Supplementary Information for:

Synthesis of substituted tetrahydroisoquinolines by lithiation then electrophilic quench

Ruaa A. Talk, Alexia Duperray, Xiabing Li, and Iain Coldham*

Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK Fax: +44(0)114 222 9346 E-mail: i.coldham@sheffield.ac.uk

Table of Contents

1.	Preparation of tetrahydroisoquinolines 2–5	S-2
2.	VT-NMR spectra and data	S-4
3.	ReactIR spectra	S-7
4.	References	S-8
5.	NMR spectra	S-9

1. Preparation of tetrahydroisoquinolines 2–5

tert-Butyl 6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline-2-carboxylate 2

Di-*tert*-butyl dicarbonate (14.3 g, 66 mmol) was added to 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (10.6 g, 55 mmol) in a mixture of water (60 mL) and 1,4-dioxane (120 mL) at 0 °C. After 4 h, the mixture was warmed to room temperature over 16 h. The mixture was extracted with Et_2O (3 x 100 mL), and the organic layers were combined, washed with brine (100 mL), dried (MgSO₄) and the solvent was evaporated. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (95:5), gave the carbamate **2** (12.7 g, 79%) as a solid, m.p. 128–130 °C, lit.¹ 128–130 °C; spectroscopic data as reported.^{1,2}

tert-Butyl 7,8-Dihydro-[1,3]dioxolo[4,5-g]isoquinoline-6(5H)-carboxylate 3

Roc 3

Di-*tert*-butyl dicarbonate (4.4 g, 20 mmol) was added to 5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinoline (3.0 g, 17 mmol) in a mixture of water (20 mL) and 1,4-dioxane (40 mL) at 0 °C. After 4 h, the mixture was warmed to room temperature over 16 h. The mixture was extracted with Et₂O (3 x 30 mL), and the organic layers were combined, washed with brine (30 mL), dried (MgSO₄) and the solvent was evaporated. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (95:5), gave the carbamate **3** (3.2 g, 68%) as an oil; R_f 0.5 [petrol–EtOAc (90:10)]; FTIR v_{max} (film)/ cm⁻¹ 2975, 2930, 2900, 1690; ¹H NMR (400 MHz, CDCl₃) δ = 6.60–6.58 (2H, m, 2 x CH), 5.92 (2H, s, CH₂), 4.46 (2H, s, CH₂), 3.62 (2H, t, *J* 6, CH₂), 2.74 (2H, t, *J* 6, CH₂), 1.51 (9H, s, *t*-Bu); ¹³C NMR (100 MHz, CDCl₃, rotamers, one aromatic C could not be observed) δ = 154.8, 146.1, 127.7, 108.5, 106.4, 106.1, 100.7, 79.8, 46.0 & 45.2, 41.8 & 40.6, 28.9, 28.4; HRMS (ES) Found: MNa⁺, 300.1201. C₁₅H₁₉NO₄Na requires MNa⁺, 300.1212; LRMS *m/z* (ES) 300 (100%).

tert-Butyl 5-(Trifluoromethyl)-3,4-dihydroisoquinoline-2(1H)-carboxylate 4

Di-*tert*-butyl dicarbonate (1.9 g, 8.9 mmol) was added to 5-(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline (1.5 g, 7.4 mmol) in a mixture of water (10 mL) and 1,4-dioxane (20 mL) at 0 °C. After 4 h, the mixture was warmed to room temperature over 16 h. The mixture was extracted with Et_2O (3 x 20 mL), and the organic

