Copper-Catalyzed Intermolecular Amidation of 8-Methylquinolines with *N*-Fluoroarylsulfonimides *via* Csp³-H Activation

Xiaolei Zhang,[†] Rui Wu,[†] Wanyi Liu,[†] Dang-Wei Qian,[†] Jinhui Yang,[†] Pengjv Jiang,[†] and Qing-Zhong Zheng^{†‡}

[†] Department of Chemistry and State Key Laboratory Cultivation Base of Natural Gas Conversion, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.

[‡] State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, China.

E-mail: qzzheng@nxu.edu.cn

Supporting Information

Table of Contents

General remarks	S2
Experimental procedure and characterization data	S3-S15
The radical-trapping experiment	S15-S16
Reference	S16
¹ H NMR and ¹³ C NMR spectra for products	S17-S63

General remarks

All manipulations were conducted with sealed tubes. ¹H-NMR spectra were recorded on a Bruker AVIII-400 spectrometers. Chemical shifts (in ppm) were calibrated with CDCl₃. ¹³C-NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl₃. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification

Experimental procedure and characterization data

1) N-(Phenylsulfonyl)-N-(quinolin-8-ylmethyl)benzenesulfonamide (3a)¹

Typical procedure:

8-methyl-quinoline (**1a**) (1.0 The reaction of mmol. 143.2 mg), *N*-Fluorobenzenesulfonimide (2a) (1.3 mmol, 410.0 mg), CuBr (10 mol %, 14.3 mg), 1,10-phenanthroline (5 mol %, 9.0 mg), Na₂CO₃ (50 mol %, 53.0 mg), in 3 mL DCE at 110 °C under air for 15 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 355.1 mg (81%) of **3a** as solid: MP: 144-145 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, J = 2.8Hz, 1H), 8.14 (dd, J = 8.4, 1.4 Hz, 1H), 7.90-7.88 (m, 4H), 7.67 (d, J = 8.0 Hz, 1H), 7.60 (t, J = 7.6 Hz, 2H), 7.51 (d, J = 7.2 Hz, 1H), 7.47-7.41 (m, 5H), 7.28 (d, J = 8.0Hz, 1H), 5.82 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 149.3, 145.5, 139.5, 136.2, 133.7, 132.9, 128.7, 128.3, 127.9, 127.8, 127.2, 125.9, 121.1, 49.0 ppm. MS (70 eV): m/z (%): 439.1 (100) [M]⁺, 440.1 (20).

2) N-((8-Methylquinolin-5-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (3b)
and N-((5-Methylquinolin-8-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (3b')¹

The reaction of 5,8-dimethylquinoline (1b) (0.3 mmol, 47.1 mg), N-Fluorobenzenesulfonimide (2a) (0.39 mmol, 123.0 mg), CuBr (10 mol %, 4.3 mg), 1,10-phenanthroline (5 mol %, 2.7 mg), Na₂CO₃ (50 mol %, 15.9 mg), in 3 mL DCE at 110 °C under air for 15 h as monitored by TLC. The resulting mixture were concentrated and purified by flash chromatography on silica gel to afford 74.2 mg (55%) of **3b** as solid, and 25.2 mg (18%) of **3b**' as solid. The total yield of **3b** and **3b**' **3b**: MP: 198-199 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.85 (s, 1H), is 73% (2.9:1). 8.50 (dd, J = 8.4, 0.8 Hz, 1H), 7.71 (dd, J = 8.4, 1.0 Hz, 4H), 7.46 (t, J = 7.6, Hz, 2H), 7.41-7.33 (m, 3H), 7.30 (t, J = 8.0 Hz, 4H), 5.45 (s, 2H), 2.74 (s, 3H) ppm. ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta$ 148.8, 146.9, 139.7, 138.1, 133.4, 131.4, 129.3, 128.5, 127.6, 127.2, 126.4, 120.9, 50.8, 18.2 ppm. HRMS m/z (ESI): Calcd. for C₂₃H₂₁N₂O₄S₂ [M+H]⁺ 453.0943, Found: 453.0937. **3b**': MP: 199-200 °C. ¹H NMR (400 MHz, $CDCl_3$) δ 8.91 (dd, J = 4.0, 1.6 Hz, 1H), 8.31 (dd, J = 8.4, 1.2 Hz, 1H), 7.90 (dd, J =8.8, 1.2 Hz, 4H), 7.59 (t, J = 7.4 Hz, 2H), 7.47-7.39 (m, 6H), 7.11 (d, J = 7.2 Hz, 1H), 5.78 (s, 2H), 2.63 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 148.9, 145.9, 139.7, 134.0, 133.7, 132.6, 130.9, 128.8, 128.4, 127.5, 127.3, 126.3, 120.7, 49.3, 18.5 ppm. MS (70 eV): m/z (%): 453.1 (100) [M]⁺, 454.1 (25).

