### Supporting Information for

### Synthetic Investigation toward Apigenin 5-O-glycoside Camellianin B

### as well as the Chemical Structure Revision

Yang Hu, Yuan-Hong Tu, De-Yong Liu, Jin-Xi Liao and Jian-Song Sun\*

The National Engineering Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China.

jssun@jxnu.edu.cn

#### Contents

#### S1-S3 List of the Contents

#### S3-S19 Experimental Section and Characterization Data for New Compounds

| <b>S4</b>  | 7,4'-Di-O-hexanoyl apigenin (4a)                                                                        |  |  |
|------------|---------------------------------------------------------------------------------------------------------|--|--|
| <b>S4</b>  | 7,4'-Di-O-benzyl apigenin (4b)                                                                          |  |  |
| <b>S</b> 5 | Dimethylthexylsilyl                                                                                     |  |  |
|            | <b>3-</b> <i>O</i> -benzyl-4,6-di- <i>O</i> -benzylidene-β-D-glucopyranoside (6)                        |  |  |
| <b>S</b> 5 | Dimethylthexylsilyl                                                                                     |  |  |
|            | 2-O-benzoyl-3-O-benzyl-4,6-di-O-benzylidene-β-D-glucopyranoside (7)                                     |  |  |
| <b>S6</b>  | 2-O-Benzoyl-3-O-benzyl-4,6-di-O-benzylidene-β-D-glucopyranosyl                                          |  |  |
|            | ortho-cyclopropylethynylbenzoate (8)                                                                    |  |  |
| <b>S7</b>  | 7,4'-Di-O-hexanoyl-5-O-(2"-O-benzoyl-3"-O-benzyl-4",6"-di-O-benzyli                                     |  |  |
|            | dene-β-D-glucopyranosyl) apigenin (9)                                                                   |  |  |
| <b>S7</b>  | 7,4'-Di- <i>O</i> -hexanoyl-5- <i>O</i> -(2"- <i>O</i> -benzoyl-3"- <i>O</i> -benzyl-β-D-glucopyranosy  |  |  |
|            | l) apigenin (10)                                                                                        |  |  |
| <b>S</b> 8 | 7,4'-Di- <i>O</i> -hexanoyl-5- <i>O</i> -(2",6"-di- <i>O</i> -benzoyl-3"- <i>O</i> -benzyl-β-D-glucopyr |  |  |
|            | anosyl) apigenin (11)                                                                                   |  |  |
| <b>S</b> 9 | Allyl 2- <i>O</i> -benzoyl-3,4-di- <i>O</i> -benzyl-α-L-rhamnosylpyranose (S2)                          |  |  |
| <b>S</b> 9 | 2-O-Benzoyl-3,4-di-O-benzyl-L-rhamnosyl                                                                 |  |  |
|            | ortho-cyclopropylethynylbenzoate (13)                                                                   |  |  |

| S10        | 7,4'-Di-O-hexanoyl-5-O-(4"'-O-(2"'-O-benzoyl-3"',4"'-di-O-benzyl-α-L-                    |
|------------|------------------------------------------------------------------------------------------|
|            | rhamnopyranosyl)-2",6"-di-O-benzoyl-3"-O-benzyl-β-D-glucopyranosy                        |
|            | l) apigenin (14)                                                                         |
| S11        | Apigenin 5- <i>O</i> -(4"- <i>O</i> -α-L-rhamnosyl)-β-D-glucopyranoside (1)              |
| S12        | Dimethylthexylsilyl 2-O-benzoyl-3,6-di-O-benzyl-β-D-glucopyranoside                      |
|            | (15)                                                                                     |
| S13        | Dimethylthexylsilyl                                                                      |
|            | 4-O-(2,3,4-tri-O-benzoyl-α-L-rhamnopyranosyl)-2-O-benzoyl-3,6-di-O-                      |
|            | benzyl-β-D-glucopyranoside (16)                                                          |
| S13        | 4-O-(2,3,4-Tri-O-benzoyl-α-L-rhamnopyranosyl)-2-O-benzoyl-3,6-di-O-                      |
|            | benzyl -β-D-glucopyranosyl <i>ortho</i> -cyclopropylethynylbenzote (17)                  |
| S14        | 7,4'-Di-O-hexanoyl-5-O-(4"-O-(2"",3"",4""-tri-O-benzoyl-α-L-rhamnop                      |
|            | yranosyl)-2"-O-benzoyl-3",6"-di-O-benzyl-β-D-glucopyranosyl)                             |
|            | apigenin (18)                                                                            |
| S14        | Dimethylthexylsilyl                                                                      |
|            | 4-O-(2,3,4-tri-O-benzoyl-α-L-rhamnopyranosyl)-2-O-benzoyl                                |
|            | -β-D-glucopyranoside (19)                                                                |
| S15        | Dimethylthexylsilyl                                                                      |
|            | 4-O-(2,3,4-tri-O-benzoyl-α-L-rhamnopyranosyl)-2,3,6-tri-O-benzoyl                        |
|            | -β-D-glucopyranoside (20)                                                                |
| <b>S16</b> | 4-O-(2,3,4-Tri-O-benzoyl-α-L-rhamnopyranosyl)-2,3,4-tri-O-benzoyl-β-                     |
|            | D-glucopyranosyl ortho-cyclopropylethynylbenzote (21)                                    |
| <b>S16</b> | 7,4'-Di-O-hexanoyl-5-O-(4"-O-(2"',3"',4"'-tri-O-benzoyl-α-L-rhamnop                      |
|            | yranosyl)-2",3",6"-tri-O-benzoyl-β-D-glucopyranosyl) apigenin (22)                       |
| S17        | Synthesis of aunthentic camellianin B via decetylation of camellianin A                  |
| S17        | Acetylation of authentic camellianin B which was obtained by                             |
|            | deacetylation of camellianin A                                                           |
| S18        | Comparison of reported data of camellianin B                                             |
| S19        | <sup>1</sup> H NMR and <sup>13</sup> C NMR comparison of camellianin B between synthetic |

|     | sample and authentic sample derived from camellianin A |  |  |
|-----|--------------------------------------------------------|--|--|
| S19 | References                                             |  |  |

S20-S79<sup>1</sup>H , <sup>13</sup>C NMR, and 2D spectra

#### 7,4'-Di-O-hexanoyl apigenin (4a)

To a suspension of apigenin (3.0 g, 11.1 mmol) in acetone (80 mL) was added Et<sub>3</sub>N (3.8 mL 27.8 mmol) and hexanoyl chloride (3.9 mL, 27.8 mmol) successively at 0 °C. The resulting mixture was then stirred at room temperature for another 7 h, at which time TLC shown that all starting material disappeared. Ethyl acetate (120 mL) was added to diluted the reaction, and the resulting solution was washed successively with water, 1 N HCl, saturated NaHCO<sub>3</sub>, and brine, and then dried over Na<sub>2</sub>SO<sub>4</sub>. Filtration and concentration to yield the crude product which was further purified by silica gel chromatography (eluent system: PE/EA = 9 : 1) to afford **4a** (3.9 g, 76%) as a yellow powder: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.68 (s, 1 H), 7.88 (dd, *J* = 2.4, 6.8 Hz, 2 H), 7.26 (dd, *J* = 2.4, 6.8 Hz, 2 H), 6.82 (d, *J* = 2.0 Hz, 1 H), 6.66 (s, 1 H), 6.54 (d, *J* = 2. 0 Hz, 1 H), 2.60 (td, *J* = 7.2, 2.8 Hz, 4 H), 1.81-1.73 (m, 2 H), 1.43-1.36 (m, 8 H), 0.96 (t, *J* = 7.2 Hz, 6 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  182.7, 171.7, 171.2, 163.8, 161.8, 156.6, 156.1, 153.8, 128.3, 127.7, 122.5, 108.7, 105.9, 105.5, 101.0, 34.4, 34.3, 31.2 (2 C), 24.5 (2 C), 22.3, 13.9; HRMS (MALDI) Calcd for C<sub>27</sub>H<sub>31</sub>O<sub>7</sub> [M+H]<sup>+</sup> 467.2064, found 467.2064.

