Supporting Information

A highly stable and versatile heterobifunctional fluoroalkylation reagent for preparation of fluorinated organic compounds

Jingwen Dai, Zili Li, Taisheng Wang and Ruke Bai*,†

[†]CAS Key Laboratory of Soft Matter Chemistry and Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui Province, People's Republic of China

Content

1. General Information	S2
2. Optimization conditions for CuAAC Reaction between ACTI and phenylethyne	S3
3. Experimental Procedures and Compound Characterization	S5
4. Representative Reactions Using 2a	S10
5. ¹ H, ¹⁹ F, ¹³ C NMR Spectra of Corresponding Compunds	S12
6. References	

1.General Information

Materials

Chlorotrifluoroethylene (CTFE) was purchased from Zhejiang Juhua Co., Ltd, China. Sodium azide and Iodinemonochloride were purchased from Sinopharm Chemical Reagent Co., Ltd. copper(I)iodide, tetrabutylammonium acetate(TBAA) were purchased from Sigma-Aldrich. Unless otherwise stated, solvents were purchased Aladdin Industrial Corporation (Shanghai, China) in HPLC quality. The water was used after distillation.

Methods

¹H NMR spectra were recorded in CDCl₃ on a Bruker AM-300 spectrometer (300 MHz) with TMS as internal standard.¹⁹F NMR spectra were taken on a Bruker AM-400(375 MHz) spectrometer using PhCF₃ as external standard.¹³C NMR spectra were taken a Bruker AM-300(75 MHz) spectrometer. ¹H data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, hept = heptet, dd = doublet of doublet, m = multiplet, etc.), integration, and coupling constants (Hz). ¹³C NMR data are reported in parts per million (ppm) on the δ scale. Infrared spectra were recorded on a JASCO FT/IR-4100 spectrometer. Elemental analysis C, H and N were obtained on Vario El III . High-resolution mass spectra (HRMS) were recorded on a BRUKER micrOTOF-QII spectrometer with ESI mode unless otherwise stated. Visible light irradiation was out using a 25 W, 240 V household light bulb that was positioned at about 10 cm from the reaction flask. Flash column chromatography was performed on silica gel (200–300 mesh) and thin layer chromatography (TLC) analyses were performed on commercial silica gel plates (60 F254).

2. Optimization conditions for CuAAC reaction between ACTI and phenylethyne

			aN ₃ , ICI H ₃ CN,24h ► N ₃		
Entry	NaN ₃ [equiv]	ICl [equiv]	CTFE [equiv]	Т [℃]	Yield ^[b] [%]
1	1	1	6	rt	62
2	1.5	1	6	rt	65
3	1.1	1	3	-30	83

SI Table 1. Preparation of 2-Chloro-1,1,2-trifluoro-2-iodoethyl^[a]

[a] Reaction conditions: ICl (5 mmol), NaN₃ (5.5 mmol) excess chlorotrifluoroethylene (CTFE) in 2 ml CH₃CN for 24 hours. [b] Yield was measured by weight base on ICl.

		+	 	Cul,TBAA,CH₂Cl₂,rt,4h 0-89%	N=N F CI N F CI F F
--	--	---	------	--------------------------------	---------------------------

	(ACTI) (1a)	(2a)		
Entry	CuI [equiv]	TBAA [equiv]	Yield [%] ^[b]	
1	0.05	0	0	
2	0.05	0.025	34	
3	0.05	0.05	63	
4	0.05	0.1	89	
5	0.05	0.15	87	
6	0.05	0.20	84	
7	0.00	0.1	0	
8	0.01	0.02	20	
9	0.03	0.06	39	
10	0.07	0.14	88	
11	0.09	0.18	86	

[a] The reaction was carried out using ACTI (1.5 mmol) and **1a** (1 mmol) in the presence of catalyst in 1 ml CH_2Cl_2 at room temperature under N₂ atmosphere for 4 hours. [b] Yields refer to isolation after chromatography.

SI Table 3. Effects of the solvent on CuAAC^[a]

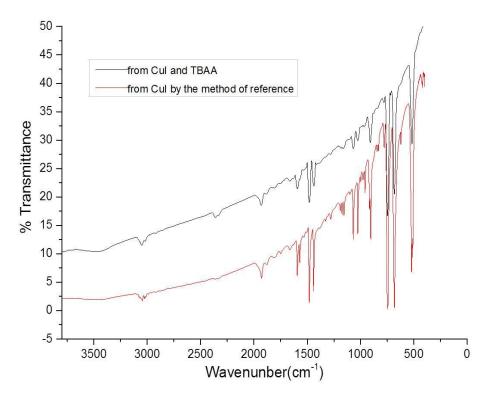
	$N_{3} \xrightarrow{F \\ F \\ (ACTI)} F \xrightarrow{F} (1) $	Cul,TBAA,solvent,r 36-92%	t,4h (2a)	F F
Entry	CuI [equiv]	TBAA [equiv]	Slovent	Yield [%] ^[b]
1	0.05	0.1	C ₆ H ₁₂	47
2	0.05	0.1	CH_2Cl_2	89
3	0.05	0.1	PhCH ₃	92
4	0.05	0.1	EtOAc	87
5	0.05	0.1	THF	79
6	0.05	0.1	CH ₃ COCH ₃	82
7	0.05	0.1	DMSO	73
8	0.05	0.1	EtOH	36
9	0.05	0.1	H ₂ O	55

[a] The reaction was carried out using ACTI (1.5 mmol) and 1a (1 mmol) in the presence of catalyst in different solvents (1 ml) at room temperature under N₂ atmosphere for 4 hours. [b] Yields refer to isolation after chromatography.

	F F N₃ F CI + (ACTI)	(1a) Cu, TBAA, toluene, rt, 4h 0-92%	N=N F CI N F F F F (2a)	
Entry	CuI [equiv]	Additive [equiv]	Time [h]	Yield [%] ^[b]
1	Cu (0.05)	TBAA (0.1)	12	0
2	CuCl (0.05)	TBAA (0.1)	12	20
3	CuBr (0.05)	TBAA (0.1)	12	42
4	CuI (0.05)	TBAA (0.1)	4	92
5	$Cu(OAc)_2(0.05)$	TBAA (0.1)	12	0
6	CuI (0.05)	TBAI (0.1)	12	0
7	CuI (0.05)	TBAN (0.1)	12	0

SI Table 4. Effects of the Cu and ammonium salts on CuAAC^[a]

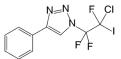
[a] The reaction was carried out using ACTI (1.5 mmol) and 1a (1 mmol) in the presence of different Cu and amine salts catalyst in 1ml toluene at room temperature under N_2 atmosphere. [b] Yields refer to isolation after chromatography.


3. Experimental Procedures and Compound Characterization: 3.1 Synthesis of 1-azido-2-chloro-1,1,2-trifluoro-2-iodoethane (ACTI)

ICl (811 mg, 5 mmol, 1 eq) was added drop wise to a suspension of NaN_3 (357 mg, 5.5 mmol, 1.1eq) in 2 ml of CH₃CN for 15 minutes at -30°C in a glass tube. Then the glass tube with resulting solution was transferred into a stainless steel autoclave equipped with a manometer, a safety inlet valve and a magnetic stirrer. Then the vessel was closed and immersed in the liquid nitrogen for 15 min. After several nitrogen-vacuum cycles to remove any traces of oxygen, a required quality of CTFE was condensed into the autoclave via a mass flow meter and the exact value was assessed by double weighing (the difference of weight before and after filling the autoclave with CTFE (1740 mg, 15mmol). After the reaction mixture was stirred at -30° C for 24 h, all volatiles were removed under reduced pressure. The orange- brown product was poured into water (50 ml) and the mixture extracted with ether (3x50 ml). The ether extract was washed with 5% aqueous sodium thiosulphate solution and then water, and then dried by Na₂SO₄. Evaporation of the solvent afforded a light red oil product^[1]: 1180 mg (4.15 mmol, 85%). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -75.5 (t, J = 14.5 Hz), -86.0 (dd, J = 175.0, 14.4 Hz, 1F), -86.6 (dd, J = 174.9, 14.5 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ ppm 116.6 (td, J = 274.2, 28.0 Hz), 71.3 (dt, J = 316.5, 43.1 Hz). Anal. Calcd for CCl₂F₃IN: C 8.42, N 14.72. Found: C 8.15, N 15.32.

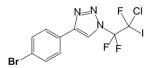
3.2 Preparation of phenylethynylcopper(I) from phenylethyne and CuI/TBAA in toluene

To a suspension of CuI (2 mmol, 380 mg), TBAA (4 mmol, 1270 mg) in toluene (10 mL) was added phenylethyne (2 mmol, 204 mg) at room temperature without inert gas protection. On the moment after addition, large amount of yellow solid precipitated from the reaction system. After the reaction was stirred for 12 hours, it was cooled at 0°C for another 5minutes. The yellow solid was filtered and washed by ethanol (10 mL) and ether (10 mL). After it was dried on vacuum for 2 h, PhC=CCu(I) was obtained (187 mg, 57%). IR (KBr): v 1930, 1594, 1475, 1438, 889, 746 cm⁻¹. Anal. Calcd for C₈H₅Cu: C 58.35, H 3.06. Found: C 56.31, H 2.98.