layers were combined, washed with brine (20 mL), dried (MgSO₄) and the solvent was evaporated. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (95:5), gave the carbamate **4** (1.5 g, 67%) as an oil; R_f 0.41 [petrol–EtOAc (95:5)]; FT-IR v_{max} (film)/ cm⁻¹ 2975, 2930, 1695, 1420; ¹H NMR (400 MHz, CDCl₃) δ = 7.52–7.51 (1H, m, CH), 7.29–7.28 (2H, m, 2 x CH), 4.63 (2H, s, CH₂), 3.65 (2H, t, *J* 6, CH₂), 3.10 (2H, t, *J* 6, CH₂), 1.51 (9H, s, *t*-Bu); ¹³C NMR (100 MHz, CDCl₃) 154.6, 135.5, 133.6, 130.1, 126.2, 125.9, 124.1 (q, *J* 6), 124.4 (CF₃, q, *J* 274), 80.1, 46.1 & 45.1, 41.1 & 40.8, 28.4, 25.7; HRMS (ES) Found: MNa⁺, 324.1201 C₁₅H₁₈NO₂F₃Na requires MNa⁺ 324.1187; LRMS *m/z* (ES) 324 (100%).

tert-Butyl 7-Chloro-3,4-dihydroisoquinoline-2(1H)-carboxylate 5

Di-*tert*-butyl dicarbonate (1.7 g, 7.9 mmol) was added to 7-chloro-1,2,3,4-tetrahydroisoquinoline (1.1 g, 6.6 mmol) in a mixture of water (8 mL) and 1,4-dioxane (16 mL) at 0 °C. After 4 h, the mixture was warmed to room temperature over 16 h. The mixture was extracted with Et₂O (3 x 20 mL), and the organic layers were combined, washed with brine (20 mL), dried (MgSO₄) and the solvent was evaporated. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (95:5), gave the carbamate **5** (1.48 g, 70%) as an oil; R_f 0.27 [petrol–EtOAc (95:5)]; FTIR v_{max} (film)/ cm⁻¹2980, 2935, 1670, 1420; ¹H NMR (400 MHz, CDCl₃) δ = 7.16–7.07 (3H, m, 3 x CH), 4.55 (2H, s, CH₂), 3.65–3.63 (2H, m, CH₂), 2.80 (2H, t, *J* 5, CH₂), 1.50 (9H, s, *t*-Bu); ¹³C NMR (100 MHz, CDCl₃, rotamers) δ = 154.7, 135.4, 133.1, 131.7, 130.7, 129.3 & 129.1, 126.5 & 126.1, 80.0, 45.7 & 44.9, 41.5 & 40.5, 28.5, 28.3; HRMS (ES) Found: MNa⁺, 290.0933 C₁₀H₁₁NO₂³⁵ClNa requires MNa⁺, 290.0924; LRMS m/z (ES), 292 (33%, ³⁷Cl), 290 (100, ³⁵Cl).

2. VT-NMR spectra and data

A sample of the tetrahydroisoquinoline **4** (15 mg) in D_8 -THF (0.7 mL) was placed in an NMR tube; the tube was transferred to a cooled NMR spectrometer (400 MHz, temperature coil recording –35 °C). The NMR spectrometer was warmed gradually and spectra were recorded as shown below. Warming allowed coalescence of the signals for the benzylic NCH₂ protons at 4.67 ppm, which occurred at approximately 5 °C (only peaks in this region are shown below, which includes these signals plus the triplet for the other NCH₂ and the broad peak for some undeuterated THF).

From the spectra, coalescence for the benzylic CH_2 at 4.65 ppm occurred at $T_c \sim 5 °C$. The difference in chemical shift (Δv_{AB}^{o}) between the rotamers at low temp. was ~8.9 Hz.

So, at 5 °C,
$$k = (\pi \times 8.9)/\sqrt{2} = 19.8 \text{ s}^{-1}$$

So, at 5 °C, t_{1/2} = (ln2)/k = 0.035 s

And, at 5 °C, ΔG^{\dagger} = RT[In(k_bT/h) - Ink] = 61.0 kJ/mol

These data compare very favourably with the parent *N*-Boc-tetrahydroisoquinoline,² which has a barrier to rotation of the Boc group, $\Delta G^{\dagger} \approx 60.8$ kJ/mol at 5.5 °C.