3) *N*-((5-Fluoroquinolin-8-yl)methyl)-*N*-(phenylsulfonyl)benzenesulfonamide (3c) ¹

The reaction of 5-fluoro-8-methyl-quinoline (1c) (0.3 mmol, 48.3 mg), *N*-Fluorobenzenesulfonimide (2a) (0.39 mmol, 123.0 mg), CuBr (10 mol %, 4.3 mg), 1,10-phenanthroline (5 mol %, 2.7 mg), Na₂CO₃ (50 mol %, 15.9 mg), in 3 mL DCE at 110 °C under air for 15 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 126.3 mg (92%) of **3c** as solid: MP: 143-144 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.95 (dd, *J* =

4.0, 1.6 Hz, 1H), 8.42 (dd, J = 8.8, 2.0 Hz, 1H), 7.89 (dd, J = 8.4, 1.2 Hz, 4H), 7.63-7.59 (m, 2H), 7.51 (t, J = 4.4, Hz, 1H), 7.48-7.44 (m, 5H), 6.97 (t, J = 8.8 Hz, 1H), 5.75 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 157.0 (d, J = 253.7 Hz), 150.2, 145.8 (d, J = 3.2 Hz), 139.4, 133.7, 129.2 (d, J = 5.3 Hz), 128.9 (d, J = 4.2 Hz), 128.7, 128.1, 127.7 (d, J = 8.6 Hz), 121.3 (d, J = 3.3 Hz), 118.4 (d, J = 16.3 Hz), 109.6 (d, J = 18.3 Hz), 48.6 ppm. ¹⁹F NMR (375 MHz, CDCl₃) $\delta = -123.5$. MS (70 eV): m/z (%): 457.1 (100) [M]⁺, 458.1 (20).

4) *N*-((5-Chloroquinolin-8-yl)methyl)-*N*-(phenylsulfonyl)benzenesulfonamide (3d) The reaction of 5-chloro-8-methyl-quinoline (1d) (0.3 mmol, 53.2 mg), *N*-Fluorobenzenesulfonimide (2a) (0.39 mmol, 123.0 mg), CuBr (10 mol %, 4.3 mg), 1,10-phenanthroline (5 mol %, 2.7 mg), Na₂CO₃ (50 mol %, 15.9 mg), in 3 mL DCE at 110 °C under air for 22 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 112.0 mg (79%) of **3d** as solid: MP: 205-206 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.95 (dd, *J* = 4.0, 1.6 Hz, 1H), 8.58 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.90 (dd, *J* = 8.4, 1.2 Hz, 4H), 7.64 (t, *J* = 1.2 Hz, 2H), 7.55 (dd, *J* = 8.4, 4.0 Hz, 1H), 7.49-7.42 (m, 5H), 7.37 (d, *J* = 8.0 Hz, 1H), 5.76 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 145.9, 139.5, 133.9, 133.2, 132.5, 130.7, 128.9, 128.3, 128.0, 126.0, 125.9, 122.0, 48.9 ppm. HRMS m/z (ESI): Calcd. for C₂₂H₁₈ClN₂O₄S₂ [M+H]⁺ 473.0397, Found: 473.0391.