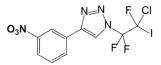

SI Figure 1. The IR spectra of PhC=CCu for both our sample and comparing sample^[2].

3.3 CuAAC reaction between ACTI and Alkynes

General procedure

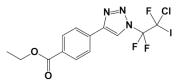

Alkyne (1 mmol, 1.0 equiv), CuI (0.05 mmol, 0.05 equiv), TBAA (0.1 mmol, 0.1 equiv) were placed in a 1 ml toluene under nitrogen.1-azido-2-chloro-1,1,2-trifluoro-2- iodoethane (1.5 mmol, 1.5 equiv) were added, the reaction was sealed at room temperature for 4 h whithout light. The reaction mixture was diluted with saturated aqueous NaCl (10 ml) and the resulting mixture extracted with ethyl acetate (3×20 ml). The combined ethyl acetate extracts were dryed (NaSO₄) and concentrated in vacuo. The residue purified by chromatography on silica gel.

1-(2-chloro-1,1,2-trifluoro-2-iodoethyl)-4-phenyl-1H-1,2,3-triazole (2a):

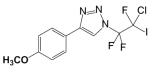


Purified by flash column chromatography (EtOAc/Petroleum ether, v/v 1/10). Colorless solid (356 mg, 92%). mp 89-90°C. ¹H NMR (400 MHz, CDCl₃): δ 8.05 (s, 1H), 7.82 (d, *J* = 7.8 Hz, 2H), 7.37 (dt, *J* = 26.2, 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 148.2 (s), 129.2 (s), 129.1 (s), 128.8 (s), 126.1 (s), 119.0 (s), 113.3 (td, *J* = 270.9, 27.6 Hz), 70.2 (dt, *J* = 317.1, 45.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ -75.8 (t, *J* = 14.0 Hz, 1F), -87.8 (dd, *J* = 210.7, 14.3 Hz, 1F), -91.2 (dd, *J* = 210.4, 13.7 Hz, 1F). HRMS (ESI) *m*/*z* calcd for C₁₀H₇F₃I³⁵CIN₃, C₁₀H₇F₃I³⁷CIN₃ [M+H⁺] 387.9320, 389.9290, found 387.9319, 389.9289.

4-(4-bromophenyl)-1-(2-chloro-1,1,2-trifluoro-2-iodoethyl)-1H-1,2,3-triazole(2b)

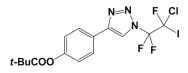


Purified by flash column chromatography (EtOAc/Petroleum ether, v/v 1/10). Colorless solid (285 mg, 61%). mp 120 - 121°C. ¹H NMR (400 MHz, CDCl₃): δ 8.14 (s, 1H), 7.78 (d, *J* = 8.5 Hz, 2H), 7.63 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 147.2 (s), 132.3 (s), 127.8 (s), 127.6 (s), 123.3 (s), 119.1 (s), 116.1 (s), 113.3 (d, *J* = 29.3 Hz), 110.6 (d, *J* = 29.0 Hz), 70.0 (dt, *J* = 95.6, 45.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ -75.5 – -76.4 (m, 1F), -87.6 (dd, *J* = 210.6, 14.3 Hz, 1F), -91.0 (dd, *J* = 210.7, 13.6 Hz, 1F). HRMS (ESI) *m/z* calcd for C₁₀H₆BrF₃I³⁵ClN₃, C₁₀H₆BrF₃I³⁷ClN₃ [M+H⁺] 465.8425, 467.8405, found 465.8423, 467.8401. **3-(1-(2-chloro-1,1,2-trifluoro-2-iodoethyl)-1H-1,2,3-triazol-4-yl)phenyl nitrate(2c)**

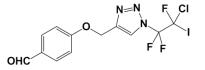


Purified by flash column chromatography (EtOAc/Petroleum ether, v/v 1/8). Yellow solid (315 mg, 73%). mp 139 – 140°C. ¹H NMR (300 MHz, CDCl₃): δ 8.71 (s, 1H), 8.48–8.14 (m, 2H), 7.71 (t, *J* = 8.0 Hz, 2H).¹³C NMR (101 MHz, CDCl₃): δ 148.8 (s), 146.0 (s), 131.9 (s), 130.6 (s), 130.3 (s), 123.8 (s), 121.0(s), 120.1 (s), 116.0 (d, *J* = 29.5 Hz), 113.3 (d, *J* = 29.5 Hz), 110.5(s), 69.7 (dt, *J* = 317.2, 44.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ -76.1 (t, *J* = 14.0 Hz, 1F),-87.6 (dd, *J* = 210.7, 14.3 Hz, 1F), -91.0 (dd, *J* = 210.7, 13.6 Hz, 1F). HRMS (ESI) *m/z* calcd for C₁₀H₅O₂F₃I³⁵ClN₄ [M+H⁺] 432.9098, found 432.9167.

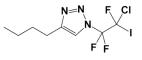
ethyl4-(1-(2-chloro-1,1,2-trifluoro-2-iodoethyl)-1H-1,2,3-triazol-4-yl)benzoate (2d)



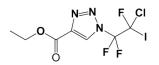
Purified by flash column chromatography (EtOAc/Petroleum ether, v/v 1/8). Colorless solid (340 mg,74%). mp 144 – 145 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.21 (s, 1H), 8.15 (d, *J* = 8.4 Hz, 2H), 7.97 (d, *J* = 8.4 Hz, 2H), 4.41 (q, *J* = 7.1 Hz, 2H), 1.42 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 166.1 (s), 147.9–146.0 (m), 132.9 (s), 131.0 (s), 130.6–129.9 (m), 126.4–125.4 (m), 120.4–119.2 (m), 117.1 (s), 113.3 (d, *J* = 29.7 Hz), 109.7(d, *J* = 29.2 Hz), 72.0 (t, *J* = 45.0 Hz), 67.5(d, *J* = 45.0 Hz), 61.2 (s), 14.3 (s). ¹⁹F NMR (376 MHz, CDCl₃): δ - 75.8 (t, *J* = 14.0 Hz, 1F), -87.8 (dd, *J* = 210.7, 14.3 Hz, 1F), -91.2 (dd, *J* = 210.4, 13.7 Hz, 1F). HRMS (ESI) *m/z* calcd for C₁₃H₁₁O₂F₃I³⁵ClN₃, C₁₃H₁₁O₂F₃I³⁷ClN₃ [M+H⁺]459.9531, 461.9502, found 459.9530, 461.9500.


Purified by flash column chromatography (EtOAc/Petroleum ether, v/v 1/8). Colorless solid (358 mg, 86%). mp 103 – 104°C. ¹H NMR (400 MHz, CDCl₃): δ 8.04 (s, 1H), 7.83 (d, *J* = 8.7 Hz, 2H), 7.01 (d, *J* = 8.7 Hz, 2H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 160.4 (s), 148.0 (s), 127.5 (s), 121.4 (s), 118.0 (s), 116.0(d, *J* = 28.9 Hz), 114.5 (s), 113.3 (d, *J* = 29.0 Hz), 110.6 (d, *J* = 29.3 Hz), 70.3 (dt, *J* = 317.5, 45.5 Hz), 55.4 (s). ¹⁹F NMR (376 MHz, CDCl₃): δ -76.0 (t, *J* = 13.8 Hz, 1F), -87.7 (d, *J* = 205.9 Hz, 1F), -91.1 (d, *J* = 213.3 Hz, 1F). HRMS (ESI) *m*/*z* calcd for C₁₁H₉OF₃I³⁵ClN₃, C₁₁H₉OF₃I³⁷ClN₃ [M+H⁺] 417.9425, 417.9396, found 417.94232, 419.9394.

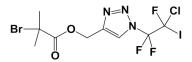
4-(1-(2-chloro-1,1,2-trifluoro-2-iodoethyl)-1H-1,2,3-triazol-4-yl)phenyl pivalate(2f)



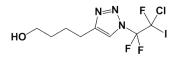
Purified by flash column chromatography (EtOAc/Petroleum ether, v/v 1/8). Yellow solid (409 mg, 84%). mp 124 – 125 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.12 (s), 8.02–7.83 (m), 7.26–7.11 (m), 1.40 (s). ¹³C NMR (101 MHz, CDCl₃): δ 176.9 (s), 151.8 (s), 147.5 (s), 127.2 (s), 126.3 (s), 122.3 (s), 119.0 (s), 113.3 (td, *J* = 270.9, 29.3 Hz), 70.1 (dt, *J* = 317.2, 45.2 Hz), 39.2 (s), 27.1 (s). ¹⁹F NMR (376 MHz, CDCl₃): δ -75.9 (t, *J* = 14.0 Hz, 1F), -87.8 (dd, *J* = 210.8, 14.5 Hz, 1F), -91.1 (dd, *J* = 210.7, 13.6 Hz, 1F). HRMS (ESI) *m/z* calcd for C₁₅H₁₅O₂F₃I³⁵ClN₃, C₁₅H₁₅O₂F₃I³⁷ClN₃ [M+H⁺]487.9844,489.9815, found 487.9842, 589.9812.


