Supporting information

A systematic exploration of the effects of flexibility and basicity on sigma (σ) receptor binding in a series of substituted diamines

Trent Conroy^{a†}, Madhura Manohar^{a†}, Yu Gong^a, Shane Wilkinson^a, Michael Webster^a, Brian P. Lieberman^b, Samuel D. Banister^c, Tristan A. Reekie^a, Robert H. Mach^b, Louis M Rendina^a and Michael Kassiou^a*

^aSchool of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia ^bDepartment of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA ^cDepartment of Radiation Oncology, Stanford University School of Medicine, CA 94305, USA

⁺These authors made equal contributions to the paper. *Author to whom correspondence should be addressed.

The synthesis of intermediates **1A-1F**, conditions for potentiometric titrations and selected spectra of final compounds are reported here.

Synthesis of 2-benzofuranylmethanol 1A

2-Benzofuranylmethanol was synthesised *via* an adaptation of the method reported by Wan *et al.*¹ To a solution of 2-benzofurancarboxaldehyde (1 mL, 8.3 mmol, 1 eq.) in CH₃OH (10 mL), sodium NaBH₄ (374 mg, 9.9 mmol, 1.2 eq.) was added portion-wise at - 4 °C. The reaction was then warmed to rt and stirred (8 h) before being quenched with HCl (1M, 2 mL) and then concentrated *in vacuo*. The residue was dissolved in CH₂Cl₂ (20 mL) and washed with H₂O (20 mL) and then brine (15 mL), dried over MgSO₄, filtered, reduced to dryness *in vacuo*. The resulting residue was purified by flash column chromatography on silica gel (EtOAc-Hexane, 15:85), yielding the titled compound as yellow oil (998 mg, 91%). **IR** (ZnSe cell): v_{max} 3316, 2927, 2870, 1604, 1452, 1253, 1174, 1006, 936 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.52-7.54 (1H, d, *J* = 7.6 Hz), 7.45-7.48 (1H, d, *J* = 15.6 Hz), 7.22-7.29 (2H, m), 6.59 (1H, s), 4.71-4.73 (2H, d, *J* = 8.8 Hz), 3.93-3.98 (1H, t, *J* = 7.5 Hz) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 156.67 (C) ppm, 154.98 (C), 128.17 (C), 124.12 (CH), 122.64 (CH), 120.98 (CH), 111.08 (CH), 103.76 (CH), 57.61 (CH₂) ppm; **LRMS** (+ESI): m/z 149 [M+H]⁺. Spectroscopic data matched that reported in literature.²

Synthesis of 2-(chloromethyl)benzofuran 1B

2-(Chloromethyl)benzofuran was synthesised according to the method reported by Ferorelli *et al.*³ To a solution of 2-benzofuranylmethanol **1A** (300 mg, 2.0 mmol, 1 *eq.*) in an anhydrous solution of DMF (0.5 mL) and THF (2 mL), SOCl₂ (200 μ L, 2.7 mmol, 1.4 *eq.*) was added dropwise with stirring at rt. The reaction mixture was then heated at reflux for 2 h and then the THF was removed *in vacuo*. The residue was partitioned in H₂O (20 mL) and EtOAc (30 mL) with further extraction of the aqueous flayer with EtOAc (2×30 mL). The combined organic layers were then washed with brine (60 mL), dried over MgSO₄, filtered, and evaporated to dryness. The residue was purified by flash column chromatography on silica gel (100% hexane), yielding the titled compound as a colourless oil (247 mg, 73%). **IR** (ZnSe cell): v_{max} 3063, 1586, 1452, 1283, 1253, 1191, 1151, 1123, 1007, 955, 824 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): 7.39-7.41 (1H, d, *J* = 7.5 Hz), 7.33-7.36 (1H, d, *J* = 8.1 Hz), 7.17 (1H, t, *J* = 7.4 Hz), 7.09 (1H, t, *J* = 7.4 Hz), 6.56 (1H, s), 4.53 (2H, s) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 155.41 (C), 152.60 (C), 127.98 (C), 125.13 (CH), 123.16 (CH), 121.41 (CH), 111.46 (CH), 106.26 (CH), 37.82 (CH₂) ppm; **LRMS** m/z (+APCI): 131 [M–Cl]⁺, 100), 167 [M+H]⁺. Spectroscopic data matched that reported in literature.⁴

