Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

# Substrate Specificity of FUT8 and Chemoenzymatic Synthesis of Corefucosylated Asymmetric *N*-glycans

Angie D. Calderon,<sup>a</sup> Yunpeng Liu,<sup>ab</sup> Xu Li,<sup>a</sup> Xuan Wang,<sup>a</sup> Xi Chen,<sup>c</sup> Lei Li,<sup>\*a</sup> and Peng G. Wang<sup>\*a</sup>

<sup>a</sup>Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303 <sup>b</sup>Chemily, LLC, 58 Edgewood Ave NE, Atlanta, GA 30303 <sup>c</sup>Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616

# **Supporting Information**

# Table of Contents

| I.    | Materials and enzymes                                       | S2         |
|-------|-------------------------------------------------------------|------------|
| II.   | Expression and purification of human FUT8                   | S2         |
| III.  | Substrate specificity study of FUT8                         | S4         |
| IV.   | General methods for glycan synthesis and purification       | <b>S</b> 6 |
| V.    | HPLC profiles and MS data of purified N-glycans             | <b>S</b> 7 |
| VI.   | ESI-MS and <sup>1</sup> H NMR data of purified N604         | S22        |
| VII.  | NMR spectra and data of purified core-fucosylated N-glycans | S23        |
| VIII. | References                                                  | S29        |

### I. Materials and enzymes

β1,4-galactosyltransferase from bovine milk (B4GALT1) was purchased from Sigma. Thermosensitive Alkaline Phosphatase (FastAP) was purchased from Thermo Scientific. *N*,*N*<sup>2</sup>-diacetyl-chitobiose (**N01**) was purchased from Sigma, and N-glycans **N02**, **N03**, **N04**, **N05**, **N06** were purchased from V-labs (Covington, LA). Other enzymes including double mutant E271F/R313Y from *Pasteurella multocida*  $\alpha$ 2,3-sialyltransferase 1 (PmST1m)<sup>1</sup>,  $\alpha$ 2,6-sialyltransferase from *Photobacterium damslae* (Pd2,6ST)<sup>2</sup>, C-terminal 66 amino acids truncated *Helicobacter pylori*  $\alpha$ 1,3-fucosyltransferase (Hp $\alpha$ 1,3FT)<sup>3</sup>, CMP-sialic acid synthetase from *N. meningitidis* (NmCSS)<sup>4</sup> were expressed and purified as previously described. Enzymes were then desalted against 50 mM Tris-HCl, 100 mM NaCl, and 50% glycerol, and stored at -20 °C for long term use. Sugar nucleotides uridine 5'-diphospho-galactose (UDP-Gal)<sup>5</sup>, cytidine 5'-monophospho-*N*-acetylneuraminic acid (CMP-Neu5Ac)<sup>4</sup> and guanosine 5'-diphospho-L-fucose (GDP-Fuc)<sup>6</sup> were prepared as described previously.

### **II. Expression and purification of human FUT8**

<u>Cryopreservation and maintenance of Baculovirus infected Sf9 cells</u> The 50  $\mu$ L of P1PP1 baculovirus stock and *Sf9* cells for the expression of the FUT8 were kindly provided by Dr. Donald Jarvis from University of Wyoming. For the Titerless Infected-cells Preservation and Scale-up (TIPS) expression method<sup>7</sup>, a primary stock of cryopreserved infected cells BIIC was prepared by infecting 25 mL of *Sf9* cells at a concentration of  $1 \times 10^6$  C/mL with 25  $\mu$ L of untitered liquid P1PP1 baculovirus stock (an estimated MOI of approximately 3 pfu/cell). The cells were cryopreserved when the average diameter increases by 20-30% of their pre-infected diameter and the viability was above 95%. *Sf9* cells were grown and infected at 28 °C and 150 rpm in complete TNM-FH medium [TNM-FH medium (Sigma-Aldrich), supplemented with 10% Fetal Bovine Serum (FBS) (BioWest), 0.5% antibiotic-antimycotic (Sigma-Aldrich), and 0.1% Pluronic-F68 (Invitrogen)]. The cells were cryopreserved at a density of  $1 \times 10^7$  C/mL in liquid nitrogen and complete TNM-FH medium and 10% DMSO (Sigma-Aldrich). Cell density was determined by hemocytometer counts, and the cell viability was evaluated by Trypan Blue staining.