4-((1-(2-chloro-1,1,2-trifluoro-2-iodoethyl)-1H-1,2,3-triazol-4-yl)methoxy)benzaldehyde(2g)

Purified by flash column chromatography (EtOAc/Petroleum ether, v/v 1/8). Colorless solid (347 mg, 78%). mp 134– 135 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.93 (s, 1H), 8.06 (s, 1H), 7.89 (d, *J* = 8.8 Hz, 2H), 7.13 (d, *J* = 8.7 Hz, 2H), 5.38 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 189.7 (s), 161.7 (s), 147.1–143.8 (m), 131.1 (s), 129.770 (s), 121.8 (s), 115.0 (d, *J* = 29.6 Hz), 114.0 (s), 112.3 (d, *J* = 29.1 Hz), 109.6 (d, *J* = 29.2 Hz), 68.8 (dt, *J* = 317.1, 45.0 Hz), 60.6 (s). ¹⁹F NMR (376 MHz, CDCl₃): δ -76.2 (t, *J* = 13.9 Hz, 1F), -87.5 (dd, *J* = 210.7, 14.3 Hz, 1F), -90.9 (dd, *J* = 210.8, 13.5 Hz, 1F). HRMS (ESI) *m*/*z* calcd for C₁₂H₉O₂F₃I³⁵ClN₃, C₁₂H₉O₂F₃I³⁷ClN₃ [M+H⁺] 445.9375, 447.9345, found 445.9378, 447.9358.

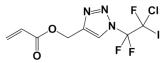


Purified by flash column chromatography (EtOAc/Petroleum ether, v/v 1/8). Yellow oil (330 mg, 90%). ¹H NMR (300 MHz, CDCl₃): δ 7.62 (s, 1H), 2.95–2.55 (m, 2H), 1.67 (dt, *J* = 15.3, 7.5 Hz, 2H), 1.48–1.26 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz,, CDCl₃): δ 148.9 (s), 120.3 (s), 113.2 (td, *J* = 269.5, 28.9 Hz), 70.5 (dt, *J* = 317.6, 45.6 Hz), 31.1 (s), 25.0 (s), 22.2 (s), 13.7 (s). ¹⁹F NMR (376 MHz, CDCl₃): δ -75.6 (d, *J* = 13.2 Hz, 1F), -87.9 (dd, *J* = 210.6, 14.3 Hz, 1F), -91.2 (dd, *J* = 210.7, 13.7 Hz, 1F). HRMS (ESI) *m/z* calcd for C₈H₁₁F₃I³⁵CIN₃, C₈H₁₁F₃I³⁷CIN₃ [M+H⁺] 367.9633, 369.9603, found 367.9631, 369.9600.

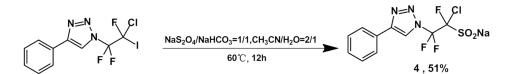


Purified by flash column chromatography (EtOAc/Petroleum ether, v/v 1/8). Yellow oil (325 mg, 85%). ¹H NMR (300 MHz, CDCl₃): δ 8.48 (s, 1H), 4.49 (q, *J* = 7.1 Hz, 2H), 1.45 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 159.5 (s), 140.6 (s), 127.5 (s), 113.3 (td, *J* = 272.5, 29.8 Hz), 69.3 (dt, *J* = 316.9, 44.1 Hz), 62.1 (s), 14.3 (s). ¹⁹F NMR (376 MHz, CDCl₃): δ -76.6 (t, *J* = 13.9 Hz, 1F), -87.6 (dd, *J* = 210.7, 14.3 Hz, 1F), -91.0 (dd, *J* = 210.8, 13.5 Hz, 1F). HRMS (ESI) *m/z* calcd for C₇H₇O₂F₃I³⁵ClN₃, C₇H₇O₂F₃I³⁷ClN₃ [M+H⁺] 383.9218, 385.9189, found 383.9222, 385.9192.

(1-(2-chloro-1,1,2-trifluoro-2-iodoethyl)-1H-1,2,3-triazol-4-yl)methyl methylpropanoate (2j)



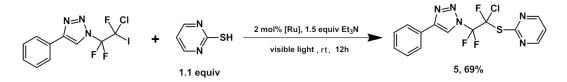
Purified by flash column chromatography (EtOAc/Petroleum ether, v/v 1/8). Yellow oil (367 mg, 75%). ¹H NMR (300 MHz, CDCl₃): δ 8.01 (s, 1H), 5.37 (s, 2H), 1.90 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 171.4 (s), 142.9 (s), 123.7(s), 113.2 (td, *J* = 271.1, 29.2 Hz), 69.9 (dt, *J* = 317.4, 44.8 Hz), 58.4 (s), 55.2 (s), 30.6 (s). ¹⁹F NMR (376 MHz, CDCl₃): δ -76.1 (t, *J* = 14.0 Hz, 1F), -87.8 (dd, *J* = 210.7, 14.3 Hz, 1F), -91.1 (dd, *J* = 210.5, 13.6 Hz, 1F). HRMS (ESI) *m*/*z* calcd for C₉H₁₀O₂F₃I³⁵Cl⁷⁹BrN₃, C₉H₁₀O₂F₃I³⁵Cl⁸¹BrN₃, C₉H₁₀O₂F₃I³⁷Cl⁸¹BrN₃ [M+H⁺] 489.8636, 491.8616, 493.8586 found 489.8638, 491.8614, 493.8587.


Purified by flash column chromatography (EtOAc/Petroleum ether, v/v 1/8). Yellow oil (287 mg, 75%). ¹H NMR (300 MHz, CDCl₃): δ 7.69 (s, 1H), 3.72 (t, *J* = 6.3 Hz, 2H), 2.85 (t, *J* = 7.6 Hz, 2H), 1.97–1.77 (m, 2H), 1.68 (tt, *J* = 13.2, 6.4 Hz, 2H), 1.58–1.42 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 148.5 (s), 124.0–119.0 (m), 113.2 (td, *J* = 270.0, 29.0 Hz), 70.4 (dt, *J* = 91.1, 45.0 Hz), 63.8–59.6 (m), 34.3–30.3 (m), 25.1 (d, *J* = 24.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ -75.9 (s, 1F), -87.9 (d, *J* = 210.6 Hz, 1F), -90.18 – -92.2 (m, 1F). HRMS (ESI) *m/z* calcd for C₈H₁₁OF₃I³⁵ClN₃, C₈H₁₁OF₃I³⁷ClN₃ [M+H⁺] 383.9582, 385.9552, found 383.9581, 385.9550.

(1-(2-chloro-1,1,2-trifluoro-2-iodoethyl)-1H-1,2,3-triazol-4-yl)methyl acrylate(2l)

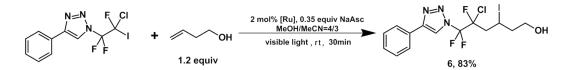
Purified by flash column chromatography (EtOAc/Petroleum ether, v/v 1/8). Yellow oil (355 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ ppm 8.00 (s, 1H), 6.44 (d, *J* = 17.3 Hz, 1H), 6.12 (dd, *J* = 17.3, 10.4 Hz, 1H), 5.87 (d, *J* = 11.5 Hz, 1H), 5.34 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8 (s), 143.3 (s), 132.1 (s), 127.6 (s), 123.9 (s), 113.2 (td, *J* = 271.0, 29.4 Hz), 69.8 (dt, *J* = 317.5, 44.9 Hz), 57.0 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -75.9 (t, *J* = 14.0 Hz, 1F), -87.8 (dd, *J* = 210.6, 14.3 Hz, 1F), -91.2 (dd, *J* = 210.6, 13.7 Hz, 1F). HRMS (ESI) *m/z* calcd for C₈H₇O2F₃I³⁵ClN₃, C₈H₇O2F₃I³⁷ClN₃ [M+H⁺] 395.9218, 397.9189, found 395.9212, 397.9182.

4. Representative fluoroalkylation reactions using 2a as a reagent 4.1 sodium 1-chloro-1,2,2-trifluoro-2-(4-phenyl-1H-1,2,3-triazol-1-yl)ethanesulfinate



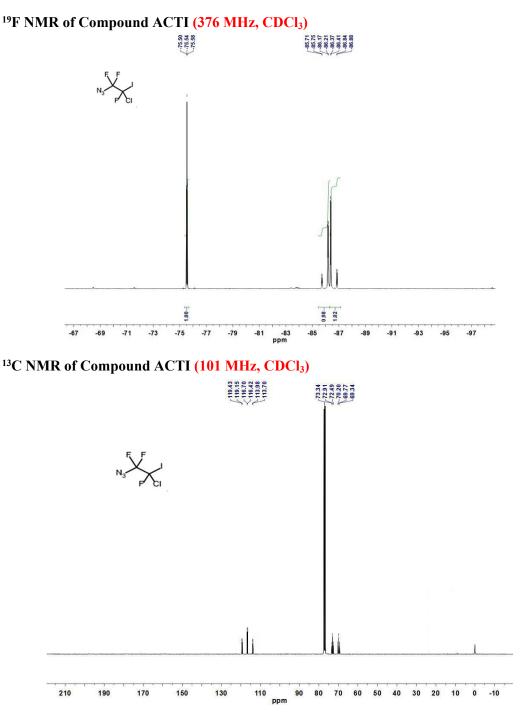
Compound **2a** (195 mg, 0.5 mmol) was added into deoxygenated aqueous acetonitrile solution (1 ml H₂O and 0.5 ml acetonitrile) containing NaHCO₃ (84 mg, 1 mmol) and Na₂S₂O₄ (174 g, 1 mmol) under nitrogen at room temperature. The mixture was heated at 60 °C for 12 h. The two-phase solution obtained was cooled to room temperature and ethyl acetate was added. The aqueous solution was extracted with a small amount of ethyl acetate several times. Finally, the ethyl acetate layer was dried over anhydrous Na₂SO₄. The solid obtained after removal of ethyl acetate. It was further purified by flash column chromatography (CH₂Cl₂/CH₃OH, v/v 3/1) to yield **5** as colorless solid (88mg, 51%). ¹H NMR (300 MHz, CD₃OD) δ ppm 8.79 (s, 1H), 7.92 (d, *J* = 7.5 Hz,2H), 7.62 – 7.26 (m, 3H). ¹³C NMR (75 MHz, *d*-DMSO) δ ppm 146.6 – 146.2 (m), 129.4 – 128.9 (m), 128.6 (s),