5) N-((5-Nitroquinolin-8-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (3e)¹

The reaction of 8-methyl-5-nitro-quinoline (1e) (0.3 mmol, 56.4 mg), *N*-Fluorobenzenesulfonimide (2a) (0.6 mmol, 189.2 mg), Cu(OAc)₂ (2 equiv, 109 mg), Li₂CO₃ (50 mol %, 11.0 mg), in 0.75 mL DCE and 0.75mL MeCN at 110 °C under Ar for 22 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 73.1 mg (50%) of **3e** as solid: MP: 197-199 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.07 (dd, *J* = 8.8, 1.6 Hz, 1H), 9.05 (dd, *J* = 4.0, 1.6 Hz, 1H), 8.14 (d, *J* = 8.4 Hz, 1H), 7.92 (dd, *J* = 8.4, 1.2 Hz, 4H), 7.72 (dd, *J* = 8.8, 4.4 Hz, 1H), 7.67 (t, *J* = 7.6 Hz, 2H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.51 (t, *J* = 7.9 Hz, 4H), 5.84 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 150.5, 145.2, 144.6, 141.5, 139.2, 134.2, 132.3, 129.1, 128.4, 125.8, 124.0, 123.9, 120.7, 49.5 ppm. MS (70 eV): m/z (%): 484.1 (50) [M]⁺.

6) *N*-((6-Methylquinolin-8-yl)methyl)-*N*-(phenylsulfonyl)benzenesulfonamide (**3f**) The reaction of 6,8-dimethyl-quinoline (**1f**) (0.3 mmol, 47.1 mg), *N*-Fluorobenzenesulfonimide (**2a**) (0.39 mmol, 123.0 mg), CuBr (10 mol %, 4.3 mg), 1,10-phenanthroline (5 mol %, 2.7 mg), Na₂CO₃ (50 mol %, 15.9 mg), in 3 mL DCE at 110 °C under air for 15 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 66.5 mg (49%) of **3f** as solid: MP: 168-170 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.82 (dd, *J* = 4.0, 1.6 Hz, 1H), 8.04 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.93 (dd, *J* = 8.4, 1.2 Hz, 4H), 7.62 (t, *J* = 7.6 Hz, 2H), 7.49-7.45 (m, 4H), 7.42 (s, 1H), 7.38 (q, *J* = 4.0 Hz, 1H), 7.19 (s, 1H), 5.80 (s, 2H), 2.23 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 144.2, 139.7, 135.7, 135.5, 133.7, 132.2, 130.1, 128.8, 128.3, 128.0, 126.0, 121.2, 49.2, 21.5 ppm. HRMS m/z (ESI): Calcd. for C₂₃H₂₁N₂O₄S₂ [M+H]⁺ 453.0943, Found: 453.0937. Additionally, the stucture of compound **3f** was also corroborated by x-ray diffraction (CCDC 1476725) as shown in Fig. 1.

Fig. 1. ORTEP view of the crystal structure of compound 3f.

7) *N*-((6-Fluoroquinolin-8-yl)methyl)-*N*-(phenylsulfonyl)benzenesulfonamide (3g) The reaction of 6-fluoro-8-methyl-quinoline (1g) (0.3 mmol, 48.3 mg), *N*-Fluorobenzenesulfonimide (2a) (0.6 mmol, 189.2 mg), Cu(OAc)₂ (2 equiv, 109 mg), Li₂CO₃ (50 mol %, 11.0 mg), in 0.75 mL DCE and 0.75mL MeCN at 110 °C under Ar for 22h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 84.7 mg (62%) of **3g** as solid: MP: 167-168 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.91 (d, *J* = 2.8 Hz, 1H), 8.18 (d, *J* = 7.6 Hz, 1H), 7.93 (dd, *J* = 8.8, 1.2 Hz, 4H), 7.65 (t, *J* = 8.0 Hz, 2H), 7.50 (t, *J* = 8.0 Hz, 5H), 7.32 (d, *J* = 8.0 Hz, 2H), 5.81 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 159.9 (d, *J* = 246.9 Hz), 148.6 (d, *J* = 3.4 Hz), 142.6, 139.4, 136.6 (d, *J* = 8.5 Hz), 135.7 (d, *J* = 5.0 Hz), 134.0, 128.9, 128.8 (d, *J* = 10.5 Hz), 128.3, 122.0, 118.3 (d, *J* = 17.8 Hz), 109.9 (d, *J* = 22.1 Hz), 48.8 ppm. ¹⁹F NMR (375 MHz, CDCl₃) δ = -112.5. HRMS m/z (ESI): Calcd. for C₂₂H₁₈FN₂O₄S₂ [M+H]⁺ 457.0692, Found: 457.0687.