Synthesis of benzofuran-2-carboxamide 1C

2-benzofurancarboxylic acid (1.50 g, 9.25 mmol) was converted to the acid chloride and reacted with ammonia (28% aq., 6.94 mmol) according to the general procedure A, and the product was purified by flash column chromatography on silica gel (eluent: 3:1 v/v EtOAc/hexane) to afford amide **1C** as a white solid (917 mg, 82%). **m.p.** 153-154 °C (lit. m.p. 158-159 °C);⁵ **IR** (ZnSe cell): v_{max} 3425, 3148, 1656, 1590, 1473, 1396, 1340, 1259, 1174, 1090, 938, 885, 840, 807 cm⁻¹; ¹H **NMR** (300 MHz, CDCl₃): δ 7.56-7.58 (1H, d, J = 7.8 Hz,), 7.38-7.41 (2H, m), 7.29-7.34 (1H, t, J = 7.8 Hz), 7.16-7.21 (1H, t, J = 7.4 Hz), 6.08 (2H, br s, NH₂) ppm; ¹³C **NMR** (75 MHz, CDCl₃): δ 160.87 (C), 155.10 (C), 148.30 (C), 127.71 (C), 123.94 (CH), 122.99 (CH), 111.46 (CH), 110.66 (CH), ppm; **LRMS** (+ESI): m/z 162 [M+H]⁺.

Synthesis of N-methylbenzofuran-2-carboxamide 1D

2-benzofurancarboxylic acid (1.50 g, 9.25 mmol) was converted to the acid chloride and reacted with methylamine (2.0 M solution in THF, 6.94 mmol) according to the general procedure A, and the product was purified by flash column chromatography on silica gel (eluent: 3:1 ν/ν EtOAc/hexane) to afford amide **1D** as a pale yellow amorphous solid (1.07 g, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.62 (1H, d, J = 8.04 Hz); δ 7.46-7.43 (2H, m), 7.39-7.35 (1H, m); 7.28-7.24 (1H, m); 6.96 (1H, br s); 3.05-3.04 (3H, d, J = 5.06 Hz) ppm ¹³C NMR (400 MHz, CDCl₃) δ 159.7 (C), δ 154.7 (C), 148.8 (C), 127.6 (C), 126.8 (CH), 123.6 (CH) 122.7 (CH), 111.7 (CH), 110.1 (CH), 26.1 (CH₃) ppm; LRMS (+ESI): m/z 198 [M+Na]⁺

Synthesis of benzofuran-2-ylmethanamine 1E

Amide 1C (800 mg, 4.96 mmol) was reduced according the general procedure C and purified by flash chromatography (eluent: 7% MeOH/CH₂Cl₂ + 1% Et₃N) to afford amine 1E as a pale yellow oil (322 mg, 44%). IR (ZnSe cell): v_{max} 3369, 3301, 3067, 2915, 2845, 1585, 1453, 1251, 1171, 1007, 943 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.55-7.57 (1H, d, J = 7.8 Hz), 7.47-7.50 (1H, d, J = 7.8 Hz), 7.22-7.31 (2H, m), 6.54 (1H, s), 3.98 (2H, s), 1.83 (2H, br s, NH₂) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 159.38 (C), 154.84 (C), 128.49 (C), 123.72 (CH), 122.62 (CH),

120.70 (CH), 110.95 (CH), 101.88 (CH), 39.72 (CH₂), ppm; **LRMS m**/z (+ESI): 148 [M+H]⁺. The spectroscopic data matched that reported in the literature.⁶

1-(benzofuran-2-yl)-N-methylmethanamine 1F

Amide **1D** (800 mg, 4.57 mmol) was reduced according the general procedure C and purified by flash column chromatography on silica gel (eluent: 5% MeOH/CH₂Cl₂ + 1% Et₂NH) to afford amine **1F** as a pale yellow oil (555 mg, 75%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.52-7.50 (1H, d *J* = 7.27 Hz), 7.44-7.42 (1H, d, *J* = 7.93 Hz), 7.26-7.18 (2H, m), 6.69 (1H, s), 5.34 (1H, br s), 4.00 (2H, s), 2.52 (3H, s) ppm, **LRMS** m/z (+ESI): 162 [M+H]⁺

Experimental pK_a calculations

Experimental pK_a values were determined through potentiometric titrations. Liberated amines were dissolved in 40% ethanol and titrated with HCl solution. Titrations were carried out in triplicate at 18-20 °C. The pK_a values were determined from a plot of the titrated volume vs. the pH. The pK_a was calculated as the half-equivalence point of the pH from the sigmoid curve.