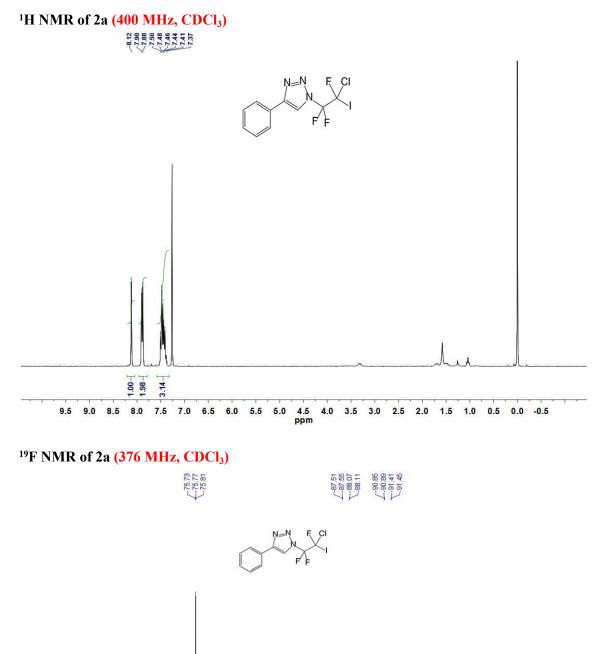
125.8 – 125.4 (m), 121.1 –120.6 (m). ¹⁹F NMR (376 MHz, CD₃OD) δ -91.9 (dd, J = 220.4, 7.3 Hz, 1F), -92.9 (dd, J = 220.3, 10.3 Hz, 1F), -135. 0 (t, J = 8.8 Hz, 1F).

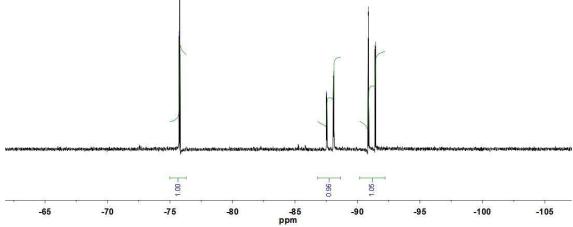

HRMS (ESI) *m/z* calcd for C₁₀H₆O₂F₃I³⁵ClN₃SNa, C₁₀H₆O₂F₃I³⁷ClN₃SNa [M-Na⁺] 323.9816, 325.9781, found 323.9812, 325.9780.

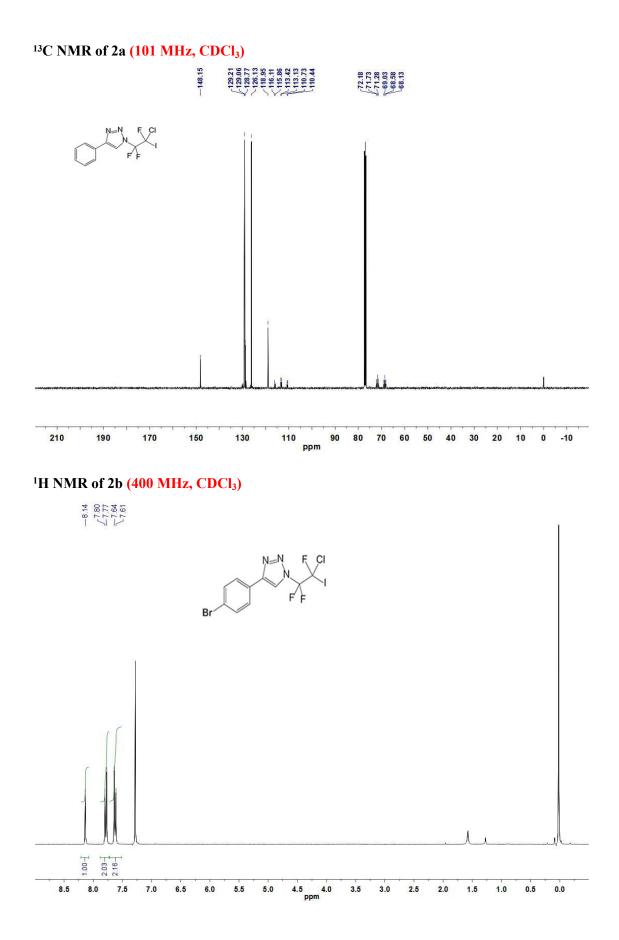
4.2 2-((1-chloro-1,2,2-trifluoro-2-(4-phenyl-1H-1,2,3-triazol-1-yl)ethyl)thio)pyrimidine

A 10 mL round bottom flask was equipped with a rubber septum and a magnetic stir bar and was charged with compound 2a (195 mg, 0.5 mmol, 1 equiv), MeCN (2.0 mL), 2-Mercaptopyrimidine (62 mg, 0.55 mmol, 1.1 equiv), Et₃N (76mg, 0.75 mmol, 1.5 equiv), Ru(bpy)₃Cl₂ (6.4 mg, 0.001 mmol, 0.02 equiv). The mixture was then degassed by Ar sparging for 15 min. The mixture was then stirred under an Ar atmosphere and irradiated by for 12 hours. After the reaction was complete, the reaction mixture was 15W blue LEDs diluted with EtOAc and washed with water. The organic layer was then washed with brine and dried with sodium sulfate. The solid obtained after removal of ethyl acetate. It was further purified by flash column chromatography (EtOAc/Petroleum ether, v/v 1/2) to yield 6 as colorless solid (128mg, 69%). mp 112 – 113 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.52 (d, J = 4.9 Hz, 2H), 8.16 (s, 1H), 7.95–7.73 (m, 2H), 7.57–7.32 (m, 3H), 7.10 (t, J = 4.9 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 165.9 (d, J = 2.1 Hz), 157.9 (s), 148.1 (s), 129.0 (s), 126.0 (s), 119.4 (s), 115.8–109.0 (m). ¹⁹F NMR (376 MHz, CDCl₃): δ -90.9 (dd, J = 11.4, 5.7 Hz, 2F), -100.5 (t, J = 12.6 Hz, 1F). HRMS (ESI) m/z calcd for $C_{14}H_9F_3{}^{35}CIN_5S$, $C_{14}H_9F_3{}^{35}CIN_5S$ [M+H⁺] 372.0292, 374.0265, found 372.0292, 374.0261.