8) N-((6-Chloroquinolin-8-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (3h)

The reaction of 6-chloro-8-methyl-quinoline (**1h**) (0.3 mmol, 53.2 mg), *N*-Fluorobenzenesulfonimide (**2a**) (0.6 mmol, 189.2 mg), Cu(OAc)₂ (2 equiv, 109 mg), Li₂CO₃ (50 mol %, 11.0 mg), in 0.75 mL DCE and 0.75mL MeCN at 110 °C under Ar for 22 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 92.1 mg (65%) of **3h** as solid: MP: 193-195 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, *J* = 2.8 Hz, 1H), 8.09 (d, *J* = 5.2 Hz, 1H), 7.95 (d, *J* = 7.2 Hz, 4H), 7.68-7.64 (m, 3H), 7.51 (t, *J* = 8.0 Hz, 5H), 7.33 (s, 1H), 5.77 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 149.6, 143.8, 139.4, 135.6, 135.2, 134.1, 132.1, 129.0, 128.9, 128.7, 128.4, 125.8, 122.2, 48.8 ppm. HRMS m/z (ESI): Calcd. for C₂₂H₁₈ClN₂O₄S₂ [M+H]⁺ 473.0397, Found: 473.0391.

9) *N*-((6-Bromoquinolin-8-yl)methyl)-*N*-(phenylsulfonyl)benzenesulfonamide (3i) The reaction of 6-bromo-8-methyl-quinoline (1i) (0.3 mmol, 66.6 mg), *N*-Fluorobenzenesulfonimide (2a) (0.6 mmol, 189.2 mg), Cu(OAc)₂ (2 equiv, 109 mg), Li₂CO₃ (50 mol %, 11.0 mg), in 0.75 mL DCE and 0.75mL MeCN at 110 °C under Ar for 22 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 83.0 mg (53%) of **3i** as solid: MP: 211-213 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.90 (dd, *J* = 4.0, 1.6 Hz, 1H), 8.06 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.96 (dd, *J* = 8.0, 1.2 Hz, 4H), 7.84 (d, *J* = 2.0 Hz, 1H), 7.66 (t, J = 7.2 Hz, 2H), 7.51 (t, *J* = 7.6 Hz, 4H), 7.46 (q, *J* = 4.0 Hz, 1H), 7.42 (t, *J* = 1.2 Hz, 1H), 5.76 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 149.7, 144.1, 139.5, 135.3, 134.0, 131.3, 129.7, 129.2, 129.0, 128.3, 126.4, 122.1, 120.2, 48.6 ppm. HRMS m/z (ESI): Calcd. for C₂₂H₁₈BrN₂O₄S₂ [M+H]⁺ 516.9891, Found: 516.9886.