<u>FUT8 expression and purification</u> Sf9 cells were infected at a cell density of  $1 \times 10^{6}$  C/mL. The baculovirus titer was estimated using insect cell density at time of infection and a conservative cellular baculovirus maximum production rate of 100 pfu/cell for  $1 \times 10^{6}$  C/mL meaning  $1 \times 10^{8}$  pfu/mL. BIIC stock was thawed in a 37 °C water bath and diluted 1:100 into cell-free medium, then 10 mL of infected cell-free medium was added to 1 L of uninfected cells (1:1000 dilution)<sup>7</sup>. The medium was collected after 72 h of expression followed by purification. The purification of the secreted protein was accomplished by diluting the medium 1:1 with equilibration buffer (50 mM Tris-HCl, pH 7.5, 0.5 M NaCl) and loading to 2 mL of pre-equilibrated Ni-Sepharose Excell

(GE Healthcare)<sup>8</sup>. The column was rinsed using 200 mL of wash buffer (50 mM Tris-HCl pH 7.5, 0.5 M NaCl, 50 mM imidazole), and finally eluted with 5 mL of elution buffer (50 mM Tris-HCl pH 7.5, 0.5 M NaCl, 250 mM imidazole). The enzyme was desalted and concentrated using Amicon YM-30 ultrafiltration membrane (Millipore) against desalting buffer (50 mM Tris-HCl pH 7.5). Purified FUT8 was confirmed by SDS-PAGE (>90% pure) and western blot (**Figure S1**). Using TIPS method 0.42 mg of human FucT8 were purified from 1 L cultures as determined using Bradford method. The activity of recombinant FUT8 was confirmed by using **N000** as a substrate, monitored by MS (**Figure S2**).



**Figure S1.** SDS-PAGE and western blot analysis of FUT8. 1) SDS-PAGE of medium after overexpression of FUT8; 2) SDS-PAGE of purified FUT8; and 3) western blot analysis of purified FUT8 using anti-His antibody as the primary antibody. BSA, a major protein component of Fetal Bovine Serum used in the culture medium, has similar molecular weight as that of FUT8.



**Figure S2.** MALDI-MS analysis of FUT8 catalyzed reaction using **N000** as substrate. Majority of N000 (molecular weight 1316.4865, found M+Na 1339.4568) was converted into core-fucosylated one (molecular weight 1462.5444, found M+Na 1485.5385).

### **III.** Substrate specificity study of FUT8

A detailed substrate specificity study of FUT8 was performed using 77 chemically or chemoenzymatically synthesized, or commercially available *N*-glycans (with free reducing end) as acceptors (**Figure S3**). Reactions were performed in a 96 well PCR plate, with each well (20  $\mu$ L total volume) contains one *N*-glycan substrate (0.3 mM, 2.5  $\mu$ g to 15.1  $\mu$ g), GDP-Fuc (1 mM), FUT8 (0.05 mg/mL) and MES buffer (100 mM, pH 7.0). Reactions were incubated at 37 °C for 4 h in an Eppendorf thermocycler (Mastercycler Pro), followed by enzyme inactivation at 95 °C for 20 min. A negative control was also set up using **N000** as substrate without enzyme. After centrifugation (13,000 g for 10 min), the supernatant was analyzed by HPLC using an analytical Waters XBridge BEH amide column (130 Å, 5  $\mu$ m, 4.6 x 250 mm), detected by an evaporative light scattering detector (Shimadzu ELSD-LTII). Gradient elution (%B: 75–60% for glycans with less than 9 monosaccharides, 70–55% for glycans with 9 or more monosaccharides) was performed with Solvent A (100 mM ammonium formate, pH 3.4) and Solvent B (Acetonitrile). The percent yields (average of three replicated reactions, see **Table S1**) were calculated as % = Product peak area/ (Product peak area + Substrate peak area) × 100.