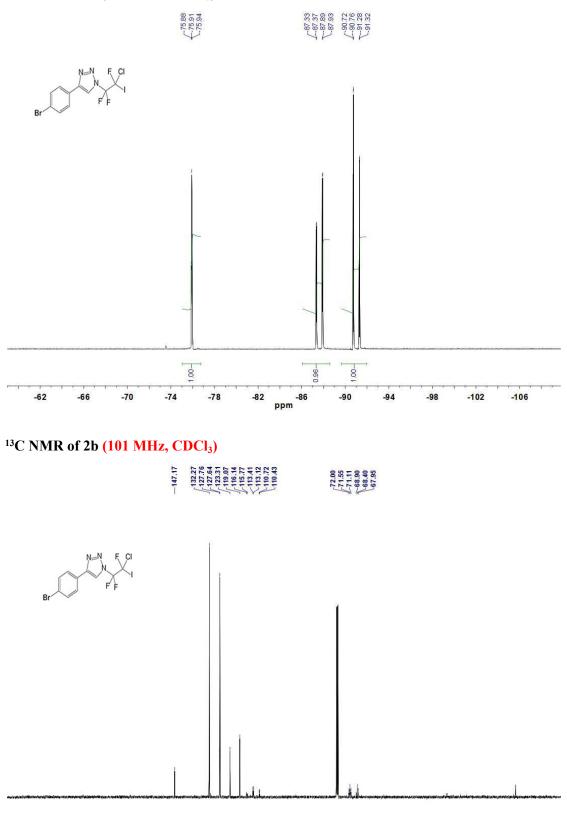

4.3 5-chloro-5,6,6-trifluoro-3-iodo-6-(4-phenyl-1H-1,2,3-triazol-1-yl)hexan-1-ol

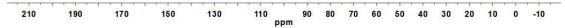


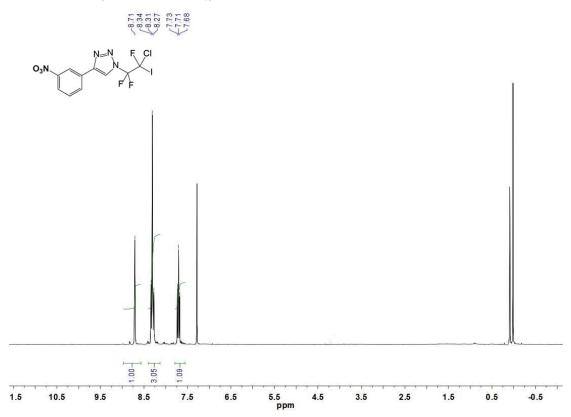

A 10 mL round bottom flask was equipped with a rubber septum and a magnetic stir bar and was charged with compound **3a** (195 mg, 0.5 mmol, 1 equiv), 3-Buten-1-ol(43mg, 0.6mmol, 1.2 equiv), MeCN (2.0 mL), MeOH (1.5 mL), sodium L-ascorbate (34mg, 0.175 mmol, 0.35 equiv.), Ru(bpy)₃Cl₂ (6.4 mg, 0.001 mmol, 0.02 equiv).The mixture was then degassed by Ar sparging for 15 min. The mixture was then stirred under an Ar atmosphere and irradiated by 25W blue LEDs for 30 min. After the reaction was complete, the reaction mixture was diluted with EtOAc and washed with water. The organic layer was then washed with brine and dried with sodium sulfate. After removal of ethyl acetate, it was purified by flash column chromatography (EtOAc/Petroleum ether, v/v 1/5) to yield diastereomeric 7 as yellow oil (190mg, 83%). The diastereomeric ratios is 0.54: 0.46 determinated by ¹H NMR. ¹H NMR (400 MHz, CDCl₃): δ 8.13 (d, *J* = 6.3 Hz, 1H), 8.00–7.78 (m, 2H), 7.44 (dt, *J* = 26.7, 7.2 Hz, 3H), 4.65 (dddd, *J* = 21.5, 13.3, 8.8, 4.4 Hz, 1H), 4.19–3.65 (m, 2H), 3.48–3.00 (m,

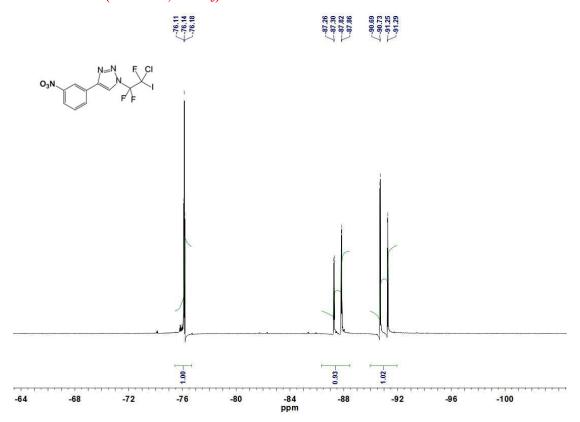

2H), 2.38–1.76 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 148.2 (d, J = 5.7 Hz), 129.2 (s), 129.1 (s), 128.79 (s), 126.1 (s), 118.9 (d, J = 4.5 Hz), 115.0 (dd, J = 41.8, 30.6 Hz), 112.5–110.3 (m), 109.9–107.5 (m), 62.4 (d, J = 88.8 Hz), 46.1 (dd, J = 53.7, 19.1 Hz), 43.2 (s), 41.7 (d, J = 3.1 Hz), 20.3 (s), 18.2 (s). ¹⁹F NMR (376 MHz, CDCl₃): δ -93.70 (t, J = 8.1 Hz, 2F), -94.05 (dd, J = 24.2, 8.4 Hz, 2F), -119.55 (ddd, J = 33.6, 18.4, 7.4 Hz, 1F), -122.47 – -123.28 (m, 1F). HRMS (ESI) *m*/*z* calcd for C₁₄H₁₄OF₃I³⁵ClN₃, C₁₄H₁₄OF₃I³⁷ClN₃ [M+H⁺] 459.9895, 461.9865, found 459.9898, 461.9872.

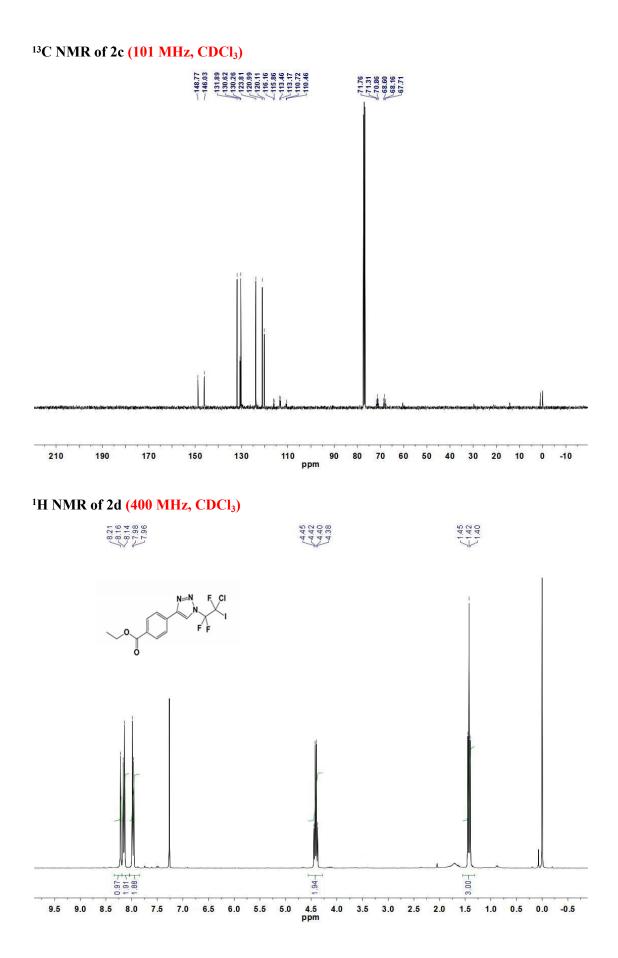
5. ¹H, ¹⁹F, ¹³C NMR Spectra of Corresponding Compunds