#### 7,4'-Di-O-benzyl apigenin (4b)

To a suspension of apigenin (2.0 g, 7.4 mmol) and K<sub>2</sub>CO<sub>3</sub> (2.5 g, 18.1 mmol) in dry DMF (30 mL) was added BnBr (2.2 mL, 18.5 mmol) at room temperature. The resulting mixture was then stirred at the same temperature for another 10 h, and TLC shown all starting material disappeared. Ethyl acetate (120 mL) was added to dilute the reaction mixture, the resulting solution was washed successively with water, 1 N HCl, saturated NaHCO<sub>3</sub>, brine, and then dried over Na<sub>2</sub>SO<sub>4</sub>. Filtration and concentration to generate the crude product which was further purified by silica gel chromatography (eluent system: PE/EA = 5 : 1) to afford **4b** (2.3 g, 68%) as a yellow powder: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.80 (s, 1 H), 7.82 (dd, *J* = 2.0, 6.8 Hz, 2 H), 7.45-7.33 (m, 10 H), 7.08 (dd, *J* = 2.0, 6.8 Hz, 2 H), 6.55 (s, 1 H), 6.54 (d, *J* = 2.0 Hz, 1 H), 5.14 (d, s, 2 H), 5.12 (s, 2 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  182.4, 164.5, 164.0, 162.2, 161.7, 157.7, 136.1, 135.8, 128.8, 128.4, 128.3, 128.1, 127.5, 123.8, 115.4, 105.8, 104.4, 98.8, 93.5, 70.4, 70.2; HRMS (MAILDI)

Calcd for  $C_{29}H_{23}O_5 [M+H]^+ 451.1540$ , found 451.1540.

#### Dimethylthexylsilyl 3-*O*-benzyl-4,6-di-*O*-benzylidene-β-D-glucopyranoside (6)

To a solution of 3-O-benzyl-4,6-di-O-benzylidene-D-glucoside 5<sup>S1</sup> (4.5 g, 12.6 mmol) and imidazole (1.8 g, 26.4 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (35 mL) was added TDSCl (5.1 mL, 22.7 mmol) dropwise at room temperature. The resultant mixture was stirred at the same temperature for 10 h, then ethyl acetate was added to dilute the reaction. The solution was washed successively with water, saturated NaHCO<sub>3</sub>, brine, and then dried over Na<sub>2</sub>SO<sub>4</sub>. Filtration was followed by evaporation to give a syrup which was further purified by silica gel chromatography (eluent system: PE/EA = 30 : 1) to generate 6 (5.2 g, 82%) as a syrup:  $[\alpha]^{28}_{D} = -18.1$  (c 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) & 7.50-7.67 (m, 2 H), 7.40-7.35 (m, 5 H), 7.34-7.24 (m, 3 H), 5.55 (s, 1 H), 4.97 (AB, 2 H), 4.64 (d, J = 7.6 Hz, 1 H), 4.31 (dd, J = 5.2, 10.4 Hz, 1 H), 3.82 (t, J = 10.4 Hz, 1 H), 3.74 (t, J = 9.2 Hz, 1 H), 3.67 (t, J = 8.8 Hz, 1 H), 3.52 (dd, J = 7.6, 8.8 Hz, 1 H), 3.47-3.41 (m, 1 H), 2.35 (brs, 1 H), 1.68-1.60 (m, 1 H), 0.90-0.87 (m, 12 H), 0.18 (s, 6 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 140.4, 139.3, 130.9, 130.3, 130.1, 129.9, 129.6, 128.0, 103.2, 100.1, 83.4, 82.2, 78.2, 76.5, 70.7, 68.5, 36.0, 26.8, 22.1, 21.9, 20.5, 20.4, 0.0, -1.3; HRMS (MALDI) Calcd for C<sub>28</sub>H<sub>40</sub>O<sub>6</sub>SiNa [M+Na]<sup>+</sup> 523.2486, found 523.2485.

#### Dimethylthexylsilyl

#### **2-***O*-benzoyl-**3**-*O*-benzyl-**4**,**6**-di-*O*-benzylidene-β-D-glucopyranoside (7)

To a solution of **6** (2.0 g, 4.0 mmol) in dry pyridine (25 mL) was added BzCl (1.4 mL, 12.0 mmol) at 0 °C. The reaction mixture was then warmed to room temperature and the stirring was continued for another 7 h. Ethyl acetate was added to dilute the reaction, and the solution was washed successively with water, 1 N HCl, saturated NaHCO<sub>3</sub>, brine and then dried over Na<sub>2</sub>SO<sub>4</sub>. Filtration and concentration yielded the crude product which was further purified by silica gel chromatography (eluent system: PE/EA = 25 : 1) to generate **7** (2.2 g, 91%) as a white solid:  $[\alpha]^{28}_{D} = 16.3$  (*c* 0.95, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.88-7.85 (m, 2 H), 7.46-7.38 (m, 3 H), 7.33-7.24 (m, 5 H), 7.03-6.93 (m, 5 H), 5.47 (s, 1 H), 5.16 (td, *J* = 7.6, 1.2 Hz, 1 H), 4.74 (d, *J* = 7.6 Hz, 1 H), 4.71 (AB, 2 H), 4.23 (dd, *J* = 4.8, 10.4 Hz, 1 H), 3.78-3.69

(m, 3 H), 3.40-3.35 (m, 1 H), 1.40-1.33 (m, 1 H), 0.61-0.58 (m, 12 H), 0.00 (s, 3 H), -0.10 (s, 3 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.9, 140.0, 139.3, 134.9, 132.1, 131.7, 130.9, 130.2, 130.0, 129.9, 129.4, 128.0, 103.2, 98.5, 83.8, 79.8, 77.2, 75.7, 70.8, 68.4, 35.7, 26.6, 21.7 (2 C), 20.3 (2 C), 0.0, -1.5; HRMS (MALDI) Calcd for C<sub>35</sub>H<sub>44</sub>O<sub>7</sub>SiNa [M+Na]<sup>+</sup> 627.2749, found 627.2746.

## **2-***O*-Benzoyl-3-*O*-benzyl-4,6-di-*O*-benzylidene-β-D-glucopyranosyl *ortho*cyclopropylethynylbenzoate (8)

To a solution of **7** (1.0 g, 1.6 mmol) in dry THF (10 mL) wad added HF·pyridine (2.9 mL) dropwise at 0 °C. After stirring at 0 °C for another 30 minutes, the reaction temperature was then warmed to room temperature and the stirring was continued for another 11 h. Ethyl acetate was added to dilute the reaction and the resultant solution was washed with water, saturated NaHCO<sub>3</sub>, brine and then dried over Na<sub>2</sub>SO<sub>4</sub>. Filtration was followed by concentration under reduced pressure to give a residue which was further purified by silica gel chromatography (eluent system: PE/EA = 6 : 1) to generate the lactol intermediate.

The above obtained lactol (535 mg, 1.2 mmol) was dissolved in dry CH<sub>2</sub>Cl<sub>2</sub> (5 mL), to which *ortho*-cyclopropylethynylbenzoic acid (279 mg, 1.5 mmol), DMAP (199 mg, 1.6 mmol), DIPEA (0.5 mL, 2.9 mmol), and EDCI (308 mg, 1.6 mmol) were added successively. The resultant solution was stirred at room temperature for 6 h, then ethyl acetate was added. The resultant solution was washed with water, brine successively, and then dried over Na<sub>2</sub>SO<sub>4</sub>. Filtration and concentration under reduced pressure to generate the crude product which was further purified by silica gel chromatography (eluent system: PE/EA = 5 : 1) to afford **8** (743.7 mg, 94%) as a white solid. For  $\beta$ -isomer: [ $\alpha$ ]<sup>28</sup><sub>D</sub> = 36.8 (*c* 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.95-7.91 (m, 3 H), 7.56-7.51 (m, 3 H), 7.46-7.35 (m, 7 H), 7.26 (td, *J* = 7.2, 2.0 Hz, 1 H), 7.17-7.08 (m, 5 H), 6.10 (d, *J* = 8.0 Hz, 1 H), 5.64 (s, 1 H), 5.62 (t, *J* = 8.4 Hz, 1 H), 4.88 (AB, 2 H), 4.47 (dd, *J* = 4.8, 10.0 Hz, 1 H), 4.03 (t, *J* = 8.8 Hz, 1 H), 3.98 (t, *J* = 8.8 Hz, 1 H), 3.87 (t, *J* = 10.0 Hz, 1 H), 3.78 (td, *J* = 9.2, 4.8 Hz, 1 H), 1.54-1.47 (m, 1 H), 0.90-0.85 (m, 4 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.4, 162.8, 136.9, 136.4, 133.7, 132.6, 131.7, 130.2, 129.2, 128.6, 128.4, 127.7, 127.6, 127.5, 127.4, 127.0, 126.4,

125.3, 125.0, 100.7, 99.7, 92.2, 80.8, 77.3, 73.6, 73.5, 71.6, 67.8, 66.3, 8.3, 8.2; HRMS (ESI) Calcd for  $C_{39}H_{35}O_8 [M+H]^+$  631.2326, found 631.2329.