| ELSD, average of three replicates were shown. |                |  |  |
|-----------------------------------------------|----------------|--|--|
| Glycan substrate                              | Conversion (%) |  |  |
| N04                                           | 5.26           |  |  |
| N010                                          | 75.6           |  |  |
| N020                                          | 49.8           |  |  |
| N030                                          | 32.8           |  |  |
| N000                                          | 91.3           |  |  |
| N110                                          | 63.4           |  |  |
| N210                                          | ND             |  |  |
| N211                                          | 67.8           |  |  |
| N212                                          | 69.4           |  |  |
| N213                                          | 70.4           |  |  |
| N214                                          | 40.1           |  |  |
| N215                                          | 34.8           |  |  |
| All other N-glycans                           | ND             |  |  |

Table S1. Substrate specificity of FUT8. ND, Not Detected. Conversions were monitored by HPLC-



**Figure S3**. The 77 *N*-glycans used as acceptor for FUT8 substrate specificity study. The preparation and characterization of all substrates were published previously<sup>9</sup>. The ones in the red square were found to be suitable acceptors for FUT8.

### IV. General methods for glycan synthesis and purification

Reactions catalyzed by B4GALT1, Hp $\alpha$ 1,3FT, PmST1m and Pd2,6ST were performed and monitored as we described previously<sup>9</sup>. Reactions catalyzed by FUT8 were performed in 100 mM MES buffer (pH 7.0), containing 2 mM glycan acceptor, 4 mM GDP-Fuc donor, FastAP (10 U/mL) and 0.1 mg/mL FUT8. Reactions were allowed to proceed for 6 h to overnight at 37 °C until substrates were totally converted to products (monitored by HPLC-ELSD as described above). The reactions were then quenched by freezing in -80 °C for 30 min, followed with concentration by lyophilization. HPLC-A<sub>210nm</sub> was then used to purify target glycans using a semi-preparative amide column (130 Å, 5  $\mu$ m, 10 mm × 250 mm). The running conditions are solvent A: 100 mM ammonium formate (for glycans with Neu5Ac residues) or water (for glycans without Neu5Ac residues), pH 3.4; solvent B: acetonitrile; flow rate: 4 mL/min; B%: 70-55% within 25 min. Products containing portions were then concentrated and lyophilized for characterization. The purity of each glycan was confirmed by HPLC-ELSD using an analytical Waters amide column (130 Å, 5  $\mu$ m, 4.6 mm × 250 mm). The running conditions are solvent A: 100 mM ammonium formate, pH 3.4; solvent B: acetonitrile; flow rate: 1 mL/min; B%: 65-50% within 25 min.

The molecular weight of each N-glycans was confirmed by MALDI-MS performed on UltrafleXtreme MALDI TOF/TOF Mass Spectrometer (Bruker). Scan range of  $MS^1$  was according to the molecular weight of N-glycans, and reflector mode was used for N-glycan analysis. Mass spectra were obtained in both positive and negative extraction mode with the following voltage settings: ion source 1 (19.0 kV), ion source 2 (15.9 kV), and lens (9.3 kV). The reflector voltage was set to 20 kV. The laser was pulsed at 7 Hz and the pulsed ion extraction time was set to 400 ns. The laser power was kept in the 25–40% range. Structures of key intermediates and asymmetric N-glycans with core-fucosylation were confirmed by <sup>1</sup>H NMR.