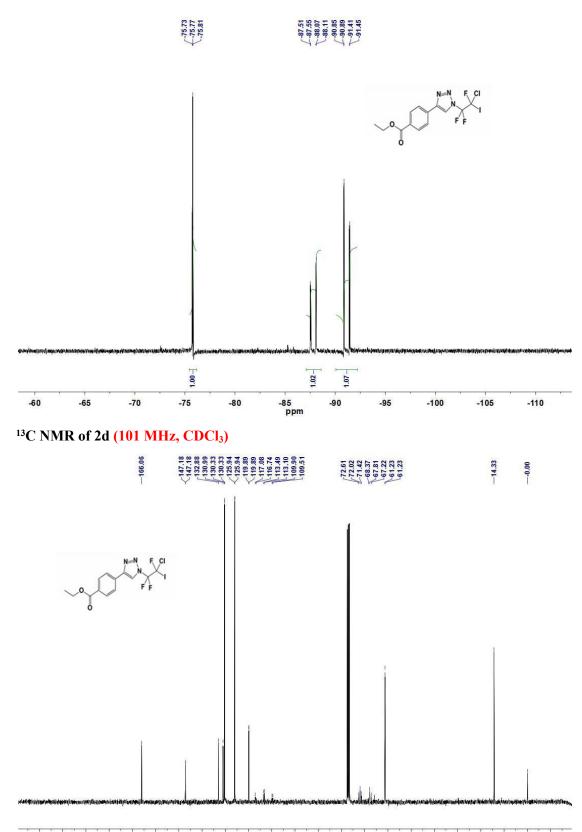




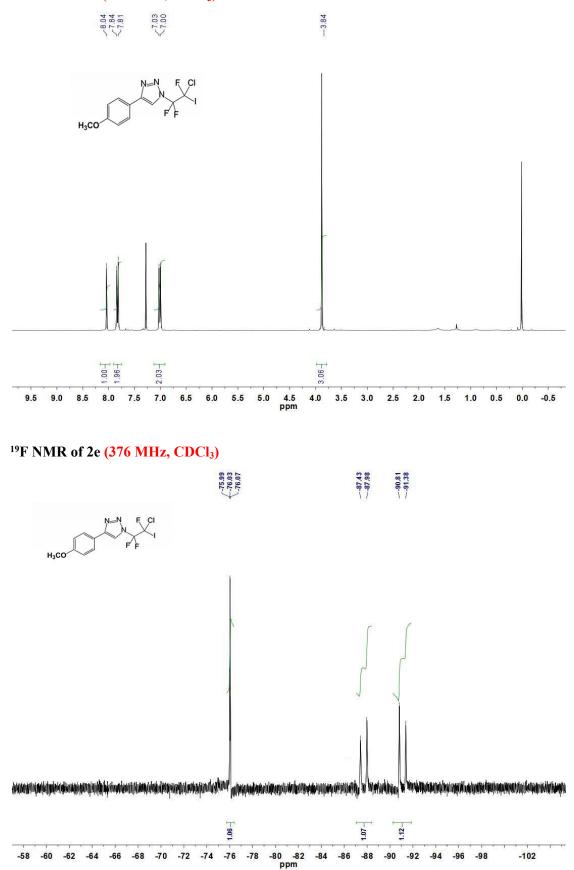


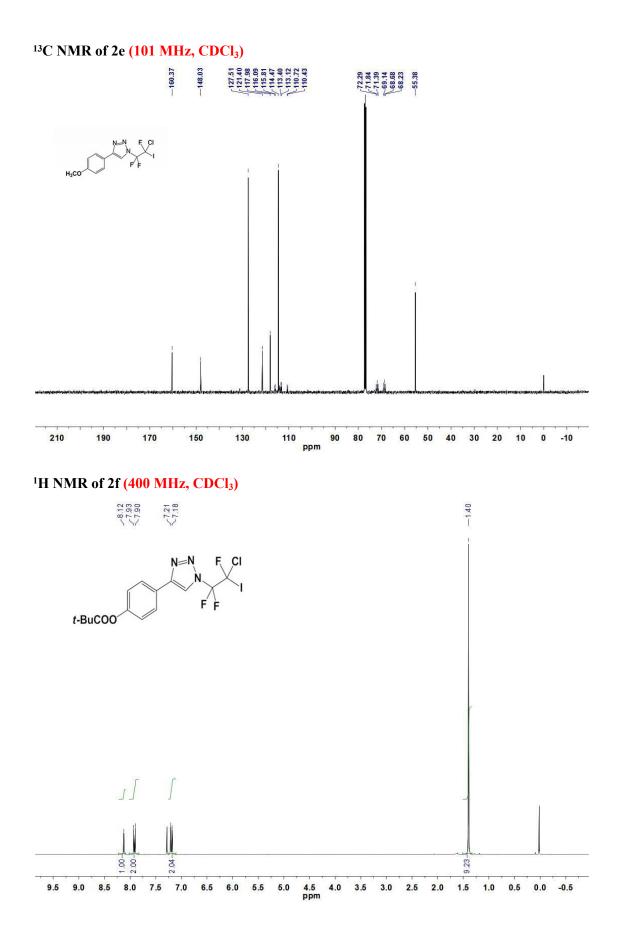


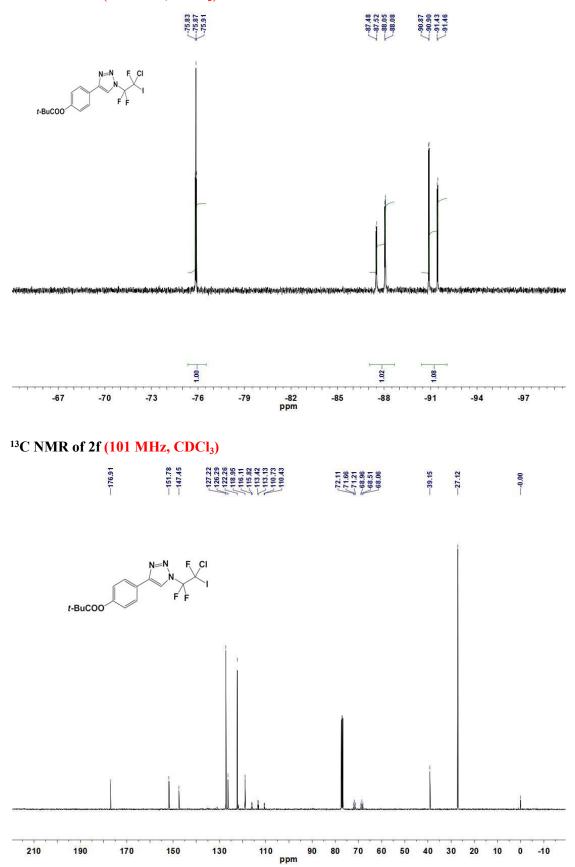
¹H NMR of 2c (400 MHz, CDCl₃)

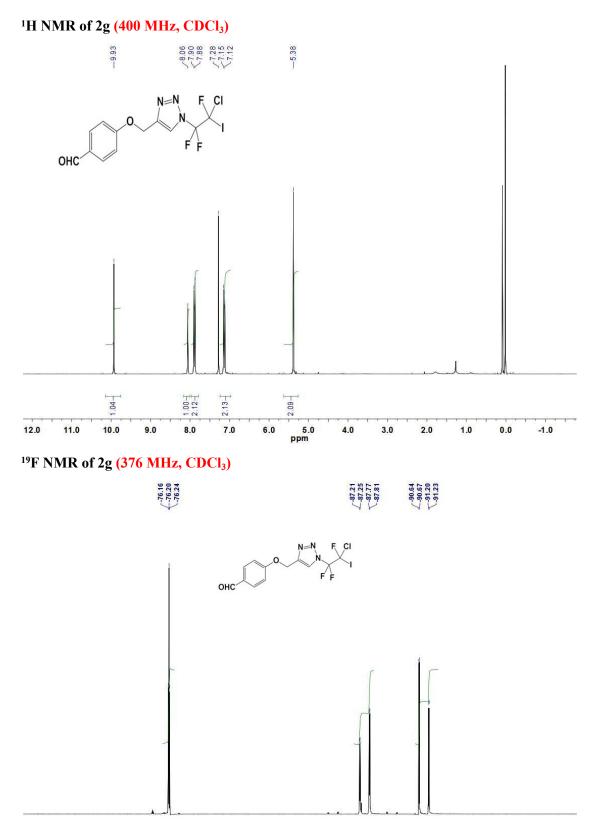


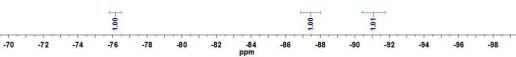
¹⁹F NMR of 2c (376 MHz, CDCl₃)



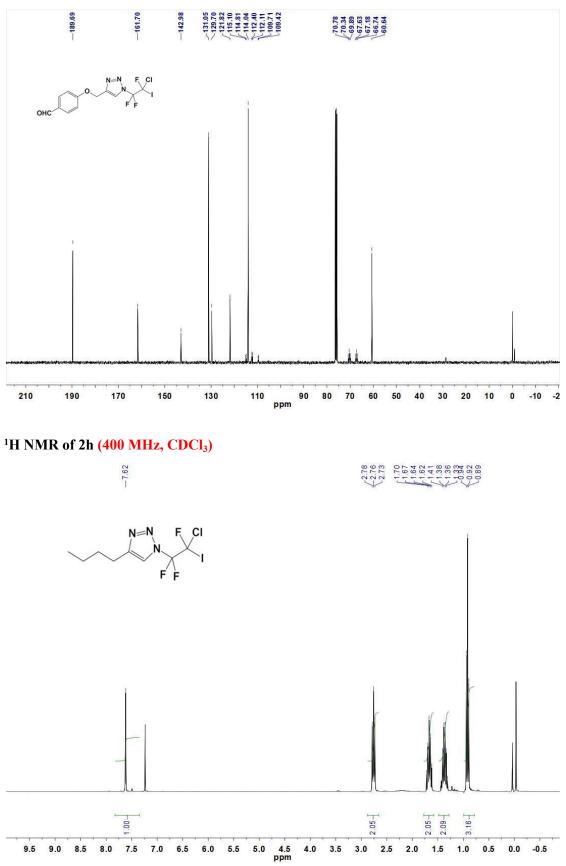

¹⁹F NMR of 2d (376 MHz, CDCl₃)