## 7,4'-Di-*O*-hexanoyl-5-*O*-(2"-*O*-benzoyl-3"-*O*-benzyl-4",6"-di-*O*-benzylidene-β-Dglucopyranosyl) apigenin (9)

To a solution of 8 (200 mg, 0.3 mmol) and 4a (123 mg, 0.26 mmol) in dry  $CH_2Cl_2$  (5 mL) was added activated 4Å MS under N<sub>2</sub> atmosphere. The resulting mixture was stirred at room temperature for 30 minutes before Ph<sub>3</sub>PAuNTf<sub>2</sub> (39 mg, 0.05 mmol) was added. The reaction mixture was then stirred at the same temperature for another 6 h. Filtration to remove MS and evaporation under reduced pressure to give a residue, which was further purified by silica gel chromatography (eluent system: PE/EA = 4: 1) to afford **9** (147 mg, 61%) as a white solid:  $[\alpha]_{D}^{28} = -14.8$  (*c* 0.9, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.07-8.04 (m, 2 H), 7.80-7.77 (m, 2 H), 7.55-7.50 (m, 3 H), 7.42-7.37 (m, 5 H), 7.21-7.09 (m, 7 H), 7.08 (d, *J* = 2.4 Hz, 1 H), 6.84 (d, *J* = 2.0 Hz, 1 H), 6.49 (s, 1 H), 5.77 (t, J = 7.6 Hz, 1 H), 5.66 (s, 1 H), 5.47 (d, J = 7.2 Hz, 1 H), 4.88 (AB, 2 H), 4.43 (dd, J = 4.8, 10.4 Hz, 1 H), 4.17 (t, J = 9.2 Hz, 1 H), 4.00 (dd, J = 7.6, 8.8 Hz, 1 H), 3.91 (t, J = 10.0 Hz, 1 H), 3.75 (td, J = 9.6, 4.8 Hz, 1 H), 2.60 (q, J = 7.2 Hz, 4 H), 1.80-1.73 (m, 4 H), 1.43-1.35 (m, 8 H), 0.96-0.91 (m, 6 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 175.9, 171.8, 171.2, 165.1, 160.3, 158.0, 156.7, 154.0, 153.2, 137.9, 137.2, 132.9, 130.2, 130.0, 129.1, 128.7, 128.3, 128.2 (2 C), 128.1, 127.5, 127.3, 126.1, 122.3, 114.0, 108.8, 108.6, 106.2, 101.4, 100.4, 81.0, 78.0, 73.7, 73.0, 68.8, 66.6, 34.4 (2 C), 31.2 (2 C), 24.5, 24.4, 22.3, 13.9; HRMS (MALDI) Calcd for C<sub>54</sub>H<sub>54</sub>O<sub>13</sub>Na [M+Na]<sup>+</sup> 933.3457, found 933.3453.

## 7,4'-Di-*O*-hexanoyl-5-*O*-(2"-*O*-benzoyl-3"-*O*-benzyl-β-D-glucopyranosyl) apigenin (10)

To a solution of **9** (117 mg, 0.13 mmol) and EtSH (74  $\mu$ L, 1.0 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (4 mL) was added TFA (48  $\mu$ L, 0.64 mmol) and BzCl (3  $\mu$ L, 0.03 mmol) at 0 °C. The resulting mixture was stirred at the same temperature for another 45 minutes, at which time TLC shown that all starting material disappeared. Saturated NaHCO<sub>3</sub> solution was added to quench the reaction, which was followed by addition of ethyl acetate to dilute the reaction mixture. The resultant solution was washed with saturated NaHCO<sub>3</sub>,

brine, and then dried over Na<sub>2</sub>SO<sub>4</sub>. Filtration and concentration to yield the crude product which was further purified by silica gel chromatography (eluent system: PE/EA = 4 : 3) to give **10** (87 mg, 83%) as a yellow solid:  $[\alpha]^{28}{}_{D}$  = -6.2 (*c* 0.8, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (dd, *J* = 1.2, 8.0 Hz, 2 H), 7.74 (dd, *J* = 1.5, 6.8 Hz, 6.8 Hz, 2 H), 7.52-7.48 (m, 1 H), 7.34 (t, *J* = 7.6 Hz, 2 H), 7.21-7.10 (m, 7 H), 6.97 (d, *J* = 2.0 Hz, 1 H), 6.83 (d, *J* = 2.0 Hz, 1 H), 6.44 (s, 1 H), 7.65 (dd, *J* = 7.2, 8.8 Hz, 1 H), 5.34 (d, *J* = 7.6 Hz, 1 H), 4.79 (AB, 2 H), 4.15 (t, *J* = 9.2 Hz, 1 H), 3.95 (m, 2 H), 3.83 (t, *J* = 9.2 Hz, 1 H), 3.64-3.60 (m, 1 H), 3.43 (brs, 2 H), 2.60 (q, *J* = 3.6 Hz, 4 H), 1.79-1.72 (m, 4 H), 1.41-1.37 (m, 8 H), 0.96-0.92 (m, 6 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  137.9, 132.9, 130.2, 130.0, 128.5, 128.3, 128.2 (2 C), 127.7, 127.3, 122.2, 113.4, 108.7, 107.5, 105.7, 100.0, 82.0, 74.2, 73.2, 69.7, 62.0, 34.4 (2 C), 31.2 (2 C), 24.5, 24.4, 22.3, 13.9; HRMS (MALDI) Calcd for C<sub>47</sub>H<sub>50</sub>O<sub>13</sub>Na [M+Na]<sup>+</sup> 845.3144, found 845.3140.

# 7,4'-Di-*O*-hexanoyl-5-*O*-(2",6"-di-*O*-benzoyl-3"-*O*-benzyl-β-D-glucopyranosyl) apigenin (11)

To a solution of **10** (58 mg, 0.07 mmol) and pyridine (56 µL, 0.7 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (2 mL) was added BzCl (12 µL, 0.1 mmol) dropwise at 0 °C. After the addition was completed, the resultant mixture was stirred at the same temperature for another 1 h. Ethyl acetate was added to dilute the reaction, the resulting solution was washed with water, 1 N HCl, and brine, and then dried over Na<sub>2</sub>SO<sub>4</sub>. Filtration was followed by evaporation under reduced pressure to afford the crude product which was further purified by silica gel chromatography (eluent system: PE/EA = 2 : 1) to produce **11** (56 mg, 86%) as a yellow solid:  $[\alpha]^{28}_{D} = -34.4$  (*c* 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.12-8.08 (m, 2 H), 7.98 (dt, *J* = 2.0, 6.4 Hz, 2 H), 7.80-7.76 (m, 2 H), 7.61-7.36 (m, 7 H), 7.26-7.16 (m, 6 H), 7.04 (d, *J* = 2.4 Hz, 1 H), 6.85 (d, *J* = 2.0 Hz, 1 H), 6.48 (s, 1 H), 5.75 (dd, *J* = 6.8, 8.4 Hz, 1 H), 5.43 (d, *J* = 6.8 Hz, 1 H), 4.85 (AB, 2 H), 4.67-4.65 (m, 2 H), 4.09 (t, *J* = 9.2 Hz, 1 H), 3.91-3.84 (m, 2 H), 2.60 (t, *J* = 7.6 Hz, 2 H), 2.48 (td, *J* = 7.6, 2.0 Hz, 2 H), 1.79-1.67 (m, 4 H), 1.41-1.33 (m, 8 H), 0.95-0.91 (m, 6 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  176.2, 171.9, 171.2, 166.8, 165.3, 160.3, 157.9, 156.8, 154.1, 153.2, 137.8, 133.4, 133.1, 133.0, 130.1 (2 C),

130.0, 129.8, 129.6, 128.6, 128.5, 128.4, 128.3 (2 C), 128.2, 127.9, 127.4, 122.3, 113.6, 108.7, 107.8, 105.8, 99.6, 81.8, 74.6, 74.3, 73.3, 69.3, 63.4, 34.4, 34.3, 31.2 (2 C), 24.6, 24.4, 22.3 (2 C), 13.9; HRMS (MALDI) Calcd for  $C_{54}H_{55}O_{14}$  [M+H]<sup>+</sup> 927.3586, found 927.3589.

