Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Exploring the divalent effect in fucosidase inhibition with stereoisomeric pyrrolidine dimers

Audrey Hottin,^[a] Daniel W. Wright,^[b] Elena Moreno-Clavijo,^[c] Antonio J. Moreno-

Vargas,^[c] Gideon J. Davies^[b] and Jean-Bernard Behr^{*[a]}

Supporting Information

1)	Chemistry					
	a) General considerations				p. S2	
	b) ¹ H and ¹³ C- NMR spect	ra of new compound	ls		p. S3	
2)	Crystal Structure determination	(Macromolecular	X-ray	data	collection	and
	refinement statistics)				p. S22	
3)	fucosidase inhibition assays (plots)				p. S23	

E-mail: jb.behr@univ-reims.fr

Chemistry :

General considerations: All reagents and solvents were commercially available in high purity and used as received. Silica gel F_{254} (0.2 mm) was used for TLC plates, detection being carried out by spraying with an alcoholic solution of phosphomolybdic acid, *p*-anisaldehyde or an aqueous solution of KMnO₄ (2%) / Na₂CO₃ (4%), followed by heating. Flash column chromatography was performed over silica gel M 9385 (40-63 µm) Kieselgel 60. NMR spectra were recorded on Bruker AC 250 (250 MHz for ¹H, 62.5 MHz for ¹³C) or 600 (600 MHz for ¹H, 150 MHz for ¹³C) spectrometers. Chemical shifts are expressed in parts per million (ppm) and were calibrated to the residual solvent peak. Coupling constants are in Hz and splitting pattern abbreviations are: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; qt, quintuplet; m, multiplet. IR spectra were recorded with an IRTM plus MIDAC spectrophotometer and are expressed in cm⁻¹. Optical rotations were determined at 20 °C with a Perkin-Elmer Model 241 polarimeter in the specified solvents. High Resolution Mass Spectra (HRMS) were performed on Q-TOF Micro micromass positive ESI (CV = 30 V).

¹H-NMR spectrum of compound 7 (CDCI₃, 600 MHz)

¹³C-NMR spectrum of compound 7 (CDCl₃, 151 MHz)

¹H-NMR spectrum of compound 8 (CDCl₃, 500 MHz)

¹³C-NMR spectrum of compound 8 (CDCl₃, 126 MHz)

¹³C-NMR spectrum of compound 9 (CDCI₃, 63 MHz)

¹H-NMR spectrum of compound 1 (CD₃OD, 500 MHz)

¹³C-NMR (DEPT) spectrum of compound 1 (CD₃OD, 126 MHz)

¹H-NMR spectrum of compound 3 (D₂O, 500 MHz)

¹³C-NMR spectrum of compound 3 (D₂O, 126 MHz)

¹H-NMR spectrum of compound 12 (CDCl₃, 500 MHz)

¹H-NMR spectrum of compound 13 (CDCl₃, 250 MHz)

¹³C-NMR (JMOD) spectrum of compound 13 (CDCl₃, 63 MHz)

¹H-NMR spectrum of compound 14 (CDCl₃, 250 MHz)

¹³C-NMR spectrum of compound 14 (CDCI₃, 63 MHz)

¹H-NMR spectrum of compound *meso-*1 (CD₃OD, 500 MHz)

¹³C-NMR spectrum of compound *meso-*1 (CD₃OD, 126 MHz)

$^{13}\text{C-NMR}$ spectrum of compound 4 (CD₃OD, 126 MHz)

Crystal structure determination :

	BtFuc2970-1
Data collection	
Beamline/Date	DLS 103 02.02.2014
Wavelength (Å)	0.97625
Cell dimensions	
a, b, c (Å)	56.1,187.7,97.6
α, β, γ (°)	90,94.2,90
Resolution (Å)	67.6-1.83
R _{merge}	0.09(0.79)
Ι/σΙ	6.8(1.5)
Completeness (%)	99.8(99.8)
Redundancy	3.8(3.9)
Wilson B value	34.7
Refinement	
Resolution (Å)	67.6-2.10
No. reflections	110778
R _{work} / R _{free}	0.19/0.23
No. atoms	
Protein	14332
Ligand/ion	140
Water	773
B-factors	
Protein	44.0
Ligand/ion	60.7
Water	42.9
R.m.s. deviations	
Bond lengths (Å)	0.014
Bond angles (°)	1.5
Ramachandran Statistics (%)	
Preferred	96.1
Allowed	2.9
Outliers	1
PDB codes	515R

 Table S1. MacromolecularX-ray data collection and refinement statistics.

Lineweaver-Burk plots for all tested compounds (bovine kidney fucosidase)

Compound **1** $K_i = 0.023 \mu M$ (competitive)

Compound *meso-1* $K_i = 0,051 \ \mu M$ (mixed type of inhibition, $K' = 0,16 \ \mu M$)

Compound ent-1

Compound **3** $K_i = 0.18 \ \mu\text{M}$ (mixed type of inhibition, $K' = 1.12 \ \mu\text{M}$)

Compound ent-3 $K_i = 12 \ \mu M$ (mixed type of inhibition, $K' = 20 \ \mu M$) 10,0 ◆[I] = 0 8,0 ■[I] = 10,5 µM 1/Absorbance 6,0 $[I] = 21,0 \ \mu M$ \times [I] = 42,0 µM 4,0 2,0 0,0 -5 5 10 15 Ø 1/[*p*-nitrophenyl α-L-fucopyranoside] in mM -2,0

Compound 4 $K_i = 0,031 \ \mu\text{M}$ (mixed type of inhibition, $K' = 0,108 \ \mu\text{M}$)

BtFuc2970 inhibition : Inhibition of *Bt*Fuc2970 fucosidase by compound 1, yielding a Ki of 1.1μ M on this bacterial system. V₀ and V_i are rates in the absence and presence of inhibitor, respectively.