10) N-((7-Methylquinolin-8-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide(3j)

The reaction of 7,8-dimethyl-quinoline (**1j**) (0.3 mmol, 47.1 mg), *N*-Fluorobenzenesulfonimide (**2a**) (0.39 mmol, 123.0 mg), CuBr (10 mol %, 4.3 mg), 1,10-phenanthroline (5 mol %, 2.7 mg), Na₂CO₃ (50 mol %, 15.9 mg), in 3 mL DCE at 110 °C under air for 22 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 82.6 mg (61%) of **3j** as solid: MP: 158-159 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.90 (dd, *J* = 4.0, 2.0 Hz, 1H), 7.95 (d, J = 7.2 Hz, 1H), 7.61 (dd, *J* = 8.0, 1.1 Hz, 4H), 7.55 (d, *J* = 8.8 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 5H), 7.07 (d, *J* = 8.0 Hz, 1H), 5.99 (s, 2H), 2.44 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 149.3, 146.9, 140.8, 140.3, 135.6, 132.9, 129.8, 128.3, 128.1, 127.6, 127.4, 126.2, 120.3, 46.3, 20.2 ppm. HRMS m/z (ESI): Calcd. for C₂₃H₂₁N₂O₄S₂ [M+H]⁺ 453.0943, Found: 453.0937.

11) N-((7-Methoxyquinolin-8-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide(3k)

The reaction of 7-methoxy-8-methylquinoline (1k) (0.3 mmol, 51.9 mg), *N*-Fluorobenzenesulfonimide (2a) (0.39 mmol, 123.0 mg), CuBr (10 mol %, 4.3 mg), 1,10-phenanthroline (5 mol %, 2.7 mg), Na₂CO₃ (50 mol %, 15.9 mg), in 3 mL DCE at 110 °C under air for 15 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 53.6 mg (38%) of **3**k as solid: MP: 155-156 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.93 (dd, *J* = 4.0, 1.6 Hz, 1H), 8.02 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.67 (dd, *J* = 8.0, 1.0 Hz, 4H), 7.63 (d,

J = 9.2 Hz, 1H), 7.46 (t, J = 7.2 Hz, 2H), 7.32-7.27 (m, 4H), 7.25 (d, J = 4.4 Hz, 1H), 6.85 (d, J = 9.2 Hz, 1H), 6.00 (s, 2H), 3.63 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 150.4, 147.3, 141.1, 135.9, 132.7, 132.6, 129.6, 128.2, 127.5, 126.3, 122.8, 118.8, 115.1, 112.6, 55.3, 44.0 ppm. HRMS m/z (ESI): Calcd. for C₂₃H₂₁N₂O₅S₂ [M+H]⁺ 469.0892, Found: 469.0886.

12) N-((7-Fluoroquinolin-8-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (31)

The reaction of 7-fluoro-8-methyl-quinoline (11) (0.3 mmol, 48.3 mg), *N*-Fluorobenzenesulfonimide (2a) (0.39 mmol, 123.0 mg), CuBr (10 mol %, 4.3 mg), 1,10-phenanthroline (5 mol %, 2.7 mg), Na₂CO₃ (50 mol %, 15.9 mg), in 3 mL DCE at 110 °C under air for 22 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 75.3 mg (55%) of **31** as solid: MP: 158-159 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.90 (dd, *J* = 4.4, 1.2 Hz, 1H), 8.03 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.83 (dd, *J* = 8.0, 1.2 Hz, 4H), 7.65 (dd, *J* = 8.8, 5.6 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 7.35 (t, *J* = 8.0 Hz, 5H), 7.09 (t, *J* = 9.2 Hz, 1H), 5.88 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 161.5 (d, *J* = 252.6 Hz), 150.4, 146.9 (d, *J* = 8.8 Hz), 140.1, 135.9, 133.2, 130.0 (d, *J* = 11.1 Hz), 128.4, 127.7, 124.7, 120.4 (d, *J* = 2.2 Hz), 116.7 (d, *J* = 25.7 Hz), 116.4, 42.7 (d, *J* = 2.7 Hz) ppm. ¹⁹F NMR (375 MHz, CDCl₃) δ = -108.2. HRMS m/z (ESI): Calcd. for C₂₂H₁₈FN₂O₄S₂ [M+H]⁺ 457.0692, Found: 457.0687.