#### Allyl 2-*O*-benzoyl-3,4-di-*O*-benzyl-α-L-rhamnosylpyranose (S2)

To a solution of allyl 3,4-di-O-benzyl- $\alpha$ -L-rhamnosylpyranose **S1**<sup>S2</sup> (1.58 g, 4.1 mmol) and pyridine (5 mL, 61.5 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (7 mL) was added BzCl (1.0 mL, 8.2 mmol) dropwise by syringe at 0 °C. The reaction mixture was then warmed to room temperature and the stirring was continued for another 3 h. Ethyl acetate was added and the resultant solution was washed with water, 1 N HCl, saturated NaHCO<sub>3</sub>, brine successively, and then dried over Na<sub>2</sub>SO<sub>4</sub>. Filtration and evaporation under reduced pressure yielded the crude product which was further purified by silica gel chromatography (eluent system: PE/EA = 6 : 1) to afford S2 (1.72 g, 86%) as a syrup:  $[\alpha]_{D}^{28} = 14.0 (c \ 0.9, \text{CHCl}_3); ^{1}\text{H NMR} (400 \text{ MHz}, \text{CDCl}_3) \delta 8.11 (dd, J = 2.0, 6.8 \text{ Hz},$ 2 H), 7.49-7.45 (m, 1 H), 7.39 (t, J = 7.6 Hz, 2 H), 7.30-7.16 (m, 10 H), 5.90-5.81 (m, 1 H), 5.67-5.66 (m, 1 H), 5.28-5.23 (m, 1 H), 5.18-5.14 (m, 1 H), 4.93 (AB, 2 H), 4.90 (s, 1 H), 4.78 (AB, 2 H), 4.16-4.08 (m, 1 H), 3.97-3.92 (m, 1 H), 3.89-3.82 (m, 1 H), 3.61 (td, J = 9.2, 1.6 Hz, 1 H), 1.39 (d, J = 6.4 Hz, 3 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 165.9, 138.7, 138.3, 133.8, 133.3, 130.2, 130.1, 128.6, 128.5 (2 C), 128.3, 128.2, 127.9, 127.8, 117.8, 97.0, 80.3, 78.5, 75.5, 71.7, 69.7, 68.2, 68.0, 18.4; HRMS (ESI) Calcd for  $C_{30}H_{33}O_6 [M+H]^+$  489.2272, found 489.2272.

# 2-*O*-Benzoyl-3,4-di-*O*-benzyl-L-rhamnosyl *ortho*-cyclopropylethynylbenzoate (13)

To a solution of **S2** (1.0 g, 2.0 mmol) in a mixed solvent of  $CH_2Cl_2$  and MeOH (V/V = 1 : 1, 7 mL) was added PdCl<sub>2</sub> (84.0 mg, 0.47 mmol) at room temperature. The resulting solution was stirred at the same temperature for another 10 h. The catalyst was removed by filtration through a pad of silica gel, and the filtrate was evaporated under reduced pressure. Thus obtained residue was then purified by silica gel chromatography (eluent system: PE/EA = 5 : 1) to yield the Allyl group removed lactol intermediate.

The above obtained lactol was then dissolved in dry CH<sub>2</sub>Cl<sub>2</sub> (8 mL), to which ortho-cyclopropylethynylbenzoic acid (325 mg, 1.7 mmol), DMAP (250 mg, 2.0 mmol), DIPEA (0.68 mL, 3.6 mmol), and EDCI (387 mg, 2.0 mmol) were added sequentially at room temperature, and the resulting mixture was then stirred at the same temperature for another 5 h, ethyl acetate was added to dilute the reaction, the resultant solution was washed with water, brine, and then dried over Na2SO4. Filtration was followed by concentration to yield the crude product which was further purified by silica gel chromatography (eluent system: PE/EA = 30 : 1) to afford 13 (820 mg, 65%) as a white solid. For  $\alpha$  isomer:  $[\alpha]_{D}^{28} = -4.1$  (*c* 0.9, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $(400 \text{ MHz}, \text{CDCl}_3) \delta 8.14-8.11 \text{ (m, 2 H)}, 7.86 \text{ (dd, } J = 1.6, 8.0 \text{ Hz}, 1 \text{ H)}, 7.63-7.59 \text{ (m, 2 H)}, 7.86 \text{ (dd, } J = 1.6, 8.0 \text{ Hz}, 1 \text{ H)}, 7.63-7.59 \text{ (m, 2 H)}, 7.86 \text{ (dd, } J = 1.6, 8.0 \text{ Hz}, 1 \text{ H)}, 7.63-7.59 \text{ (m, 2 H)}, 7.86 \text{ (dd, } J = 1.6, 8.0 \text{ Hz}, 1 \text{ H)}, 7.63-7.59 \text{ (m, 2 H)}, 7.86 \text{ (dd, } J = 1.6, 8.0 \text{ Hz}, 1 \text{ H)}, 7.63-7.59 \text{ (m, 2 H)}, 7.86 \text{ (dd, } J = 1.6, 8.0 \text{ Hz}, 1 \text{ H)}, 7.63-7.59 \text{ (m, 2 H)}, 7.86 \text{ (dd, } J = 1.6, 8.0 \text{ Hz}, 1 \text{ H)}, 7.63-7.59 \text{ (m, 2 H)}, 7.86 \text{ (dd, } J = 1.6, 8.0 \text{ Hz}, 1 \text{ H)}, 7.63-7.59 \text{ (m, 2 H)}, 7.86 \text{ (dd, } J = 1.6, 8.0 \text{ Hz}, 1 \text{ H)}, 7.63-7.59 \text{ (m, 2 H)}, 7.86 \text{ (dd, } J = 1.6, 8.0 \text{ Hz}, 1 \text{ H)}, 7.63-7.59 \text{ (m, 2 H)}, 7.86 \text{ (dd, } J = 1.6, 8.0 \text{ Hz}, 1 \text{ H)}, 7.63-7.59 \text{ (m, 2 H)}, 7.86 \text{ (dd, 3 H)}, 7.8$ 1 H), 7.51 (td, J = 6.4, 1.6 Hz, 3 H), 7.46 (td, J = 7.2, 1.6 Hz, 1 H), 7.34-7.23 (m, 11 H), 6.23 (d, J = 2.0 Hz, 1 H), 5.77 (dd, J = 2.4, 3.6 Hz, 1 H), 4.94 (AB, 2 H), 4.87 (AB, 2 H), 4.27 (dd, J = 3.6, 9.6 Hz, 1 H), 4.13-4.06 (m, 1 H), 3.67 (t, J = 9.6 Hz, 1 H), 1.60-1.54 (m, 1 H), 1.43 (d, J = 6.0 Hz, 3 H), 0.86-0.75 (m, 4 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 164.8, 163.3, 137.5, 137.0, 133.8, 132.6, 131.4, 130.0, 129.9, 129.3, 129.0, 127.8, 127.6 (2 C), 127.4 (2 C), 127.0 (2 C), 126.4, 124.2, 99.4, 91.4, 78.9, 77.2, 74.9, 74.0, 71.1, 69.8, 67.7, 17.5, 8.3, 0.0; HRMS (MALDI) Calcd for  $C_{39}H_{36}O_7Na [M+Na]^+ 639.2353$ , found 639.2354; For  $\beta$ -isomer:  $[\alpha]^{28}_{D} = 21.4$  (c 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.17-8.14 (m, 2 H), 7.72 (dd, J = 1.2, 7.6 Hz, 1 H), 7.63-7.58 (m, 1 H), 7.51-7.47 (m, 2 H), 7.43 (dd, J = 1.2, 8.0 Hz, 1 H), 7.37-7.24 (m, 11 H), 7.11 (td, J = 8.0, 1.6 Hz, 1 H), 6.07 (d, J = 1.2 Hz, 1 H), 5.96 (dd, *J* = 1.2, 3.2 Hz, 1 H), 4.96 (AB, 2 H), 4.85 (AB, 2 H), 3.89 (dd, *J* = 3.2, 8.8 Hz, 1 H), 3.71-3.64 (m, 1 H), 3.63 (t, J = 8.8 Hz, 1 H), 1.52-1.47 (m, 1 H), 1.46 (d, J = 6.0 Hz, 3 Hz, 1 H)H), 0.88-0.85 (m, 4 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 165.4, 162.6, 137.4, 136.8, 133.6, 132.5, 131.4, 130.0, 129.4, 129.3, 129.2, 127.8, 127.7, 127.5, 127.4, 127.2, 126.2, 124.9, 99.4, 91.0, 79.2, 78.8, 74.8, 73.6, 72.1, 70.8, 67.8, 17.4, 8.2, 0.0; HRMS (MALDI) Calcd for  $C_{39}H_{36}O_7Na [M+Na]^+ 639.2353$ , found 639.2353.