# V. HPLC profiles and MS data of purified N-glycans

**N6110** (6.9 mg)



MALDI-MS, calculated: 1588.5761; found [M+Na]<sup>+</sup>: 1611.5692, [M+K]<sup>+</sup>: 1627.1403





**MALDI-MS**, calculated: 1750.6290; found [M+Na]<sup>+</sup>: 1773.6207, [M+K]<sup>+</sup>: 1789.2301





**HPLC-ELSD**,  $T_R = 14.01 \text{ min}$ 



**MALDI-MS**, calculated: 1624.5973; found [M+Na]<sup>+</sup>: 1647.5894





**HPLC-ELSD**,  $T_R = 15.45 \text{ min}$ 



MALDI-MS, calculated: 1915.6927; found [M-H]<sup>-</sup>: 1914.6880





**HPLC-ELSD**,  $T_R = 16.73$  min



MALDI-MS, calculated: 1915.6927; found [M-H]<sup>-</sup>: 1914.6896





**HPLC-ELSD**,  $T_R = 17.36 \text{ min}$ 



MALDI-MS, calculated: 2077.7455; found [M-H]<sup>-</sup>: 2076.7399





**HPLC-ELSD**,  $T_R = 18.36 \text{ min}$ 



MALDI-MS, calculated: 2077.7455; found [M-H]<sup>-</sup>: 2076.7392





**HPLC-ELSD**,  $T_R = 20.12 \text{ min}$ 



MALDI-MS, calculated: 2223.8034; found [M-H]<sup>-</sup>: 2222.7993





**MALDI-MS**, calculated: 1604.5710; found [M+Na]<sup>+</sup>: 1627.5650





**MALDI-MS**, calculated: 1478.5393; found [M+Na]<sup>+</sup>: 1501.5305, [M+K]<sup>+</sup>: 1517.5030





**HPLC-ELSD**,  $T_R = 13.75$  min



MALDI-MS, calculated: 1624.5973; found [M+Na]<sup>+</sup>: 1647.5885, [M+K]<sup>+</sup>: 1663.5652





**HPLC-ELSD**,  $T_R = 15.19 \text{ min}$ 



MALDI-MS, calculated: 1915.6927; found [M-H]<sup>-</sup>: 1914.6891





**HPLC-ELSD**,  $T_R = 16.51 \text{ min}$ 



MALDI-MS, calculated: 1915.6927; found [M-H]<sup>-</sup>: 1914.6897





**HPLC-ELSD**,  $T_R = 17.32$  min



MALDI-MS, calculated: 2077.7455; found [M-H]<sup>-</sup>: 2076.7422





**HPLC-ELSD**,  $T_R = 18.39 \text{ min}$ 



MALDI-MS, calculated: 2077.7455; found [M-H]<sup>-</sup>: 2076.7418





**HPLC-ELSD**,  $T_R = 20.11 \text{ min}$ 



MALDI-MS, calculated: 2223.8034; found [M-H]<sup>-</sup>: 2222.7986



# VI. ESI-MS and <sup>1</sup>H NMR data of purified N604

N604 (0.4 mg)

ESI-MS, calculated: 894.3329; found [M+H]<sup>+</sup>: 895.3384, [M+Na]<sup>+</sup>: 917.3202



## <sup>1</sup>H NMR of N604

<sup>1</sup>**H** NMR (D<sub>2</sub>O, 500 MHz):  $\delta$  6.18 (s, 1 H), 6.17 (s, 1 H),4.65 (s, 1 H), 4.41 (brs, 2 H), 4.20-4.30 (m, 5 H), 4.08-4.12 (m, 2 H), 4.56-4.00 (m, 20 H), 2.12 (s, 3 H, NHAc), 2.07 (s, 3 H, NHAc), 1.25 (t, J = 5.4 Hz, 3 H, Fuc-CH<sub>3</sub>)