Using line shape analysis, values for k were calculated using formulas shown below.³

pre-coalescence, slow exchange:

$$k = \frac{\pi}{\sqrt{2}} [(\Delta v_A)^e_{1/2} - (\Delta v_A)^0_{1/2}]$$

pre-coalescence, intermediate exchange:

$$k = \frac{\pi}{\sqrt{2}} [\Delta v_0^2 - \Delta v_e^2]^{1/2}$$

coalescence:

$$k = \frac{\pi \Delta v_0}{\sqrt{2}}$$

post-coalescence:

$$k = \frac{\pi \Delta v_o^2}{2} \frac{1}{(\Delta v_{1/2})^e - (\Delta v_A)^0_{1/2}}$$

Raw data:

т/к	1/T	Δv_0	$(\Delta v_A)^e_{1/2}$	$(\Delta v_A)^0_{1/2}$	Δv_{e}	k	In(<i>k</i> /T)
		0	. 7	. 2	C		
238	0.004201	8.9	2.944	2.897		0.10441	-7.7317
243	0.004115	8.9	2.96	2.897		0.13995	-7.4595
248	0.004032	8.9	3.069	2.897		0.38209	-6.4755
253	0.003952	8.9	3.16	2.897		0.58424	-6.0708
258	0.003876	8.9	3.373	2.897		1.05740	-5.4971
263	0.003802	8.9	4.03	2.897	7.48	10.7136	-3.2006
273	0.003663	8.9	5.56	2.897	4.68	16.8167	-2.7870
278	0.003597	8.9	7.38	2.897		19.7708	-2.6434
298	0.003356	8.9	3.19	2.897		424.651	0.3542

Eyring plot of 1/T against $\ln(k/T)$:

These values provided the following (approximate) parameters:

 $\Delta H^{\ddagger} \approx 81 \text{ kJ/mol}$

 $\Delta S^{\ddagger} \approx 77 \text{ J/K} \cdot \text{mol}$

These values suggest that $\Delta G^{\ddagger} \approx 60 \text{ kJ/mol}$ at 5 °C and $\Delta G^{\ddagger} \approx 64 \text{ kJ/mol}$ at -50 °C.

This equates to $t_{1/2} \approx 2 \text{ min at} -50 \text{ °C}$. The lithiation reactions were carried out at -50 °C and we allow a few minutes for the rotation of the Boc group, so these data approximately match the experimental results and the ReactIR (see Section 3, page S-7).

3. ReactIR spectra

THF (12 mL) was added to a flask equipped with a stirrer bar and ReactIRTM probe at room temperature. After cooling to -50 °C, a solution of tetrahydroisoquinoline **3** (0.5 g, 2 mmol) in THF (2.0 mL) was added. The solution was stirred for about 10–15 min (to verify the stability of the signal readout). An IR peak at 1696 cm⁻¹ was observed which was assigned to $v_{c=0}$ (blue line in 2D plots below). At ~18 min, *n*-BuLi (1.0 mL, 2.5 mmol, 2.5 M in hexane) was added dropwise. A new peak at 1636 cm⁻¹ was observed which was assigned to $v_{c=0}$ of the lithiated intermediate (red line in 2D plots below).

4. References

- 1. J. A. Hickin, A. Ahmed, K. Fucke, M. Ashcroft and K. Jones, *Chem. Commun.*, 2014, **50**, 1238.
- 2. X. Li, D. Leonori, N. S. Sheikh and I. Coldham, *Chem. Eur. J.*, 2013, **19**, 7724.
- 3. F. P. Gasparro and N. H. Kolodny, J. Chem. Educ. 1977, 54, 258.

5. NMR spectra

This ¹H NMR spectrum was also run at 50 °C in CDCl₃:

This ¹H NMR spectrum was also run at 40 °C in CDCl₃:

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

This ^1H NMR spectrum was also run at 5 °C in CDCl₃:

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 ppm

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 ppm

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 15 10

ppm