**7,4'-Di**-*O*-hexanoyl-5-*O*-(4"-*O*-(2"'-*O*-benzoyl-3"',4"'-di-*O*-benzyl-α-L-rhamnop yranosyl)-2",6"-di-*O*-benzoyl-3"-*O*-benzyl-β-D-glucopyranosyl) apigenin (14) To a solution of **13** (168 mg, 0.27 mmol) and **11** (42 mg, 0.045 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub>

(6 mL) was added 4Å MS under N<sub>2</sub> atmosphere. The resulting mixture was stirred at room temperature for 30 minutes and then Ph<sub>3</sub>PAuOTf prepared by combination of Ph<sub>3</sub>PAuCl and AgOTf in dry CH<sub>2</sub>Cl<sub>2</sub> in the presence of 5Å MS (0.025 mol/L, 1.08 mL, 0.027 mmol) was added. The stirring was continued at room temperature for 7 h. The mixture was filtered, the filtrate was concentrated under reduced pressure to yield a residue which was further purified by silica gel chromatography (eluent system: PE/EA = 3 : 1) to provide 14 (61 mg, 91%) as a white solid:  $[\alpha]_{D}^{28} = -27.8$  (c 0.96, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.11 (d, J = 7.2 Hz, 2 H), 8.01-7.95 (m, 4 H), 7.81 (d, J = 8.8 Hz, 2 H), 7.58-7.09 (m, 23 H), 7.02 (d, J = 2.0 Hz, 1 H), 6.86 (d, J = 2.0 Hz, 1 H), 6.80 (d, J = 2.0 Hz, 1 H), 7.80 (d, J = 2.0 Hz, 1 Hz, 1 H), 7.80 (d, J = 2.0 Hz, 1 Hz, 1 Hz, 1 Hz, 1 Hz, 1 2.0 Hz, 1 H), 6.50 (s, 1 H), 5.81 (t, J = 6.4 Hz, 1 H), 5.55 (t, J = 2.4 Hz, 1 H), 5.51 (d, *J* = 6.0 Hz, 1 H), 5.21 (d, *J* = 2.0 Hz, 1 H), 4.92-4.88 (m, 2 H), 4.85 (d, *J* = 10.8 Hz, 1 H), 4.76 (d, *J* = 10.4 Hz, 1 H), 4.72 (d, *J* = 11.6 Hz, 1 H), 4.62 (d, *J* = 10.8 Hz, 1 H), 4.54 (d, J = 11.6 Hz, 1 H), 4.47 (dd, J = 4.8, 12.4 Hz, 1 H), 4.36 (t, J = 8.0 Hz, 1 H), 4.05-3.96 (m, 4 H), 3.54 (t, J = 9.6 Hz, 1 H), 2.60 (t, J = 7.6 Hz, 2 H), 2.47 (t, J = 7.6 Hz, 2 H), 1.79-1.68 (m, 4 H), 1.42-1.34 (m, 8 H), 1.16 (d, J = 6.0 Hz, 3 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 176.1, 171.9, 171.2, 165.9, 165.8, 165.2, 160.3, 157.8, 156.6, 154.0, 153.2, 138.6, 138.0, 137.4, 133.2, 133.1, 132.9, 130.0, 129.9 (2 C), 129.8, 129.7, 128.7, 128.5, 128.4, 128.3 (2 C), 128.2, 128.0 (2 C), 127.6 (2 C), 127.4, 122.3, 113.8, 108.8, 108.7, 106.0, 99.3, 97.7, 80.4, 80.0, 77.6, 75.3, 74.3, 74.2, 73.8, 72.8, 71.5, 69.6, 68.7, 63.1, 34.4, 34.3, 31.3, 31.2, 24.6, 24.4, 22.3, 18.0, 14.0; HRMS (MALDI) Calcd for  $C_{81}H_{81}O_{19}[M+H]^+$  1357.5367, found 1357.5364.

#### Apigenin 5-O-(4"-O-α-L-rhamnosyl)-β-D-glucopyranoside (1)

To a solution of **14** (41 mg, 0.03 mmol) in a mixed solvent of EtOH,  $CH_2Cl_2$ , and ethyl acetate (V/V/V = 2 : 1 : 1, 4 mL) was added Pd/C (41 mg) at room temperature. The reaction vessel was evacuated and then refilled with H<sub>2</sub>, and this process was repeated for three times, and the resultant dark suspension was stirred at room temperature for another 20 h. Filtration through a pad of silica gel and then the dark solid was then washed with  $CH_2Cl_2$  thoroughly. The filtrates were combined and concentrated under reduced pressure to give a residue which was further purified by silica gel chromatography (eluent system: PE/EA = 2 : 1) to afford the debenzylated intermediate.

The above obtained debenzylated intermediate (34 mg, 0.027 mmol) was dissolved in absolute MeOH (3 mL), to which a freshly prepared NaOMe solution in absolute MeOH was added dropwise at 0 °C. The resultant solution was stirred at 0 °C for another 30 minutes, and then the temperature was warmed to room temperature, and the stirring was continued for 1.5 h. Weak acid resin (Amberlite IRC-76) was added to quench the reaction, and the mixture was stirred at room temperature for another 1.5 h. Filtration, washing the resin with MeOH thoroughly, and concentration of the filtrate to afford the crude product which was further purified by C18 RP chromatography (eluent system: MeOH/H<sub>2</sub>O = 1 : 2) to provide 1 (13 mg, 76%) as a light yellow solid:  $[\alpha]_{D}^{28} = -35.3$  (c 0.4, MeOH); <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD)  $\delta$  7.84 (d, J = 8.8 Hz, 2 H), 6.93 (d, J = 8.8 Hz, 2 H), 6.78 (d, J = 2.4 Hz, 1 H), 6.71 (d, J = 2.4 Hz, 1 H), 6.58 (s, 1 H), 5.79 (s, 1 H), 4.90 (d, J = 1.6 Hz, 1 H), 4.89 (d, J = 7.2 Hz, 1 H), 4.04-4.00 (m, 1 H), 3.93 (dd, J = 2.0, 12.4 Hz, 1 H), 3.76-3.61 (m, 5 H), 3.58-3.53 (m, 1 H), 3.44 (t, J = 9.6 Hz, 1 H), 1.12 (d, J = 6.4 Hz, 3 H); <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>OD)  $\delta$ 179.0, 163.6, 162.9, 161.2, 159.3, 158.6, 127.9, 121.7, 115.6, 107.9, 105.1, 103.3 (2 C), 101.5, 97.9, 77.7, 76.0, 74.6, 73.4, 72.4, 71.1, 70.8, 69.3, 60.4, 16.4; HRMS (MALDI) Calcd for  $C_{27}H_{31}O_{14}$  [M+H]<sup>+</sup> 579.1708, found 579.1709.