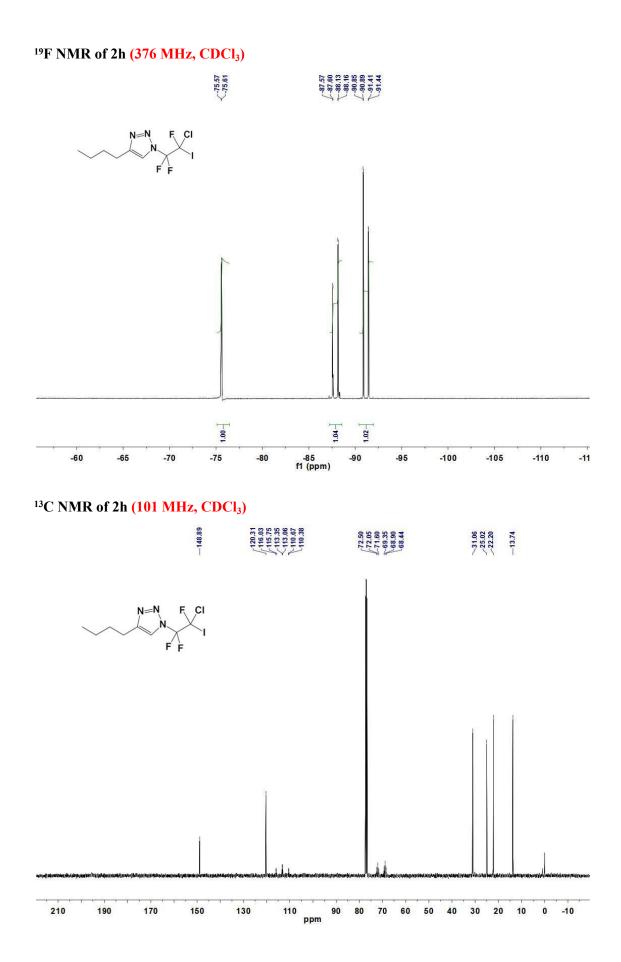

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 ppm

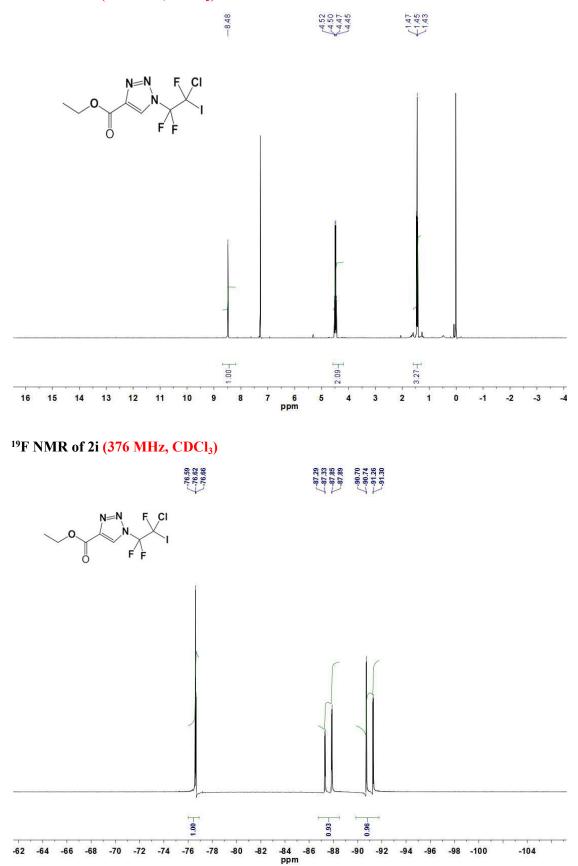

¹H NMR of 2e (400 MHz, CDCl₃)

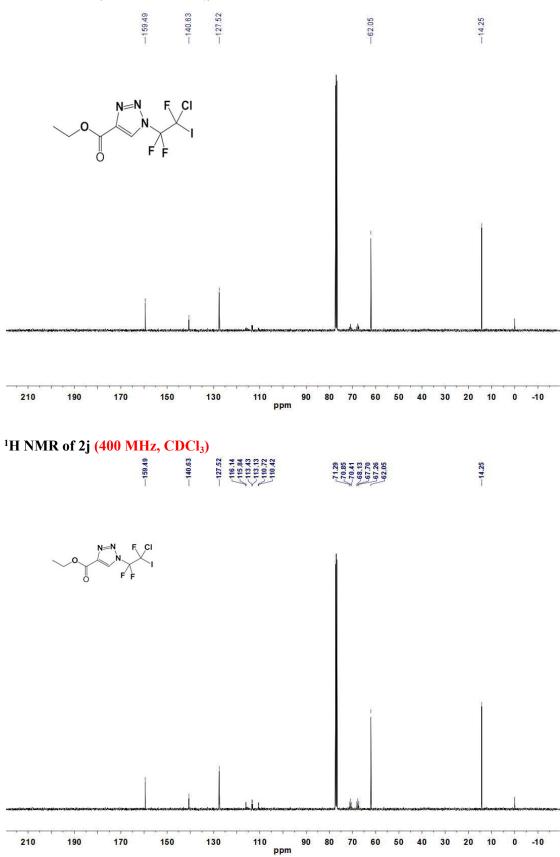


¹⁹F NMR of 2f (376 MHz, CDCl₃)

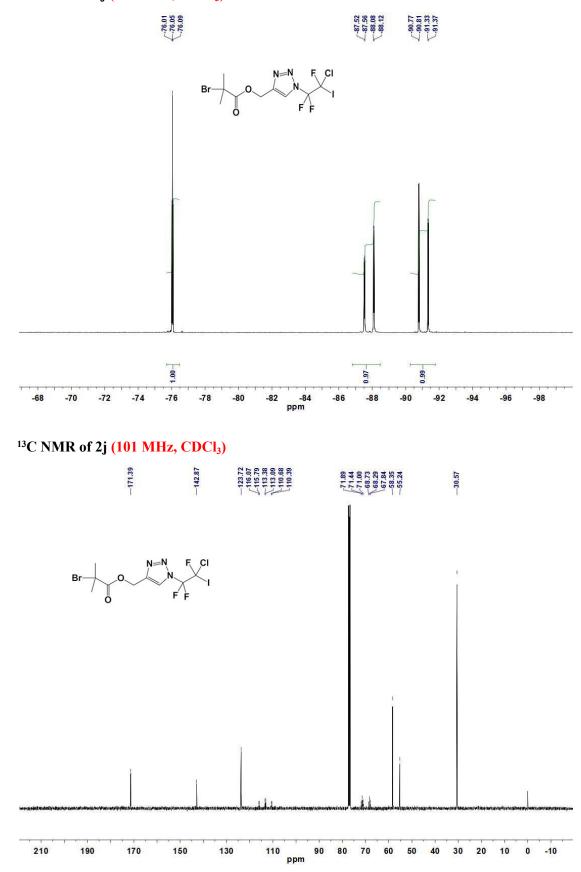




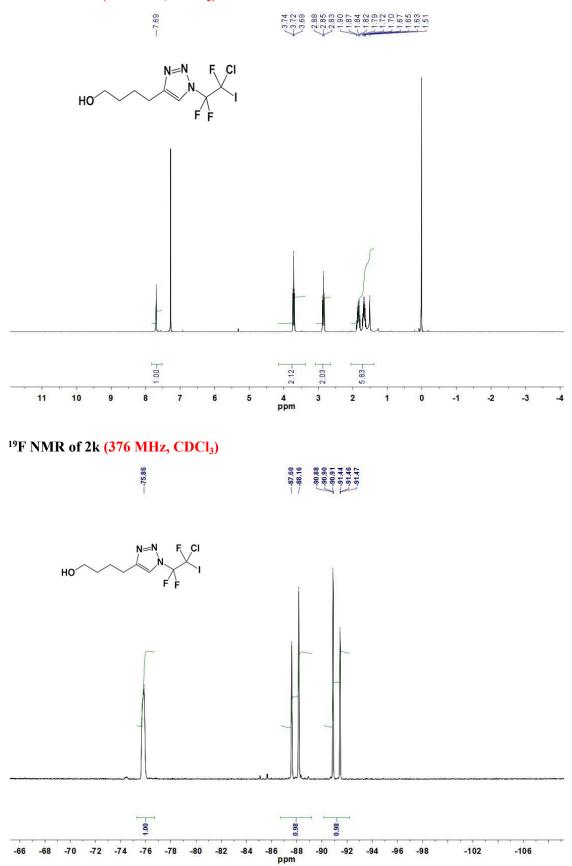

68

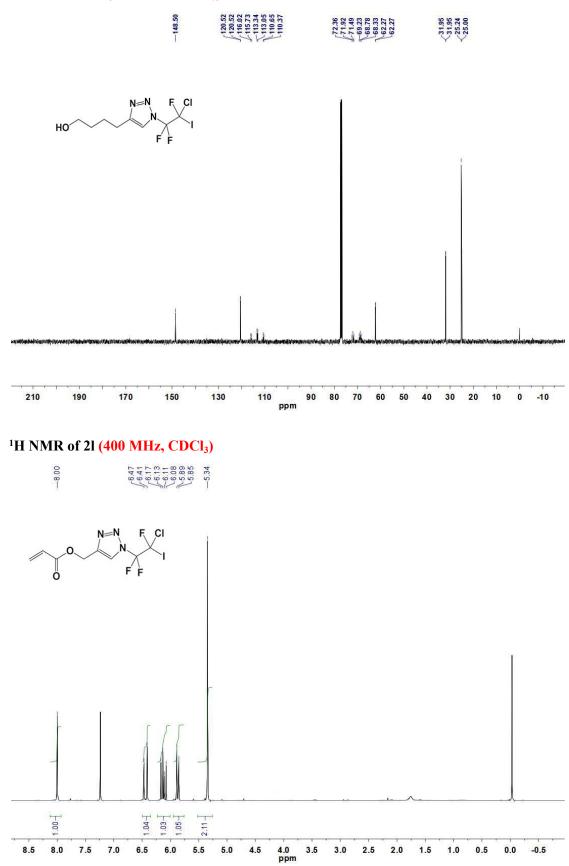


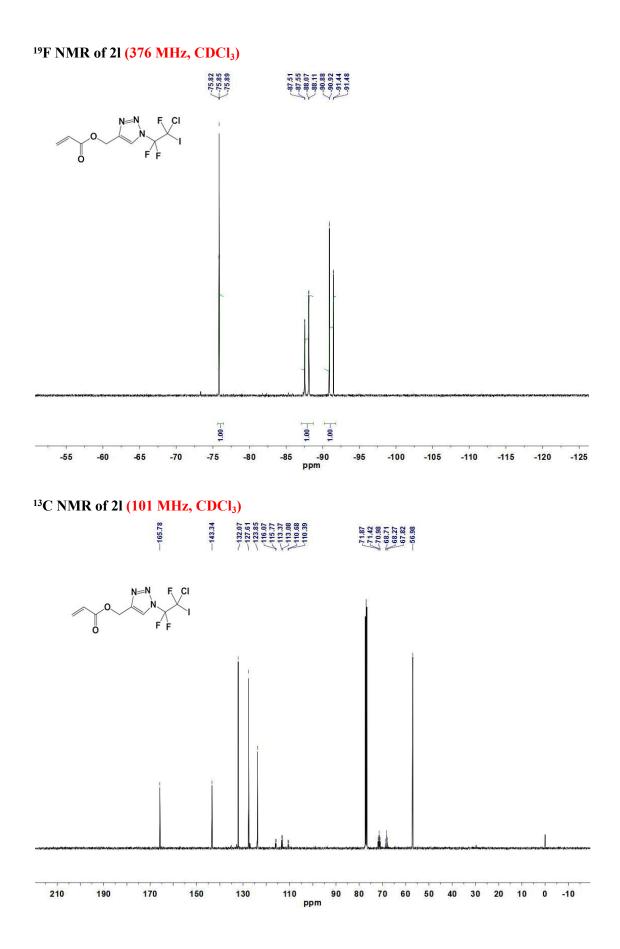
¹H NMR of 2i (400 MHz, CDCl₃)