### VII. NMR spectra and data of purified core-fucosylated N-glycans



<sup>1</sup>**H** NMR (D<sub>2</sub>O, 500 MHz):  $\delta$  5.17 (d, J = 2.9 Hz, 0.5 H, GlcNAc-1 H1 of α isomer), 5.11 (s, 1 H, Man2 H-1), 4.91 (s, 1 H, Man3 H-1), 4.88 (d, J = 3.7 Hz, 0.5 H, Fuc H-1 of α isomer), 4.87 (d, J = 3.7 Hz, 0.5 H, Fuc H-1 of β isomer), 4.75-4.80 (overlap with D<sub>2</sub>O, 1 H, Manβ H-1), 4.65-4.68 (m, 1.5 H, GlcNAc-1 H-1 of β isomer, GlcNAc-2 H-1), 4.57 (d, J = 7.9 Hz, 1 H, GlcNAc-3 H-1), 4.56 (d, 1 H, J = 6.6 Hz, 1 H, GlcNAc-4 H-1), 4.53 (d, J = 7.9 Hz, 1 H, Gal-1 H-1), 4.46 (d, 1 H, J = 7.8 Hz, 1 H, Gal-2 H-1), 4.24 (brs, 1 H), 4.18 (d, J = 1.9 Hz, 1 H), 4.08-4.11 (m, 3 H), 3.46-4.00 (m, 60 H), 2.75 (dd, J = 12.5, 4.6 Hz, 1 H, Neu5Ac H-3eq), 2.08 (s, 3 H, Ac), 2.04 (s, 6 H, Ac), 2.03 (s, 3 H, Ac), 2.02 (s, 3 H, Ac), 1.79 (t, J = 12.5 Hz, 1 H, Neu5Ac H-3ax), 1.21 (d, J = 6.4 Hz, 1.5 H, Fuc H-6), 1.20 (d, J = 6.4 Hz, 1.5 H, Fuc H-6)



<sup>1</sup>**H** NMR (D<sub>2</sub>O, 500 MHz): δ 5.17 (d, J = 2.9 Hz, 0.5 H, GlcNAc-1 H-1 of α isomer), 5.12 (s, 1 H, Man2 H-1), 4.92 (s, 1 H, Man3 H-1), 4.88 (d, J = 3.7 Hz, 0.5 H, Fuc H-1 of α isomer), 4.87 (d, J = 3.7 Hz, 0.5 H, Fuc H-1 of β isomer), 4.75-4.85 (overlap with D<sub>2</sub>O, 1 H, Manβ H-1), 4.65-4.69 (m, 1.5 H, GlcNAc-1 H-1 of β isomer, GlcNAc-2 H-1), 4.59 (d, J = 7.9 Hz, 1 H, GlcNAc-3 H-1), 4.57 (d, J = 7.8 Hz, 1 H, GlcNAc-4 H-1), 4.46 (d, 1 H, J = 7.8 Hz, 1 H, Gal-1 H-1), 4.43 (d, 1 H, J = 7.9 Hz, 1 H, Gal-2 H-1), 4.24 (brs, 1 H), 4.18 (d, J = 1.8 Hz, 1 H), 4.07-4.09 (m, 2 H), 3.46-4.00 (m, 61 H), 2.66 (dd, J = 12.5, 4.7 Hz, 1 H, Neu5Ac H-3eq), 2.08 (s, 3 H, Ac), 2.06 (s, 3 H, Ac), 2.04 (s, 3 H, Ac), 2.03 (s, 3 H, Ac), 2.02 (s, 3 H, Ac), 1.71 (t, J = 12.5 Hz, 1 H, Neu5Ac H-3ax), 1.21 (d, J = 6.3 Hz, 1.5 H, Fuc H-6), 1.20 (d, J = 6.3 Hz, 1.5 H, Fuc H-6)