#### Dimethylthexylsilyl 2-O-benzoyl-3,6-di-O-benzyl-β-D-glucopyranoside (15)

To a solution of **7** (1.1 g, 1.9 mmol) and Et<sub>3</sub>SiH (1.58 mL, 10.0 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (15 mL) was added TFA (1 N in DCM, 10 mL, 10 mmol) dropwise at 0 °C. After stirring at the same temperature for another 7 h, saturated NaHCO<sub>3</sub> was added to quench the reaction, and then diluted with ethyl acetate. The solution was washed with saturated NaHCO<sub>3</sub>, brine, and then dried over Na<sub>2</sub>SO<sub>4</sub>. Filtration was followed by concentration under reduced pressure to yield the crude product which was further purified by silica gel chromatography (eluent system: PE/EA = 6 : 1) to provide **15** (1.0 mg, 91%) as a yellow syrup:  $[\alpha]^{28}_{D} = -2.0$  (*c* 0.9, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.04-8.01 (m, 2 H), 7.58-7.54 (m, 1 H), 7.45 (td, *J* = 6.4, 2.0 Hz, 2 H), 7.38-7.28 (m, 5 H), 7.21-7.16 (m, 5 H), 5.24 (dd, *J* = 8.0, 10.0 Hz, 1 H), 4.79 (d, *J* = 8.0 Hz, 1 H), 4.74 (AB, 2 H), 4.64 (AB, 2 H), 3.83 (t, *J* = 9.2 Hz, 1 H), 3.78 (d, *J* =

4.8 Hz, 2 H), 3.67 (t, J = 9.2 Hz, 1 H), 3.56-3.51 (m, 1 H), 2.76 (brs, 1 H), 1.52-1.45 (m, 1 H), 0.72 (q, J = 3.6 Hz, 12 H), 0.14 (s, 3 H), 0.04 (s, 3 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.0, 140.0, 139.7, 134.8, 132.1, 131.6, 130.3, 130.2 (2 C), 129.9, 129.6 (3 C), 97.9, 84.0, 77.0, 76.0, 75.6, 74.2, 72.5, 35.7, 26.5, 21.7, 21.6, 20.2 (2 C), 0.0, -1.6; HRMS (MALDI) Calcd for C<sub>35</sub>H<sub>46</sub>O<sub>7</sub>SiNa [M+Na]<sup>+</sup> 629.2905, found 629.2904.

#### Dimethylthexylsilyl

## 4-*O*-(2,3,4-tri-*O*-benzoyl-α-L-rhamnopyranosyl)-2-*O*-benzoyl-3,6-di-*O*-benzyl-β-D -glucopyranoside (16)

Similar procedure as that used for the synthesis of **9** was adopted to get **16** (0.9 mg, 92%) as a white solid:  $[\alpha]^{28}_{D} = 60.2$  (*c* 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.93-7.91 (m, 2 H), 7.88-7.85 (m, 2 H), 7.75-7.72 (m, 2 H), 7.70-7.67 (m, 2 H), 7.44-7.15 (m, 12 H), 7.11-6.98 (m, 7 H), 6.85-6.81 (m, 3 H), 5.67 (dd, J = 3.6, 10.4 Hz, 1 H), 5.46-5.42 (m, 2 H), 5.25 (dd, J = 7.6, 9.2 Hz, 1 H), 5.16 (d, J = 3.6 Hz, 1 H), 4.70 (d, J = 7.2 Hz, 1 H), 4.66 (AB, 2 H), 4.51 (AB, 2 H), 4.22-4.15 (m, 1 H), 4.08 (t, J = 10.0 Hz, 1 H), 3.77-3.72 (m, 2 H), 3.65 (dd, J = 2.0, 11.6 Hz, 1 H), 3.46 (dt, J = 9.6, 2.4 Hz, 1 H), 1.37-1.30 (m, 1 H), 0.69 (d, J = 6.0 Hz, 3 H), 0.57-0.54 (m, 12 H), 0.00 (s, 3 H), -0.11 (s, 3 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.6 (2 C), 166.9, 140.0, 139.5, 135.4, 135.1, 135.0, 134.8, 131.9, 131.8, 131.5 (3 C), 131.2, 131.0, 130.4, 130.2 (2 C), 130.1, 129.9, 129.6, 129.4, 129.3, 129.2, 99.0, 98.0, 83.0, 77.7, 77.1, 76.4, 76.2, 75.0, 73.6, 73.0, 71.8, 70.0, 69.0, 35.7, 26.5, 21.7, 21.6, 20.3, 20.2, 18.9, 0.0, -1.5; HRMS (MALDI) Calcd for C<sub>62</sub>H<sub>68</sub>O<sub>14</sub>SiNa [M+Na]<sup>+</sup> 1087.4274, found 1087.4265.

## 4-*O*-(2,3,4-Tri-*O*-benzoyl-α-L-rhamnopyranosyl)-2-*O*-benzoyl-3,6-di-*O*-benzyl -β-D-glucopyranosyl *ortho*-cyclopropylethynylbenzote (17)

Similar procedure as that used for the synthesis of **8** was applied to get disaccharide donor **17** (368 mg, 80%) as a white solid. For  $\alpha$ -isomer:  $[\alpha]^{28}{}_{D} = -62.8$  (*c* 0.9, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09-8.07 (m, 2 H), 8.00 (dd, J = 1.6, 8.0 Hz, 1 H), 7.92-7.85 (m, 6 H), 7.63-7.13 (m, 21 H), 7.03-6.97 (m, 3 H), 6.78 (d, J = 3.6 Hz, 1 H), 5.76 (dd, J = 3.6, 10.4 Hz, 1 H), 5.64-5.56 (m, 3 H), 5.34 (d, J = 1.6 Hz, 1 H), 4.97 (AB, 2 H), 4.65 (AB, 2 H), 4.46-4.35 (m, 4 H), 4.00 (dd, J = 2.0, 12.4 Hz, 1 H), 3.85

(d, J = 11.6 Hz, 1 H), 1.61 (m, 1 H), 1.04-0.99 (m, 2 H), 0.98-0.86 (m, 2 H), 0.86 (d, J = 6.4 Hz, 3 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.9, 164.8 (2 C), 164.4, 163.5, 136.8, 136.7, 134.1, 132.7, 132.4 (2 C), 132.3, 131.3, 130.1, 129.6, 129.0, 128.8, 128.7, 128.5, 128.4 (2 C), 128.2, 127.7, 127.5 (2 C), 127.4, 127.3, 126.9, 126.7 (2 C), 126.4, 124.1, 99.3, 96.2, 90.0, 77.3, 74.5, 74.1, 72.9 (2 C), 72.4, 72.1, 70.8, 70.2, 69.1, 66.8, 66.3, 16.1, 8.4 (2 C), 0.0; HRMS (MALDI) Calcd for C<sub>66</sub>H<sub>58</sub>O<sub>15</sub>Na [M+Na]<sup>+</sup> 1113.3668, found 1113.3665.