13) N-((7-Chloroquinolin-8-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide

(3m)

The reaction of 7-chloro-8-methyl-quinoline (**1m**) (0.3 mmol, 53.2 mg), *N*-Fluorobenzenesulfonimide (**2a**) (0.39 mmol, 123.0 mg), CuBr (10 mol %, 4.3 mg), 1,10-phenanthroline (5 mol %, 2.7 mg), Na₂CO₃ (50 mol %, 15.9 mg), in 3 mL DCE at 110 °C under air for 36 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 58.3 mg (41%) of **3m** as solid: MP: 171-173 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.90 (dd, *J* = 4.4, 2.0 Hz, 1H), 7.98 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.71 (dd, *J* = 8.4, 1.2 Hz, 4H), 7.56 (d, *J* = 8.8 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.36 (q, *J* = 4.0 Hz, 1H), 7.31-7.26 (m, 5H), 6.02 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 147.0, 140.4, 137.0, 135.7, 132.9, 129.3, 128.3, 128.2, 128.1, 127.4, 126.3, 121.3, 46.5 ppm. HRMS m/z (ESI): Calcd. for C₂₂H₁₈ClN₂O₄S₂ [M+H]⁺ 473.0397, Found: 473.0391.

14) N-((7-Bromoquinolin-8-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide(3n)

The reaction of 7-bromo-8-methyl-quinoline (**1n**) (0.3 mmol, 66.6 mg), *N*-Fluorobenzenesulfonimide (**2a**) (0.39 mmol, 123.0mg), CuBr (10 mol %, 4.3 mg), 1,10-phenanthroline (5 mol %, 2.7 mg), Na₂CO₃ (50 mol %, 15.9 mg), in 3 mL DCE at 110 °C under air for 15 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 57.3 mg (37%) of **3n** as solid: MP: 169-171 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.84 (dd, *J* = 4.0, 1.2 Hz, 1H), 7.91-7.89 (m, 1H), 7.69 (d, *J* = 7.6 Hz, 4H), 7.46 (t, *J* = 5.6 Hz, 2H), 7.43-7.38 (m, 2H), 7.32 (dd, *J* = 8.0, 4.4 Hz, 1H), 7.25 (t, *J* = 7.6 Hz, 4H), 6.00 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 147.1, 140.6, 135.6, 132.8, 131.0, 130.2, 129.4, 128.2, 127.6, 127.4, 126.7, 121.4, 49.4 ppm. HRMS m/z (ESI): Calcd. for C₂₂H₁₈BrN₂O₄S₂ [M+H]⁺ 516.9891, Found: 516.9886.

15) 4-Methyl-N-(quinolin-8-ylmethyl)-N-tosylbenzenesulfonamide (30)¹

The reaction of 8-methyl-quinoline (**1o**) (0.1 mmol, 14.3 mg), *N*-fluoro-4-methyl-*N*-tosylbenzenesulfonamide (**2b**) (0.2 mmol, 68.7 mg), Cu(OAc)₂ (2 equiv, 36.3 mg), Li₂CO₃ (50 mol %, 3.7 mg), in 0.5 mL DCE and 0.5mL MeCN at 110 °C under Ar for 22 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 37.1mg (80%) of **3o** as solid: MP: 134-136 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.92 (d, *J* = 2.8 Hz, 1H), 8.19 (d, *J* = 7.6 Hz, 1H), 7.77 (d, *J* = 8.4 Hz, 4H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.58 (s, 1H), 7.46 (dd, *J* = 8.0, 3.6 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.24 (d, *J* = 8.4 Hz, 4H), 5.78 (s, 2H), 2.43 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 149.2, 144.8, 136.6, 133.2, 129.4, 128.5, 128.2, 128.0, 127.2, 126.1, 121.2, 49.0, 21.6 ppm. MS (70 eV): m/z (%): 439.1 (20), 467.1 (100) [M]⁺, 468.1 (25).