<sup>1</sup>**H** NMR (D<sub>2</sub>O, 500 MHz): δ 5.16 (d, J = 2.8 Hz, 0.5 H, GlcNAc-1 H1 of α isomer), 5.10 (d, J = 3.9 Hz, 1 H, Fuc-2 H-1), 5.09 (s, 1 H, Man2 H-1), 4.92 (s, 1 H, Man3 H-1), 4.87 (d, J = 3.7 Hz, 0.5 H, Fuc H-1 of α isomer), 4.86 (d, J = 3.7 Hz, 0.5 H, Fuc H-1 of β isomer), 4.75-4.83 (overlap with D<sub>2</sub>O, 1 H, Manβ H-1), 4.65-4.68 (m, 1.5 H, GlcNAc-1 H-1 of β isomer, GlcNAc-2 H-1), 4.56-4.58 (m, 2 H, GlcNAc-3 H-1, GlcNAc-4 H-1), 4.41-4.43 (m, 2 H, Gal-1 H-1, Gal-2 H-1), 4.23 (brs, 1 H), 4.17 (d, J = 1.9 Hz, 1 H), 4.07-4.12 (m, 3 H), 3.42-3.99 (m, 64 H), 2.65 (dd, J = 12.5, 4.7 Hz, 1 H, Neu5Ac H-3eq), 2.08 (s, 3 H, Ac), 2.05 (s, 3 H, Ac), 2.02 (s, 3 H, Ac), 2.01 (s, 3 H, Ac), 2.00 (s, 3 H), 1.70 (t, J = 12.5 Hz, 1 H, Neu5Ac H-3ax), 1.21 (d, J = 6.3 Hz, 1.5 H, Fuc H-6), 1.15 (d, J = 6.5 Hz, 2 H, Fuc H-6), 1.11 (d, J = 6.5 Hz, 1 H, Fuc H-6).

<sup>1</sup>H NMR of **N6222** 



<sup>1</sup>**H** NMR (D<sub>2</sub>O, 500 MHz): δ 5.19 (d, J = 2.6 Hz, 0.5 H, GlcNAc-1 H-1 of α isomer), 5.13 (s, 1 H, Man2 H-1), 4.93 (s, 1 H, Man3 H-1), 4.90 (d, J = 3.5 Hz, 0.5 H, Fuc H-1 of α isomer), 4.89 (d, J = 3.5 Hz, 0.5 H, Fuc H-1 of β isomer), 4.75-4.80 (overlap with D<sub>2</sub>O, 1 H, Manβ H-1), 4.70 (d, J = 8.0 Hz, 0.5 H, GlcNAc-1 H-1 of β isomer), 4.67 (d, J = 7.7 Hz, 1 H, GlcNAc-2 H-1), 4.55-4.59 (m, 3 H, GlcNAc-3 H-1, GlcNAc-4 H-1, Gal-1 H-1), 4.47 (d, 1 H, J = 7.8 Hz, 1 H, Gal-2 H-1), 4.26 (brs, 1 H), 4.20 (brs, 1 H), 4.10-4.14 (m, 3 H), 3.46-4.00 (m, 60 H), 2.77 (dd, J = 12.4, 4.4 Hz, 1 H, Neu5Ac H-3eq), 2.11 (s, 3 H, Ac), 2.06 (s, 3 H, Ac), 2.05 (s, 6 H, Ac), 2.04 (s, 3 H, Ac), 1.81 (t, J = 12.4 Hz, 1 H, Neu5Ac H-3ax), 1.22 (d, J = 6.0 Hz, 1.5 H, Fuc H-6)



<sup>1</sup>**H** NMR (D<sub>2</sub>O, 500 MHz): δ 5.14 (d, J = 2.9 Hz, 0.5 H, GlcNAc-1 H-1 of α isomer), 5.10 (s, 1 H, Man2 H-1), 4.92 (s, 1 H, Man3 H-1), 4.88 (d, J = 3.7 Hz, 0.5 H, Fuc H-1 of α isomer), 4.87 (d, J = 3.7 Hz, 0.5 H, Fuc H-1 of β isomer), 4.75-4.85 (overlap with D<sub>2</sub>O, 1 H, Manβ H-1), 4.64-4.68 (m, 1.5 H, GlcNAc-1 H-1 of β isomer, GlcNAc-2 H-1), 4.55-4.58 (m, 2 H, GlcNAc-3 H-1, GlcNAc-4 H-1), 4.42-4.45 (m, 2 H, Gal-1 H-1, Gal-2 H-1), 4.23 (s, 1 H), 4.17 (brs, 1 H), 4.07-4.12 (m, 2 H), 3.46-4.00 (m, 61 H), 2.65 (dd, J = 12.5, 4.7 Hz, 1 H, Neu5Ac H-3eq), 2.08 (s, 3 H, Ac), 2.04 (s, 3 H, Ac), 2.03 (s, 3 H, Ac), 2.02 (s, 3 H, Ac), 2.01 (s, 3 H, Ac), 1.70 (t, J = 12.5 Hz, 1 H, Neu5Ac H-3ax), 1.20 (d, J = 6.4 Hz, 1.5 H, Fuc H-6), 1.19 (d, J = 6.4 Hz, 1.5 H, Fuc H-6)