## 7,4'-Di-*O*-hexanoyl-5-*O*-(4"'-*O*-(2"',3"',4"'-tri-*O*-benzoyl-α-L-rhamnopyranosyl)-2"'-*O*-benzoyl-3",6"-di-*O*-benzyl-β-D-glucopyranosyl) apigenin (18)

Similar procedure as that used for the synthesis of 9 was adopted to get 18 (42 mg, 48%) as a white solid:  $[\alpha]_{D}^{28} = 8.9$  (c 0.8, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.13 (d, J = 7.2 Hz, 2 H), 8.09-8.06 (m, 2 H), 7.94 (dd, J = 1.2, 8.0 Hz, 2 H), 7.87 (dd, J = 1.2, 8.0 Hz, 2 H), 7.83-7.80 (m, 2 H), 7.63-7.59 (m, 1 H), 7.55-7.37 (m, 9 H), 7.33-7.05 (m, 15 H), 7.02 (d, J = 2.4 Hz, 1 H), 6.51 (s, 1 H), 5.94 (t, J = 6.8 Hz, 1 H), 5.82 (dd, J = 3.2, 10.0 Hz, 1 H), 5.64-5.58 (m, 2 H), 5.46 (d, J = 6.4 Hz, 1 H), 5.32 (d, *J* = 1.6 Hz, 1 H), 4.98 (AB, 2 H), 4.65 (AB, 2 H), 4.48 (t, *J* = 8.8 Hz, 1 H), 4.38-4.29 (m, 1 H), 4.07 (t, J = 8.0 Hz, 1 H), 3.95 (dd, J = 2.0, 12.0 Hz, 1 H), 3.90-3.86 (m, 2 H), 2.60 (t, J = 7.2 Hz, 2 H), 2.51 (dd, J = 6.8, 8.0 Hz, 2 H), 1.79-1.69 (m, 4 H), 1.41-1.35 (m, 8 H), 0.96-0.91 (m, 6 H), 0.90 (d, J = 6.4 Hz, 3 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 176.0, 171.9, 171.2, 165.7 (2 C), 165.2, 160.3, 157.9, 156.9, 154.0, 163.1, 138.0, 137.5, 133.5, 133.3, 133.2, 133.0, 130.1, 130.0, 129.9, 129.7 (2 C), 129.4, 129.2, 128.8, 128.6, 128.5, 128.4 (2 C), 128.3 (2 C), 128.2 (2 C), 128.0, 127.5, 127.4 (2 C), 127.3, 122.3, 114.2, 109.8, 108.9, 106.3, 100.1, 97.3, 81.1, 75.6, 74.3, 74.2, 73.2, 73.1, 71.7, 71.1, 70.0, 68.3, 67.3, 34.4, 34.3, 31.3, 31.2, 24.6, 24.4, 22.3 (2 C), 17.1, 14.0; HRMS (MALDI) Calcd for  $C_{81}H_{78}O_{20}Na [M+Na]^+$  1393.4984, found 1393.4965.

## Dimethylthexylsilyl 4-*O*-(2,3,4-tri-*O*-benzoyl-α-L-rhamnopyranosyl)-2-*O*-benzoyl -β-D-glucopyranoside (19)

To a solution of **16** (300 mg, 0.3 mmol) in a mixed solvent of  $CH_2Cl_2$  and MeOH (V/V = 1 : 1, 8 mL) was added was added Pd/C (150 mg) at room temperature. The reaction vessel was evacuated and then refiled with  $H_2$ , and this process was repeated

for three times, then the black suspension was stirred at room temperature for 16 h. Filtration and the filtrate was concentrated under reduced pressure to yield the crude product which was further purified by silica gel chromatography (PE/EA = 4 : 1) to provide **19** (224 mg, 90%) as a white solid:  $[\alpha]^{28}_{D} = 58.4$  (*c* 0.85, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.94-7.90 (m, 4 H), 7.80-7.77 (m, 2 H), 7.68-7.66 (m, 2 H), 7.44-7.22 (m, 6 H), 7.20-7.16 (m, 2 H), 7.11-7.07 (m, 2 H), 5.64 (dd, *J* = 3.6, 10.4 Hz, 1 H), 5.55 (t, *J* = 10.0 Hz, 1 H), 5.47 (dd, *J* = 2.0, 3.6 Hz, 1 H), 5.09 (d, *J* = 2.0 Hz, 1 H), 4.95 (dd, *J* = 7.6, 8.8 Hz, 1 H), 4.78 (d, *J* = 7.6 Hz, 1 H), 4.42-4.35 (m, 1 H), 3.87 (dd, *J* = 2.4, 12.4 Hz, 1 H), 3.82-3.73 (m, 3 H), 3.46-3.42 (m, 1 H), 1.37-1.30 (m, 1 H), 1.17 (d, *J* = 6.4 Hz, 3 H), 0.57-0.54 (m, 12 H), 0.00 (s, 3 H), -0.06 (s, 3 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.9, 167.5 (3 C), 135.4, 135.1, 135.0 (2 C), 131.8, 131.7, 131.6, 131.5 (2 C), 131.0 (2 C), 130.9, 130.4, 130.2, 130.1, 100.5, 97.5, 81.2, 78.2, 76.8, 76.1, 73.2, 72.7, 71.6, 69.6, 63.3, 35.6, 26.5, 21.7, 21.6, 20.2 (2 C), 19.3, 0.0, -1.5; HRMS (MALDI) Calcd for C<sub>48</sub>H<sub>56</sub>O<sub>14</sub>SiNa [M+Na]<sup>+</sup> 907.3332, found 907.3329. **Dimethylthexylsilyl** 

#### 4-O-(2,3,4-tri-O-benzoyl-α-L-rhamnopyranosyl)-2,3,6-tri-O-benzoyl

#### -β-D-glucopyranoside (20)

To a solution of **19** (200 mg, 0.2 mmol) and DMAP (24 mg, 0.2 mmol) in dry pyridine (3 mL) was added BzCl (0.1 mL, 0.9 mmol) dropwise at 0 °C. After the addition was completed, the ice-bath was removed and the reaction mixture was stirred at 60 °C for another 6 h. Ethyl acetate was added to dilute the reaction and the solution was washed with water, 1 N HCl, saturated NaHCO<sub>3</sub>, brine successively, and then dried over Na<sub>2</sub>SO<sub>4</sub>. Filtration and concentration yield a residue which was further purified by silica gel chromatography (eluent system: PE/EA = 5 : 1) to give **20** (227 mg, 92%) as a white solid:  $[\alpha]^{28}_{D} = 49.3$  (*c* 0.96, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.12-8.10 (m, 2 H), 8.00-7.82 (m, 10 H), 7.58-7.34 (m, 14 H), 7.30 (q, *J* = 8.4 Hz, 4 H), 5.87 (t, *J* = 9.6 Hz, 1 H), 5.72 (dd, *J* = 3.2, 10.4 Hz, 1 H), 5.58 (q, *J* = 2.0 Hz, 1 H), 5.55 (t, *J* = 10.0 Hz, 1 H), 5.41 (dd, *J* = 7.6, 10.0 Hz, 1 H), 5.24 (d, *J* = 1.6 Hz, 1 H), 5.06-5.02 (m, 2 H), 4.70 (dd, *J* = 4.8, 12.4 Hz, 1 H), 4.31 (t, 9.2 Hz, 1 H), 4.09-3.98 (m, 2 H), 1.50-1.43 (m, 1 H), 0.77 (d, *J* = 5.4 Hz, 3 H), 0.70-0.68 (m, 12 H), 0.12 (s, 3

H), 0.06 (s, 3 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  168.0, 167.6 (2 C), 167.5, 167.2, 135.4, 135.3, 135.2 (2 C), 135.0, 132.0, 131.9, 131.7 (2 C), 131.6, 131.4, 131.2 (3 C), 130.5, 130.4 (2 C), 130.3 (2 C), 100.8, 97.9, 76.2, 75.9, 75.6, 73.3, 73.1, 71.5, 69.8, 64.7, 35.9, 26.7, 21.8 (2 C), 20.4, 20.3, 19.1, 0.0, -1.5; HRMS (MALDI) Calcd for C<sub>62</sub>H<sub>64</sub>O<sub>16</sub>SiNa [M+Na]<sup>+</sup> 1115.3865, found 1115.3857.