Compound	Pree p	dicted oK _a	N ¹	N ²	Predicted microspecies distribution (%)
	\mathbf{N}^{1}	\mathbb{N}^2			
		2.01	N	Ν	31.2
1	7.74	2.01	NH^+	Ν	54.7
			Ν	NH^+	14.0
120	7.79		Ν	Ν	29.1
12a			NH^+	Ν	70.9
1 2 b		8.58	Ν	Ν	6.2
120			N	NH^+	93.8
130	7.80		Ν	Ν	28.7
13a			NH^+	Ν	71.3
13h		7.8	Ν	Ν	28.3
150			N	NH^+	71.6
160	7.82		Ν	Ν	27.5
10a			NH^+	Ν	72.5
16h		8.60	Ν	Ν	5.9
100			Ν	$\rm NH^+$	94.1
160	7.84		Ν	Ν	26.8
100			NH^+	Ν	73.2
16d		7.93	N	N	27.2
100			Ν	NH^+	72.8

Calculated pKa values from version 15 of MarvinSketch

Compound	Pred p	icted K _a	N ¹	N ²	Predicted microspecies distribution (%)
	N^1	N^2			
22.0	13.02	7.86	Ν	Ν	25.5
228			Ν	$\rm NH^+$	74.5
7 26	7.09	15.06	Ν	Ν	67.2
220			NH^+	Ν	32.9
13.0		7.90	Ν	Ν	24.1
238			Ν	NH^+	75.9
1 2h	7.13		Ν	Ν	64.9
230			NH^+	Ν	35.1
240	13.07	6.89	Ν	Ν	76.3
24a			Ν	NH^+	23.7
246	6.96		Ν	Ν	73.2
240			NH^+	Ν	26.8
250		5.93	N	N	74.6
238			Ν	NH^+	25.4
	0.00		N	N	19.2
25b	8.02		NH^+	Ν	80.8

Compound	Pred pl	icted K _a	N^1	N ²	Predicted microspecies distribution
	N^1	N^2			(%)
			Ν	Ν	5.6
			NH^+	Ν	12.9
26a	5.43	8.69	Ν	NH^+	80.4
			NH^+	$\rm NH^+$	1.0
			N	Ν	9.2
204	8.40	4.34	NH^+	Ν	57.9
260			Ν	NH^+	32.9
			NH^+	NH^+	0.1
			N	Ν	2.3
2(-	5.86	9.02	NH^+	Ν	8.1
260			Ν	$\rm NH^+$	86.9
			NH^+	NH^+	2.8
2(4	8.79	4.80	Ν	Ν	4.3
200			NH^+	Ν	48.4

N	$\rm NH^+$	47.2
NH^+	NH^+	0.2

Figure 1. Average of three potentiometric titrations of benzylamine with HCl at 18-20 °C.

Figure 2. Average of three potentiometric titrations of **13b** with HCl at 18-20 °C.

Figure 2. Average of three potentiometric titrations of **25b** with HCl at 18-20 °C.

Spectra of compounds tested:

0 ∥ 12a - CDCl₃ `o

13b - CD₃OD

22b- CD₃OD

O ↓ H N 23b - CD₃OD O

3-			373.15232																	
1-	259.71303	7306,55604	- 405.08963	 553.21164	 - 723.31444	- 843.04007	958.5950	1027.38813	1108.08311	1199.77305	1279.33678	1333.07585	1415.01810	1450.05756 1505.05408	1557.61121 1597.37723	1653.20814	 	1843.91380	· • • 1894,85057	

MeOH 1M TOF delay 0.0006s, Q1 300 m/z

x10 ⁷⁻														2016-0	05-16-	oosesi-	service	0000	17.d	C +M
		5233																		
		373.15																		
1																				
3-																				
1																				
1																				
2-																				
-				21155																
				- 553																
1																				
1																				
1-																				
					85															
					47.558	5247					332									
	0		828		52712	685.45 31529 - 755.2 27900	16	16	38	832	199.77	090	1199	461	3076	6018 14684	0801		6728	75/8
	5231	11	7.10	1	19.6	723.	688	990	769	9.65	ī	1.36	33.84	3.13	5	96.05	44.3		98.0	5

Comment MeOH 1M TOF delay 0.0007s, Q1 300 m/z

ens.																2016	-07-2	5-pos	sesi-s	ervio	ce_0	0002	8.d: -	+M
	3.15211																							
3.0-	37																							
2.5-																								
2.0-																								
1.5-					00204 200	20001-000																		
1.0-						- 755.25207						341												
0.5-						723.3150						1199.77					-) - +		6	9	m 4	4	
		405.17830	545.22477	06.88057	61,32899		35.01032	99,60427	67.56113	021.83414	076.78400		272.97725	1360,96921	1409.26398	1464.28176	1 FOR PROOF	1641,39824	677.88244	1761.20926	1811.3079	1905 09526	1948.6689	

