Electronic Supplementary Information

 $2^{\circ}-O$ -Methyl- and $2^{\circ}-O$ -propargyl-5-methylisocytidine: synthesis, properties and impact on the iso $C_d - dG$ and the iso $C_d - isoG_d$ base pairing in nucleic acids with parallel and antiparallel strand orientation

Sunit K. Jana^a, Peter Leonard^a, Sachin A. Ingale^a and Frank Seela^{*a,b}

^aLaboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany and ^bLaboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany

Corresponding author: Prof. Dr. Frank Seela Phone: +49 (0)251 53 406 500; Fax: +49 (0)251 53 406 857 E-mail: <u>Frank.Seela@uni-osnabrueck.de</u> Homepage: <u>www.seela.net</u>

Table of Contents

Table S1. ¹³ C NMR data of 2'-O-alkylated 5-methylpyrimidine nucleosides	3
Table S2. Selected ${}^{1}\text{H}{}^{-13}\text{C}$ coupling constants of 2'-O-5-dimethylpyrimidine de	rivatives4
Fig. S1 MALDI-TOF spectra of selected oligonucleotides	5-6
Fig. S2 Reversed-phase RP-18 HPLC profile of the acidic hydrolysis of dA	6
Fig. S3 Anticipated mechanism for the fragmentation of oligonucleotides contained	ining ^{Me} iC _d
(1b)	7
References	7
Fig. S4 Reversed-phase HPLC profiles of purified oligonucleotides	8-9
Fig. S5 Melting profiles of duplexes	10-13
Fig. S6-S82 NMR spectra	14-52

	C(2)	C(4)	C(5)	C(6)	C(1')	C(2') ^c	C(3')	$C(4')^{c}$	C(5')	C≡C	OCH ₃ OCH ₂ qC	N=CH	CH ₃ NCH ₃
3	154.5	170.3	114.4	134.7	90.0	81.4	68.3	86.3	60.8	-	57.5	-	13.6
4	154.1	169.7	114.0	134.6	89.6	78.1	67.9	86.0	60.5	77.6 79.4	56.7	-	13.2
5	150.6	163.7	109.4	136.1	85.6	82.4	68.3	85.1	60.6	-	57.4	-	12.3
6	150.4	163.6	110.2	136.7	87.8	78.5	75.5	78.4	68.3	-	57.8	-	12.1 21.1 21.2
7	150.4	163.3	109.9	135.4	85.0	79.2	77.0	82.5	60.1	-	57.4	-	12.0 20.9
8	150.1	163.4	109.7	135.5	86.5	81.1	68.0	80.6	69.5	-	57.4	-	11.8 20.9
9	156.5	170.8	117.2	138.6	96.7	87.5	71.5	86.0	73.9	-	57.9	-	12.8
10	150.4	163.7	109.6	135.5	86.4	82.9	68.7	82.3	63.1	-	57.7 85.9	-	11.7
11	150.5	163.6	110.2	135.5	86.3	80.5	70.2	79.7	62.8	-	55.0 58.2 86.2	-	11.7 20.6
12	150.7	163.6	110.1	135.7	85.4	80.3	70.8	82.9	60.8	-	58.1	-	12.3 20.7
13	150.2	163.3	110.0	135.7	86.8	79.0	69.6	78.4	69.1	-	57.9	-	11.9 20.8
14	156.6	169.7	117.6	138.7	96.5	84.9	73.5	84.4	73.8	-	58.7	-	13.1 20.5
1d	154.2	170.0	113.8	134.4	91.2	72.5	69.6	85.4	60.5	-	-	-	13.3
17	157.1	170.1	116.0	133.7	87.1	83.2	68.0	84.4	60.2	-	57.5	158.0	13.7 34.6 40.6
18	157.0	170.2	115.9	133.7	87.1	80.2	68.0	84.4	60.0	77.3 79.6		158.0	13.6
19	157.1	170.0	116.3	133.1	87.6	82.5	68.6	83.1	62.8	-	54.8 57.8 85.7	158.0	13.1 34.6 40.6
20	157.3	170.2	116.3	133.2	87.3	79.7	68.7	83.1	63.0	77.6 79.8	56.9 55.0 86.0	158.2	13.0
23	154.4	d	114.2	134.7	89.9	79.3	68.3	86.1	62.8	-	52.4	-	13.4
24	d	d	d	134.4	90.0	79.3	68.3	86.1	62.8	-	52.4	-	13.6
^a Measu	^{<i>a</i>} Measured in DMSO- <i>d</i> ₆ at 298 K. ^{<i>b</i>} Pyrimidine numbering. ^{<i>c</i>} Tentative. ^{<i>d</i>} Not detected.												

