Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Nucleoside-2',3'/3',5'-bis(thio)phosphate antioxidants are also capable of disassembly of amyloid beta₄₂-Zn(II)/Cu(II) aggregates via Zn(II)/Cu(II)-chelation

^aBosmat Levi Hevroni, ^bDan Thomas Major, ^bMudit Dixit, ^bAnil Ranu Mhashal, ^bSusanta Das, and ^aBilha Fischer*

^aDepartment of Chemistry and the ^bLise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900 Israel

Corresponding author

* E-mail: <u>bilha.fischer@biu.ac.il</u> Fax: 972-3-6354907. Phone: 972-3-5318303.

Table of contents

Table. S1 pD values of Zn(II) titration of D2O at RT
Fig. S2 ³¹ P-NMR spectra of compound 6 at the pD range of 5.1-8.4
Fig. S3 ¹ H-NMR spectra of compound 6 at the pD range of 5.1-8.4S4
Fig. S4 Titrations of 2 with Zn(II) cross-section of UV-vis spectra at 250 nm
Fig. S5 Titrations of 2 with Cu(II) cross-section of UV-vis spectra at 305 nmS5
Fig. S6 Titrations of 6 with Cu(II) as monitored by UV-vis spectra. (A) 6-Cu(II) (B) Cross
section of UV-vis spectra at 276 nm
Fig. S7 Relative electronic energies of Zn(II)-2 complexes in the gas phase (A) Zn(II)-O4
binding mode, (B) Zn(II)-O2S2 binding mode, and in implicit water (C) Zn(II)-O4 binding
mode, (D) Zn(II)-O2S2 binding mode. Relative free energies (ΔG) are given in the
brackets
Fig. S8 CD spectra of a) $A\beta_{42}$ and $A\beta_{42}$ -Cu(II) at different incubation time at RT. b,c
A β_{42} -Cu(II) upon addition of compounds 1, 2, 4, 6, and EDTA (6 equiv), after 1 h or
incubation at RT
Fig. S9 TEM (a-b,e-f) and cryo-TEM (c-d,g-h) images of 150 μ M A β_{42} or A β_{42}
Zn(II)/Cu(II) 7 days-old-aggregates in the absence (left) and presence (right) of 6 (at 6
equiv)S8
Fig. S10 TEM (a-b,e-f) and cryo-TEM (c-d,g-h) images of 150 μ M A β_{42} or A β_{42}
Zn(II)/Cu(II) 7 day-old-aggregates in the absence (left) and presence (right) of 6 (at 6
equiv): (a) $A\beta_{42}$; (b) $A\beta_{42}$:6; (c) $A\beta_{42}$ -Zn(II); (d) $A\beta_{42}$ -Zn(II):6. (e,g) $A\beta_{42}$ -Cu(II); (f,h)
Aβ ₄₂ -Cu(II): 6

Zn(II) equiv	pD
0	7.31
0.05	6.71
0.075	6.70
0.1	6.70
1.1	6.49
2.2	6.39
3.3	6.20
4.4	6.09
5.5	6.00
6.6	5.90
7.7	5.78

Table. S1 pD values of Zn(II) titration of D_2O at RT.

Fig. S2 ³¹P-NMR spectra of compound 6 at the pD range of 5.1-8.4.

Fig. S3 ¹H-NMR spectra of compound 6 at the pD range of 5.1-8.4.

Fig. S4 Titrations of 2 with Zn(II) cross-section of UV-vis spectra at 250 nm.

Fig. S5 Titrations of 2 with Cu(II) cross-section of UV-vis spectra at 305 nm.

Fig. S6 Titrations of **6** with Cu(II) as monitored by UV-vis spectra. (A) **6**-Cu(II) (B) Cross-section of UV-vis spectra at 276 nm.

Fig. S7 Relative electronic energies of Zn(II)-2 complexes in the gas phase (A) Zn(II)-O4 binding mode, (B) Zn(II)-O2S2 binding mode, and in implicit water (C) Zn(II)-O4 binding mode, (D) Zn(II)-O2S2 binding mode. Relative free energies (ΔG) are given in the brackets.

Fig. S8 CD spectra of a) $A\beta_{42}$ and $A\beta_{42}$ -Cu(II) at different incubation time at RT. b,c) $A\beta_{42}$ -Cu(II) upon addition of compounds **1**, **2**, **4**, **6**, and EDTA (6 equiv), after 1 h of incubation at RT.

Fig. S9 TEM (a-c) and cryo-TEM (d-f) images of 150 μ M A β_{42} and A β_{42} -M(II) aggregates: (a,d) A β_{42} ; (b,e) A β_{42} -Cu(II); (c,f) A β_{42} -Zn(II). Aggregates visualized by TEM and cryo-TEM were incubated for 30 min and 24 h at RT, respectively.

Fig. S10 TEM (a-b,e-f) and cryo-TEM (c-d,g-h) images of 150 μ M A β_{42} or A β_{42} -Zn(II)/Cu(II) 7 day-old-aggregates in the absence (left) and presence (right) of **6** (at 6 equiv): (a) A β_{42} ; (b) A β_{42} :**6**; (c) A β_{42} -Zn(II); (d) A β_{42} -Zn(II):**6**. (e,g) A β_{42} -Cu(II); (f,h) A β_{42} -Cu(II):**6**.