<sup>1</sup>**H** NMR (D<sub>2</sub>O, 500 MHz): δ 5.16 (d, J = 2.9 Hz, 0.6 H, GlcNAc-1 H-1 of α isomer), 5.11 (s, 1 H, Man2 H-1), 5.10 (d, J = 3.8 Hz, 1 H, Fuc-2 H-1), 4.89 (s, 1 H, Man3 H-1), 4.87 (d, J = 3.8 Hz, 0.4 H, Fuc H-1 of α isomer), 4.86 (d, J = 3.8 Hz, 0.6 H, Fuc H-1 of β isomer), 4.75-4.83 (overlap with D<sub>2</sub>O, 1 H, Manβ H-1), 4.64-4.68 (m, 1.4 H, GlcNAc-1 H-1 of β isomer, GlcNAc-2 H-1), 4.56-4.59 (m, 2 H, GlcNAc-3 H-1, GlcNAc-4 H-1), 4.42-4.44 (m, 2 H, Gal-1 H-1, Gal-2 H-1), 4.24 (brs, 1 H), 4.17 (d, J = 2.4 Hz, 1 H), 4.06-4.09 (m, 3 H), 3.46-4.00 (m, 64 H), 2.65 (dd, J = 12.3, 4.5 Hz, 1 H, Neu5Ac H-3eq), 2.08 (s, 3 H, Ac), 2.05 (s, 3 H, Ac), 2.02 (s, 6 H, Ac), 2.01 (s, 3 H, Ac), 1.70 (t, J = 12.3 Hz, 1 H, Neu5Ac H-3ax), 1.20 (d, J = 6.3 Hz, 1.2 H, Fuc H-6), 1.20 (d, J = 6.3 Hz, 1.8 H, Fuc H-6), 1.15 (d, J = 6.6 Hz, 3 H, Fuc H-6).

### **VIII. References**

- 1. G. Sugiarto, K. Lau, Y. Li, Z. Khedri, H. Yu, D. T. Le and X. Chen, *Mol. Biosyst.*, 2011, 7, 3021.
- 2. H. Yu, S. Huang, H. Chokhawala, M. Sun, H. Zheng and X. Chen, *Angew. Chem. Int. Ed. Engl.*, 2006, **45**, 3938.
- 3. S. W. Lin, T. M. Yuan, J. R. Li and C. H. Lin, *Biochemistry*, 2006, 45, 8108.
- 4. H. Yu, H. Yu, R. Karpel and X. Chen, *Bioorg. Med. Chem.*, 2004, **12**, 6427.
- 5. M. M. Muthana, J. Qu, Y. Li, L. Zhang, H. Yu, L. Ding, H. Malekan and X. Chen, *Chem. Commun.*, 2012, **48**, 2728.
- 6. G. Zhao, W. Guan, L. Cai and P. G. Wang, *Nat. Protoc.*, 2010, 5, 636.
- D.J. Wasilko, S.E. Lee, K.J. Stutzman-Engwall, B.A. Reitz, T.L. Emmons, K.J. Mathis, M.J. Bienkowski, A.g. Tomasselli and H.D. Fischer, *Protein Express. Purif.*, 2009, 65, 122.
- 8. H. Ihara, Y. Ikeda, N. Taniguchi, *Glycobiology*, 2006, **16**, 909.
- 9. L. Li, Y. Liu, C. Ma, J. Qu, A.D. Calderon, B. Wu, N. Wei, X. Wang, Y. Guo, Z. Xiao, J. Song, G. Sugiarto, Y. Li, Yu. Hai, C. Xi and P.G. Wang, *Chem. Sci.*, 2015, **6**, 5652.