Table S1. ¹³C NMR data of 2'-*O*-alkylated 5-methylpyrimidine nucleosides ^{*a,b*}

¹ H- ¹³ C Coupling Constants	3	4	6	7	8	9	10	11	12	13	14	17	18	19	20	23	24
¹ <i>J</i> (C6, H-C6)	180	179	181	182	174	183	180	180	181	180	183	180	185	173	179	177	183
$^{3}J(C6, H-C1')$	4.9	n.d.	5.7	4.8	5.8	5.8	n.d.	5.3	6.0	n.d.	4.9	n.d.	5.7	n.d.	n.d.	n.d.	n.d.
¹ <i>J</i> (C1', H-C1')	164	163	167	168	167	170	168	166	166	164	171	171	170	171	171	163	163
$^{1}J(C2', H-C2')^{c)}$	146	151	153	155	150	153	148	151	150	170	152	149	150	155	148	147	145
¹ <i>J</i> (C3', H-C3')	151	151	159	163	150	151	148	157	159	157	158	146	148	143	147	150	151
$^{1}J(C4', H-C4')^{c)}$	148	149	153	151	151	152 °	147	150	149	150	156	147	147	145	146	148	149
¹ <i>J</i> (C5', H-C5')	141	140	153	141	152	151	142	145	141	152	153	141	141	143	143	145	145
^{1}J (N=CH)	-	-	-	-	-	-	-	-	-	-	-	181	182	172	181	-	-

Table S2. Selected ¹H-¹³C coupling constants (Hz) of 2'-*O*-alkylated 5-methylpyrimidine nucleosides. ^{*a,b*}

^{*a*} Measured in DMSO- d_6 at 298 K. ^{*b*} Pyrimidine numbering. ^{*c*¹} J(C2', H-C2') or ¹J(C4', H-C4'). n.d.: not detected.

Selected MALDI-TOF mass spectra of oligonucleotides

a)

b)

Fig. S1 MALDI-TOF spectra of a) **ODN-5**, b) 5'-d(AGTATTGAiC_FiC_FTA)¹ and c) **ODN-9** measured in the linear positive mode.

Fig. S2 Reversed-phase HPLC elution profiles of dA after treatment (240 min) with 0.1 N HCL at rt, monitored at 260 nm using an isocratic mixture of 0.1 M TEAA/MeCN 97:3.

c)

Fig. S3 Anticipated mechanism for the fragmentation of oligonucleotides containing $^{Me}iC_d$ (1b).^{2,3}

References

(1) S. A. Ingale, P. Leonard, Q. N. Tran and F. Seela, *J. Org. Chem.*, 2015, **80**, 3124-3138.

(2) J. L. York, J. Org. Chem., 1981, 46, 2171-2173.

(3) N. N. Kochetkov and E. I. Budovski, Organic Chemistry of Nucleic Acids, Part A, Chap. 3, Plenum: New York, 2002.

Reversed-phase HPLC-profiles of purified oligonucleotides

Fig. S4 Selected reversed-phase HPLC profiles of purified oligonucleotides: (a) ODN-14, (b)
ODN-11, (c) ODN-4, (d) ODN-16, (e) ODN-15, (f) ODN-6, (g) ODN-12, (h) ODN-8, (i)
ODN-9, (j) ODN-17, (k) ODN-18. HPLC (RP-18) profiles of oligonucleotides were
monitored at 260 nm. For elution the following solvent system was used: MeCN (A) and 0.1
M (Et₃NH)OAc (pH 7.0)/MeCN, 95:5 (B). Gradient I: 0-25 min 0-20% A in B, flow rate 0.7
mL min⁻¹. For ODN-17 and ODN-18 the following gradient system was used: 0-30 min 0-20% A in B, flow rate 0.7 mL min^{-1.}

Melting profiles of duplexes

10

(h)

j)

(k)

(l)

(n)

(p)

(q)

(r)

Fig. S5 Original melting curves of duplexes obtained from heating experiments determined at 260 nm with a single-strand concentration of 5 μ M + 5 μ M in 0.1 M NaCl, 10 mM MgCl₂, 10 mM Na-cacodylate (pH 7.0). (a) **ODN-11 • ODN-12**, (b) **ODN-11 • ODN-13**, (c) **ODN-11 • ODN-14**, (d) **ODN-3 • ODN-4**, (e) **ODN-3 • ODN-5**, (f) **ODN-3 • ODN-6**, (g) **ODN-1 • ODN-7**, (h) **ODN-1 • ODN-15**, (i) **ODN-1 • ODN-16**, (j) **ODN-1 • ODN-8**, (k) **ODN-1 • ODN-9**, (l) **ODN-10 • ODN-7**, (m) **ODN-10 • ODN-15**, (n) **ODN-10 • ODN-16**, (o) **ODN-10 • ODN-8**, (p) **ODN-10 • ODN-9**, (q) azido-functionalized duplex **ODN-11 • ODN-17**, (r) cross-linked duplex **ODN-11 • ODN-18**.