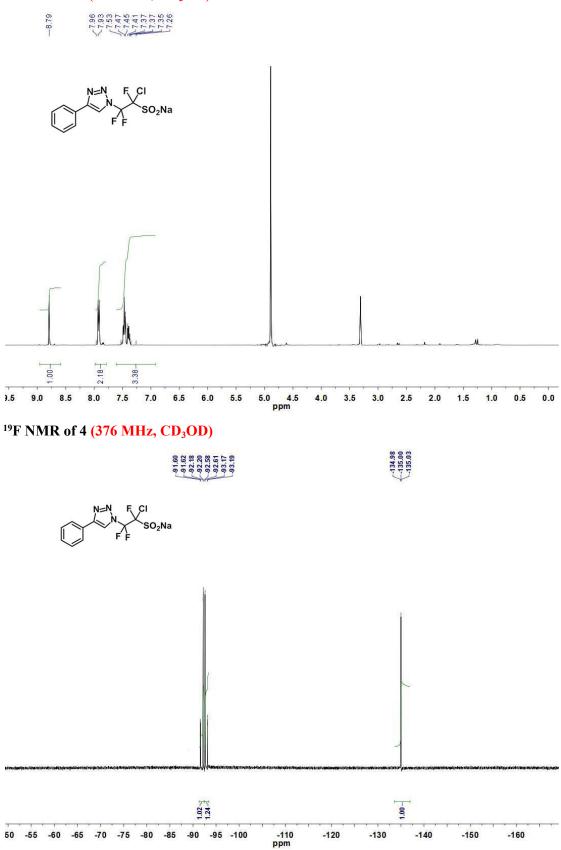
S25



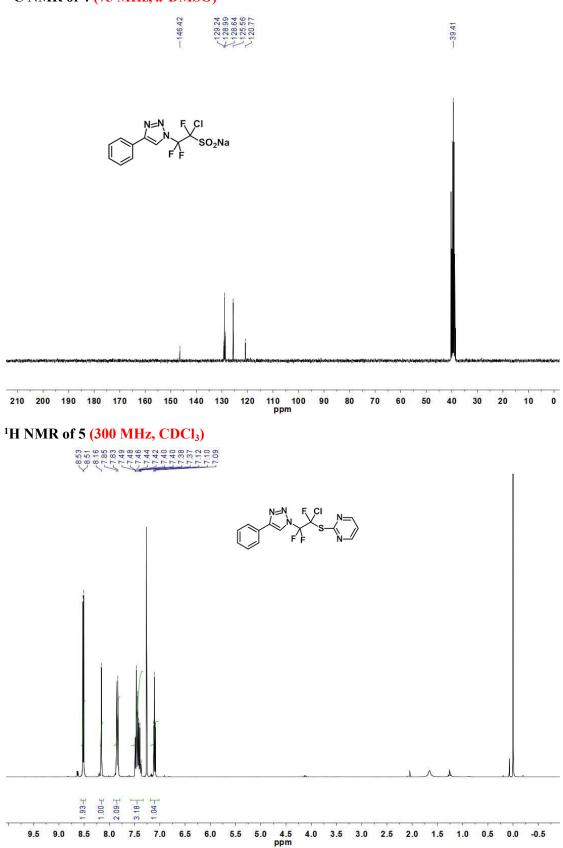

¹⁹F NMR of 2j (376 MHz, CDCl₃)

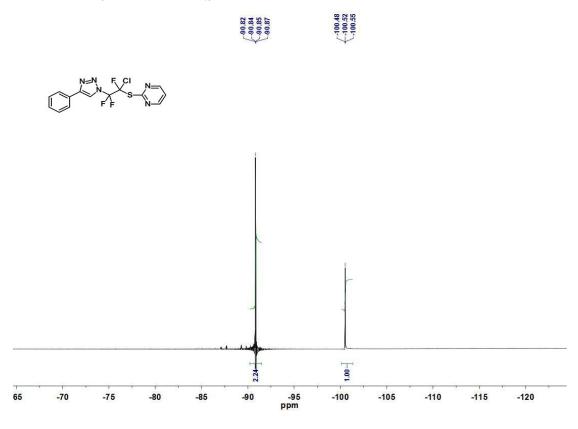


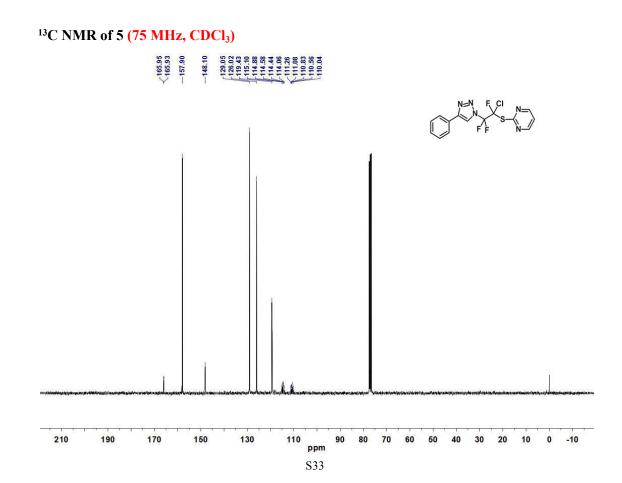
¹H NMR of 2k (400 MHz, CDCl₃)

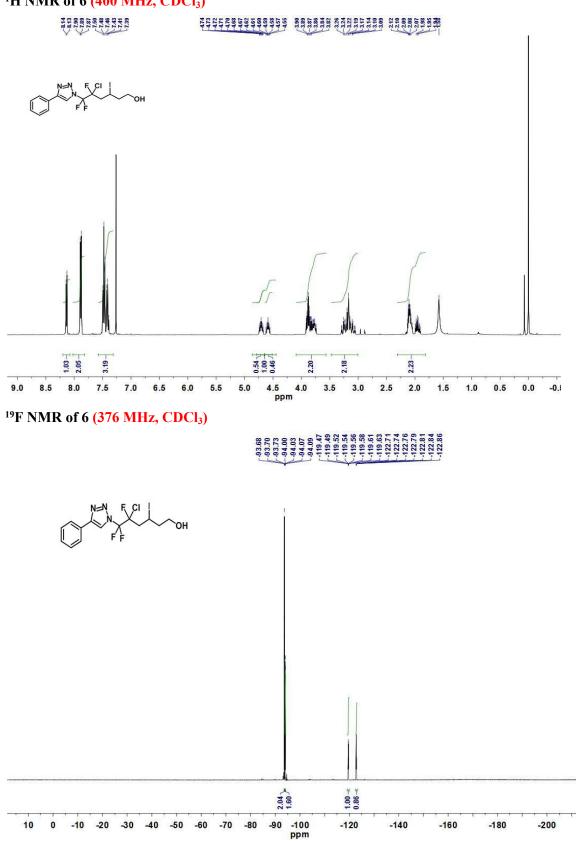


¹³C NMR of 2k (101 MHz, CDCl₃)






¹H NMR of 4 (300 MHz, CD₃OD)



¹³C NMR of 4 (75 MHz, *d*-DMSO)

¹H NMR of 6 (400 MHz, CDCl₃)

¹³C NMR of 6 (101 MHz, CDCl₃) 148.19 128.79 128.79 128.79 128.79 128.79 118.95 118.95 1118.91 111.65 111.65 111.65 111.65 111.65 111.65 111.65 111.65 110.68 111.65 110.78 110.78 110.78 110.78 110.78 110.78 110.78 110.78 110.78 110.78 110.78 110.78 110.78 110.78 110.78 110.78 110.58 10.58 10.58 10.58 10.5 20.33 210 170 150 130 190 110 90 80 70 60 50 40 30 20 10 0 -10 ppm

6. References

- [1] Banks, R. E.; McGlinchey, M. J. J. Chem. Soc. C, 1971, 23, 3971.
- [2] Jouvin, K.; Heimburger, J.; Evano, G. Chem. Sci. 2012, 3, 756.