		0.9110	166.20190	3.04074	14.3584
2	23.691		1.0094	991.32404	16.36743	85.6416

2.13 3－allyl－5－chloro－3－（（4－methoxyphenyl）amino）indolin－2－one（2n）

Chemical Formula： $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2}$
Exact Mass： 328.10

Isolated as a white solid．$[\alpha]_{\mathrm{D}}{ }^{25}=+67.2\left(\mathrm{c}=0.90\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ ．The ee（ 63% ）was determined by HPLC analysis，Venusil CO column，Hexane／i－PrOH 65：35，flow rate $=0.7 \mathrm{~mL} / \mathrm{min}$ ，UV $=254 \mathrm{~nm}$ ，minor enantiomer $\mathrm{t}_{1}=4.2 \mathrm{~min}$ ，major enantiomer $\mathrm{t}_{2}=4.9 \mathrm{~min}$ ．${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.91(\mathrm{~s}, 1 \mathrm{H})$ ， $7.33(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.48(\mathrm{~m}, 2 \mathrm{H})$ ， $6.45-6.16(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{td}, J=17.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.27$（s，1H）， 3.67 （s，3H）， 2.70 （ddd，$J=21.3,13.3,7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 180.49,153.70,138.56$ ， $132.43,129.96,129.14,128.60,124.71,121.53,117.49$ ，114．65，111．71，77．41，65．60，55．53， 44.38. MS（EI）$m / z: 328\left[\mathrm{M}^{+}\right]$．

信号 1：DAD1 A，Sig＝254，4 Ref＝360，100

峰 \＃	保留时间 ［min］	类型	峰宽 [min]	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{array}{r} \text { 峰高 } \\ \text { [mAU] } \end{array}$	峰面积 \％
1	4.174		0.1355	506.31784	57.08508	18.3382
2	4.902	BB	0.1724	2254.68140	201.72751	81.6618

2.14 3－allyl－6－chloro－3－（（4－methoxyphenyl）amino）indolin－2－one（2o）

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{CIN}_{2} \mathrm{O}_{2}$

Exact Mass: 328.10

Isolated as a white solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+116.4\left(\mathrm{c}=0.56\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The ee (94%) was determined by HPLC analysis, Venusil CA column, Hexane $/ \mathrm{i}-\mathrm{PrOH} 85: 15$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, UV $=280 \mathrm{~nm}$, minor enantiomer $\mathrm{tl}=15.4 \mathrm{~min}$, major enantiomer $\mathrm{t} 2=17.4 \mathrm{~min}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~s}, 1 \mathrm{H})$, $7.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{dd}, J=17.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.31-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.63$ (ddd, $J=64.3,13.3,7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl3) $\delta 180.02,153.91,144.00,141.05,138.50$, $134.72,130.08,128.90,125.46,123.08,121.36,118.13,114.58,111.16,65.24,55.54,44.32 . \mathrm{MS}$ (EI) $m / z: 328\left[\mathrm{M}^{+}\right]$.

 -10

信号 1：DAD1 E，Sig＝280，16 $\operatorname{Ref}=360,100$

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ {[\mathrm{mAU}]} \end{gathered}$	峰面积 \％
1	15.450		0.5803	65.10992	1.87015	2.8205
2	17.399	BB	0.6587	2243.36157	49.69175	97.1795

2.15 3－allyl－7－fluoro－3－（（4－methoxyphenyl）amino）indolin－2－one（2p）

Chemical Formula： $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{2}$
Exact Mass： 312.13

Isolated as a brown solid．$[\alpha]_{\mathrm{D}}{ }^{25}=+80.6\left(\mathrm{c}=0.71\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ ．The ee (96%) was determined by HPLC analysis，Venusil CA column，Hexane／i－PrOH 80：20，flow rate $=0.7 \mathrm{~mL} / \mathrm{min}$ ，UV $=280 \mathrm{~nm}$ ，minor enantiomer $\mathrm{t} 1=17.5 \mathrm{~min}$ ，major enantiomer $\mathrm{t} 2=23.4 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$ ，Chloroform－d ）$\delta 8.09$ $(\mathrm{s}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=6.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.63-6.56(\mathrm{~m}, 2 \mathrm{H})$ ， $5.59(\mathrm{dtd}, J=17.8,8.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{ddd}, J=61.8,13.4,7.4$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR（126 MHz， CDCl_{3} ）$\delta 177.68,151.92,145.16,138.80,128.88,122.79,120.01$ ， $119.21,115.56,113.85,59.46,54.79,41.98$ ．MS（EI）$m / z: 312\left[\mathrm{M}^{+}\right]$．

信号 1：DAD1 E，Sig＝280，16 $\operatorname{Ref}=360,100$

峰 $\#$	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	17.508		0.5851	5.60257	$1.59589 \mathrm{e}-1$	1.8038
2	23.358	MM	0.9767	305.00156	5.20454	98.1962

3．X－ray crystallographic analysis of 2 a