MeOH 1M TOF delay 0.0006s, Q1 300 m/z

x10 ⁷										20	16-05	-11-	posesi	-servic	e_00	0009.	d: +M
3.0-																	
2.5-			- 361.15246														
2.0-																	
1.5																	
1.0-									60								
0.5-				393.08985		41.12106		020	7.36171 31565 715.28054 715.28054 731.2531			00482	0	E.		60	08
	224.76397 243.28961	266.47025 291.80872	339.17040	409.76680	470.97992	505.26070 523.28037 5/	583.74199	636.95628 649.330		80	848.32909	875.2	911,8321(- 951.2352	992.01334	F 1012.231	- 1056.541

16c - HRMS

Comment MeOH 1M TOF delay 0.0006s, Q1 300 m/z

16d - HRMS

ens.																2	016-0	7-25-	posesi	-servic	e_000	014.0	: +N
	0179 - 370	er/01/0/0																					
3-																							
2-																							
1.												77559											
	Б	07.10503	455.07634	14.30635	 679,41784	727.34697	824.08910	394,62723	973.53148	029,42368	1106.46402	1200.7	1246.54879	1308.96770	1376.61787	1427.96240	1400,03013	1590,89259	1660.81421	1750.98324	1835.79308	- 1895.18207	

22b - LRMS

MeOH 1M TOF delay 0.0007s, Q1 300 m/z

tens."													1	2016	-07-2	5-po	sesi	servi	ce_00	0026.0	d: +M
	- 361.15222																				
2.5-																					
2.0-					767.22697																
1.5-																					
1.0-																					
0.5-	- 429.06625	13.03867	563.15052	41396	 	.82945	1.21392	4.99768	37.73025	06.71404	51.57914	00000	76.38554 22.02696	166.41573	44.77410	16.71462	64.01582	708.46686	320.58604	901.40354	
281			h	638.		100	6	100	Ĕ	12	12	2	0 4	aller	ų. Lu	9		Jun	≓ alak	and	Leb .

tens.										2016-07	-25-po	sesi-se	orvice	0000)16.d:	+M
x10'	361.15229															
2.5-																
2.0-																
1.5-							1199.77375									
1.0-					- 339.59572											
0.5-		4203	32952 679,41790	0536 991 23	11.866	02937		.98661 3.69752	5.30288	5.80670	7.34814	33.55081	7.48647	13.89034	06.53396	
		502.9	649.	827.9	6277.	1106		1286	139	1- Judhutte	161	ă Ale	177	20 4	19,19	4

1.	2.	3-	4-	ntens. x10 ⁷⁻
21611 17029	353,18603			
- 437,19349			375.16791	
467.1	0202			
557,09515 541.12087				
== 615.13959 				
589.15859	CORE FOR			
- 765.41375				
- 807.29024 7.19519				
1.21512				
0.20753 0.47774 03.00295 31.67456				2016-05-16-pos
6.48212 04.75398				esi-service
13.59052 5.41922 15.70315				e_000013.d:
54.70456				+MS

Comment MeOH 1M TOF delay 0.0006s, Q1 300 m/z

26b - LRMS

Feakimonnation					
	RT	Area	% Area		
1	18.961	14768109	<mark>99.8</mark> 3		
2	21.555	25625	0.17		

26d - HRMS

(1) Wan, W.-C.; Chen, W.; Liu, L.-X.; Li, Y.; Yang, L.-J.; Deng, X.-Y.; Zhang, H.-B.; Yang, X.-D. *Medicinal Chemistry Research* **2013**, *23*, 1599.

(2) Zhang, Y.; Xin, Z.-J.; Xue, J.-J.; Li, Y. Chinese Journal of Chemistry **2008**, *26*, 1461.

- (3) Ferorelli, S.; Abate, C.; Pedone, M. P.; Colabufo, N. A.; Contino, M.; Perrone, R.; Berardi, F. *Bioorganic & Medicinal Chemistry* **2011**, *19*, 7612.
- (4) Ferorelli, S.; Abate, C.; Pedone, M. P.; Colabufo, N. A.; Contino, M.; Perrone, R.; Berardi, F. *Bioorganic and Medicinal Chemistry* **2011**, *19*, 7612.
- (5) Campiani, G.; Butini, S.; Trotta, F.; Fattorusso, C.; Catalanotti, B.; Aiello, F.; Gemma, S.; Nacci, V.; Novellino, E.; Stark, J. A.; Cagnotto, A.; Fumagalli, E.; Carnovali, F.; Cervo, L.; Mennini, T. *Journal* of Medicinal Chemistry **2003**, *46*, 3822.
- (6) Russo, O.; Messaoudi, S.; Hamze, A.; Olivi, N.; Peyrat, J.-F.; Brion, J.-D.; Sicsic, S.; Berque-Bestel, I.; Alami, M. *Tetrahedron* **2007**, *63*, 10671.