16) *N*-((6-Fluoroquinolin-8-yl)methyl)-4-methyl-*N*-tosylbenzenesulfonamide (3p) The reaction of 6-fluoro-8-methyl-quinoline (1g) (0.1 mmol, 16.1 mg), *N*-fluoro-4methyl-*N*-tosylbenzenesulfonamide (2b) (0.2 mmol, 68.7 mg), Cu(OAc)₂ (2 equiv, 36.3 mg), Li₂CO₃ (50 mol %, 3.7 mg), in 0.5 mL DCE and 0.5mL MeCN at 110 °C under Ar for 22 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 24.5 mg (51%) of **3p** as solid: MP: 156-158 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.85 (dd, *J* = 4.4, 1.2 Hz, 1H), 8.10 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.81 (d, *J* = 8.4 Hz, 4H), 7.45 (dd, *J* = 8.4, 4.0 Hz, 1H), 7.28-7.22 (m, 6H), 5.73 (s, 2H), 2.44 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 160.0 (d, J = 246.9 Hz), 148.6 (d, J = 2.0 Hz), 145.1, 142.6, 136.9 (d, J = 8.1 Hz), 136.5, 135.7 (d, J = 5.8 Hz), 129.5, 129.0, 128.8 (d, J = 9.5 Hz), 128.4, 122.0, 118.4 (d, J = 27.6 Hz), 109.8 (d, J = 20.8 Hz), 48.7, 21.6 ppm. ¹⁹F NMR (375 MHz, CDCl₃) $\delta = -112.1$. HRMS m/z (ESI): Calcd. for C₂₄H₂₂FN₂O₄S₂ [M+H]⁺ 485.1005, Found: 485.1000.

17) 4-Fluoro-*N*-((4-nitrophenyl)sulfonyl)-*N*-(quinolin-8-ylmethyl)benzenesulfonamide (3q)

The reaction of 8-methyl-quinoline (1a) (0.15 mmol, 21.5 mg), *N*,4-difluoro-*N*-((4nitrophenyl)sulfonyl)benzenesulfonamide (2c) (1.3 equvi, 73.5 mg), CuBr (10 mol %, 2.1 mg), 1,10-phenanthroline (5 mol %, 2.7 mg), Na₂CO₃ (50 mol %, 8.0 mg), in 1.5 mL DCE at 110 °C under Ar for 22 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 37.8 mg (50%) of **3q** as solid: MP: 175-177 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.92 (d, *J* = 2.4 Hz, 1H), 8.23 (d, *J* = 8.8 Hz, 2H), 8.14 (d, *J* = 7.6 Hz, 1H), 8.03 (d, *J* = 8.8 Hz, 2H), 7.92 (dd, *J* = 8.8, 5.2 Hz, 2H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 4.9 Hz, 2H), 7.30 (t, *J* = 7.6 Hz, 1H), 7.12 (t, *J* = 8.5 Hz, 2H), 5.86 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 165.8 (d, *J* = 255.9 Hz), 150.1 (d, *J* = 55.3 Hz), 145.6, 145.2, 136.2, 135.3 (d, *J* = 3.6 Hz), 132.0, 131.3 (d, *J* = 9.8 Hz), 129.6, 128.5, 128.0 (d, *J* = 4.3 Hz), 125.8, 123.8, 121.5, 116.2 (d, *J* = 22.5 Hz), 49.2 ppm. ¹⁹F NMR (375 MHz, CDCl₃) δ = -102.0. HRMS m/z (ESI): Calcd. for C₂₂H₁₇FN₃O₆S₂ [M+H]⁺ 502.0543, Found: 502.0537.

18)

nitrophenyl)sulfonyl)benze-

nesulfonamide (3r)