Fig. S7 ¹³C-NMR spectrum of compound 6.

Fig. S9 1 H- 13 C gated-decoupled spectrum of compound 6.

Fig. S11 ¹³C-NMR spectrum of compound **7**.

Fig. S13 $^{1}H^{-13}C$ gated-decoupled spectrum of compound 7.

Fig. S15 ¹³C-NMR spectrum of compound 8.

Fig. S17 1 H- 13 C gated-decoupled spectrum of compound **8**.

Fig. S19 ¹³C-NMR spectrum of compound **9**.

Fig. S21 1 H- 13 C gated-decoupled spectrum of compound 9.

Fig. S23 ¹³C-NMR spectrum of compound 3.

Fig. S24 DEPT-135 NMR spectrum of compound 3.

Fig. S25 1 H- 13 C gated-decoupled spectrum of compound 3 .

Fig. S27 ¹³C-NMR spectrum of compound 10.

Fig. S29 1 H- 13 C gated-decoupled spectrum of compound **10**.

Fig. S31 ¹³C-NMR spectrum of compound 11.

Fig. S33 ¹H-¹³C gated-decoupled spectrum of compound **11**.

Fig. S35 ¹³C-NMR spectrum of compound 12.

Fig. S37 ¹H-¹³C gated-decoupled spectrum of compound **12**.

Fig. S38 ¹H-NMR spectrum of compound **13**.

Fig. S39 ¹³C-NMR spectrum of compound 13.

Fig. S41 ¹H-¹³C gated-decoupled spectrum of compound **13**.

Fig. S43 ¹³C-NMR spectrum of compound 14.

Fig. S45 ¹H-¹³C gated-decoupled spectrum of compound **14**.

Fig. S47 ¹³C-NMR spectrum of compound 17.

Fig. S48 DEPT-135 NMR spectrum of compound 17.

Fig. S49 1 H- 13 C gated-decoupled spectrum of compound **17**.

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

Fig. S51 ¹³C-NMR spectrum of compound 19.

Fig. S53 ¹H-¹³C gated-decoupled spectrum of compound **19**.

Fig. S55 ³¹P-NMR spectrum of compound 21.

Fig. S56 ¹³C-NMR spectrum of compound 21

Fig. S57 ¹H-NMR spectrum of compound 4.

Fig. S58 ¹³C-NMR spectrum of compound **4**.

Fig. S59 DEPT-135 spectrum of compound 4.

Fig. S60 1 H- 13 C gated decoupled spectrum of compound **4**.

Fig. S61 ¹H-¹H Cosy spectrum of compound **4**.

Fig. S63 ¹H-¹³C HMBC spectrum of compound **4**.

Fig. S65 ¹³C-NMR spectrum of compound 18.

Fig. S66 DEPT-135 NMR spectrum of compound 18.

Fig. S67 ¹H-¹³C gated-decoupled spectrum of compound **18**.

Fig. S68 ¹H-NMR spectrum of compound 20.

Fig. S69 ¹³C-NMR spectrum of compound 20.

Fig. S71 1 H- 13 C gated-decoupled spectrum of compound **20**.

Fig. S72 ¹H-NMR spectrum of compound 22.

Fig. S73 ³¹P-NMR spectrum of compound 22.

Fig. S74 ¹³C-NMR spectrum of compound 22.

Fig. S75 ¹H-NMR spectrum of compound **23**.

Fig. S76¹³C-NMR spectrum of compound 23.

Fig. S77 DEPT-135 NMR spectrum of compound 23.

Fig. S78 ¹H-¹³C gated-decoupled spectrum of compound **23**.

Fig. S79 ¹H-NMR spectrum of compound **24**.

Fig. S80 ¹³C-NMR spectrum of compound 27.

Fig. S81 DEPT-135 NMR spectrum of compound 24.

Fig. S82 1 H- 13 C gated-decoupled spectrum of compound 24.