The reaction of 5-fluoro-8-methyl-quinoline (**1c**) (0.15 mmol, 24 mg), *N*,4-difluoro-*N*-((4-nitrophenyl)sulfonyl)benzenesulfonamide (**2c**) (1.3 equvi, 73.5 mg), CuBr (10 mol %, 2.1 mg), 1,10-phenanthroline (5 mol %, 2.7 mg), Na₂CO₃ (50 mol %, 8.0 mg), in 1.5 mL DCE at 110 °C under Ar for 22 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 52.0 mg (72%) of **3r** as solid: MP: 165-167 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.00 (dd, *J* = 4.4, 2.0 Hz, 1H), 8.46 (dd, *J* = 8.8, 2.0 Hz, 1H), 8.28 (dd, *J* = 7.2, 2.0 Hz, 2H), 8.06 (dd, *J* = 7.2, 2.0 Hz, 2H), 7.92-7.89 (m, 2H), 7.55 (dd, *J* = 8.4, 4.0 Hz, 1H), 7.47 (dd, *J* = 8.4, 5.6 Hz, 1H), 7.12 (t, *J* = 8.8 Hz, 2H), 7.06-7.04 (m, 1H), 5.80 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 165.8 (d, *J* = 256.6 Hz), 157.5 (d, *J* = 255.5 Hz), 150.5 (d, *J* = 21.6 Hz), 146.0 (d, *J* = 3.0 Hz), 145.1, 135.1 (d, *J* = 3.4 Hz), 131.3 (d, *J* = 9.9 Hz), 129.6, 128.4 (d, *J* = 9.0 Hz), 128.1 (d, *J* = 4.9 Hz), 123.9, 121.6 (d, *J* = 3.4 Hz), 118.7 (d, *J* = 16.8 Hz), 116.2 (d, *J* = 22.8 Hz), 109.3 (d, *J* = 20.1 Hz), 48.8 ppm. ¹⁹F NMR (375 MHz, CDCl₃) δ = -101.9, -121.9. HRMS m/z (ESI): Calcd. for C₂₂H₁6F₂N₃O₆S₂ [M+H]⁺ 520.0449, Found: 520.0443.

19) *N*-((6-Bromoquinolin-8-yl)methyl)-4-fluoro-*N*-((4-nitrophenyl)sulfonyl)benzenesulfonamide (3s)

The reaction of 6-bromo-8-methyl-quinoline (1i) (0.15 mmol, 33.3 mg), N,4-difluoro-N-((4-nitrophenyl)sulfonyl)benzenesulfonamide (2c) (0.3 mmol, 113.5 mg). Cu(OAc)₂ (2 equiv, 36.3 mg), Li₂CO₃ (50 mol %, 3.7 mg), in 0.5 mL DCE and 0.5 mL MeCN at 110 °C under Ar for 22 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 72.4 mg (83%) of **3s** as solid: MP: 172-173 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.91 (dd, J =4.0, 1.6 Hz, 1H), 8.32 (d, J = 8.8 Hz, 2H), 8.11 (d, J = 9.2 Hz, 2H), 8.06 (dd, J = 8.4, 1.6 Hz, 1H), 7.99 (dd, J = 8.8, 4.8 Hz, 2H), 7.86 (d, J = 2.0 Hz, 1H), 7.47 (dd, J = 8.0, 4.4 Hz, 1H), 7.28 (d, J = 2.0 Hz, 1H), 7.20 (t, J = 8.8 Hz, 2H), 5.80 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 166.0 (d, J = 256.5 Hz), 150.6, 150.0, 144.5 (d, J = 81.9Hz), 135.2, 135.0 (d, J = 3.0 Hz), 134.4, 131.4, 131.3 (d, J = 5.8 Hz), 129.6, 129.1, 124.1, 122.4, 119.8, 116.5 (d, J = 22.9 Hz), 48.9 ppm. ¹⁹F NMR (375 MHz, CDCl₃) δ = -101.5. HRMS m/z (ESI): Calcd. for $C_{22}H_{16}BrFN_3O_6S_2$ [M+H]+ 579.9648, Found: 579.9642.

The radical-trapping experiment

The radical-trapping experiment was carried out. When 2,2,6,6-tetramethylpiperidyl-1-oxyl (TEMPO) was added (2 equiv) in the model reaction under the present reaction conditions, the reaction was completely inhibited (we did not get the 3a). It is suggested that the reaction may involve a radical process.

Reference

 Á. Iglesias, R.Álvarez, Á. R. de Lera, Muñiz, K. Angew. Chem., Int. Ed., 2012, 51, 2225.

--0.000

- 2.742

)

S41

S46

S48

23