## 4-*O*-(2,3,4-Tri-*O*-benzoyl-α-L-rhamnopyranosyl)-2,3,4-tri-*O*-benzoyl-β-D-glucopy ranosyl *ortho*-cyclopropylethynylbenzote (21)

Similar procedure as that used for the synthesis of **8** was applied to get disaccharide donor **21** (102 mg, 80%) as a white solid. For  $\alpha$ -isomer:  $[\alpha]^{28}{}_{\rm D} = 84$  (*c* 0.8, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09-8.07 (m, 2 H), 8.03-8.00 (m, 2 H), 7.92-7.82 (m, 9 H), 7.57-7.20 (m, 21 H), 6.32 (d, *J* = 8.0 Hz, 1 H), 6.01 (t, *J* = 9.2 Hz, 1 H), 5.75-5.70 (m, 2 H), 5.59-5.56 (m, 1 H), 5.55 (t, 10.0 Hz, 1 H), 5.28 (d, *J* = 1.6 Hz, 1 H), 5.08 (dd, *J* = 2.0, 12.8 Hz, 1 H), 4.74 (dd, *J* = 3.6, 12.8 Hz, 1 H), 4.52 (t, *J* = 9.6 Hz, 1 H), 4.32-4.28 (m, 1 H), 4.06-4.02 (m, 1 H), 1.53-1.47 (m, 1 H), 0.88-0.86 (m, 4 H), 0.81 (d, *J* = 6.4 Hz, 3 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.2, 165.1, 164.9, 164.7, 164.6, 162.6, 133.6, 132.7, 132.6, 132.4, 132.3, 131.7, 130.1, 129.2, 129.1, 129.0 (2 C), 128.7, 128.5 (2 C), 128.4, 128.1, 127.7 (2 C), 127.6 (2 C), 126.3, 125.1, 99.9, 98.3, 91.6, 75.7, 73.6, 73.5, 73.2, 70.7, 70.6, 70.4, 68.7, 67.2, 61.7, 16.4, 8.3 (2 C), 0.0; HRMS (MALDI) Calcd for C<sub>66</sub>H<sub>54</sub>O<sub>17</sub>Na [M+Na]<sup>+</sup> 1141.3253, found 1141.3256.

## 7,4'-Di-*O*-hexanoyl-5-*O*-(4"-*O*-(2"',3"',4"'-tri-*O*-benzoyl-α-L-rhamnopyranosyl)-2",3",6"-tri-*O*-benzoyl-β-D-glucopyranosyl) apigenin (22)

Similar procedure as that used for the synthesis of **9** was adopted to provide **22** (43 mg, 46%) as a white solid:  $[\alpha]^{28}{}_{\rm D} = 32.5$  (*c* 0.97, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.24 (d, *J* = 7.2 Hz, 2 H), 8.07 (d, *J* = 7.2 Hz, 2 H), 7.95 (d, *J* = 7.6 Hz, 4 H), 7.88-7.80 (m, 6 H), 7.56-7.45 (m, 5 H), 7.44-7.35 (m, 10 H), 7.32 (t, *J* = 7.6 Hz, 3 H), 7.24 (d, *J* = 7.2 Hz, 2 H), 6.96 (d, *J* = 2.0 Hz, 1 H), 6.82 (d, *J* = 2.0 Hz, 1 H), 6.48 (s, 1 H), 5.93 (dd, *J* = 6.4, 8.8 Hz, 1 H), 5.82 (t, *J* = 5.6 Hz, 1 H), 5.75 (dd, *J* = 3.2, 10.0 Hz, 1 H), 5.70 (d, *J* = 5.6 Hz, 1 H), 5.62 (q, *J* = 1.6 Hz, 1 H), 5.59 (t, *J* = 10.0 Hz, 1 H), 5.34 (d, *J* = 1.2 Hz, 1 H), 5.20 (dd, *J* = 2.0, 12.8 Hz, 1 H), 4.91 (t, *J* = 9.2 Hz, 1 H), 4.62 (dd, *J* = 3.6, 12.8 Hz, 1 H), 4.36-4.33 (m, 1 H), 4.15-4.08 (m, 1 H), 2.61 (t, *J* = 5.6 Hz, 1 H), 5.40 (dd, *J* = 3.6, 12.8 Hz, 1 H), 5.40 (dd, *J* = 1.2 Hz, 1 H), 5.40 (dd, *J* = 2.0, 12.8 Hz, 1 H), 4.15-4.08 (m, 1 H), 2.61 (t, *J* = 5.6 Hz, 1 H), 5.40 (dd, *J* = 3.6, 12.8 Hz, 1 H), 5.40 (dd, *J* = 3.6, 12.8 Hz, 1 H), 5.40 (dd, *J* = 3.6, 12.8 Hz, 1 H), 5.40 (dd, *J* = 3.6, 12.8 Hz, 1 H), 4.45-4.08 (m, 1 H), 2.61 (t, *J* = 5.6 Hz, 1 H), 5.40 (dd, *J* = 3.6, 12.8 Hz, 1 H), 4.45-4.08 (m, 1 H), 2.61 (t, *J* = 5.6 Hz, 1 H), 5.40 (dd, *J* = 3.6, 12.8 Hz, 1 H), 4.45-4.08 (m, 1 H), 2.61 (t, *J* = 5.6 Hz, 1 H), 5.40 (dd, *J* = 3.6, 12.8 Hz, 1 H), 4.45-4.08 (m, 1 H), 5.40 (dd, *J* = 3.6, 12.8 Hz, 1 H), 4.45-4.08 (m, 1 H), 2.61 (t, *J* = 5.6 Hz, 1 H), 5.40 (dd, *J* = 3.6, 12.8 Hz, 1 H), 4.45-4.08 (m, 1 H), 5.40 (dd, J = 3.6, 12.8 Hz, 1 H), 5.40 (dd, J = 3.6, 12.8 Hz, 1 H), 5.40 (dd, J = 3.6, 12.8 Hz, 1 H), 4.45-4.40 (m, 1 H), 4.45 (m, 1 H), 5.40 (m

7.6 Hz, 2 H), 2.56 (t, J = 7.2 Hz, 2 H), 1.79-1.74 (m, 4 H), 1.41-1.38 (m, 8 H), 0.97-0.92 (m, 6 H), 0.88 (d, J = 6.0 Hz, 3 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.9, 171.9, 171.2, 166.1, 165.7, 165.6, 165.5, 165.1, 160.0, 157.8, 156.2, 154.0, 153.1, 133.4, 133.3, 133.2, 132.7, 130.3, 130.0, 129.9, 129.8, 129.7, 129.5 (2 C), 129.4, 129.2 (2 C), 128.8, 128.5, 128.4 (2 C), 128.3 (2 C), 128.1, 127.3, 122.3, 113.4, 108.9, 106.6, 105.7, 98.9, 97.6, 75.7, 74.3, 73.8, 72.7, 71.4, 71.0, 69.6, 67.8, 62.1, 34.4, 31.3, 31.2, 24.6, 24.4, 22.3, 17.2, 14.0 (2 C); HRMS (MALDI) Calcd for C<sub>81</sub>H<sub>75</sub>O<sub>22</sub> [M+H]<sup>+</sup> 1399.4750, found 1399.4737.

#### Synthesis of authentic camellianin B via decetylation of camellianin A

To a solution of commercially available camellianin A (10 mg, 0.016 mmol) in methol (2 mL) was added freshly prepared NaOMe solution in MeOH (50 µL) at 0 °C. Then the reaction temperature was gradually raised to rt, and the stirring was continued for another 1 h at room temperature. Acid resin (Amberlite IRC-76) was added to quench the reaction and adjust the pH value to 4. Filtration and concentration under reduced pressure to yield a residue which was further purified by  $C_{18}$  RP chromatography (eluent system: MeOH/H<sub>2</sub>O = 1 : 2) to afford the proposed camellianin A (8.5 mg, 91%) as a white solid:  $[\alpha]^{28}_{D}$  = -24.2 (*c* 0.36, MeOH); <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD)  $\delta$  7.82 (d, *J* = 8.8 Hz, 2 H), 6.93 (d, *J* = 8.8 Hz, 2 H), 6.62 (d, *J* = 2.4 Hz, 1 H), 6.60 (d, *J* = 2. 4 Hz, 1 H), 6.51 (s, 1 H), 5.38 (d, *J* = 1.6 Hz, 1 H), 5.30 (d, *J* = 7.2 Hz, 1 H), 3.96-3.83 (m, 4 H), 3.70-3.65 (m, 2 H), 3.63 (dd, *J* = 7.2, 8.0 Hz, 1 H), 3.58-3.54 (m, 2 H), 1.13 (d, *J* = 6.4 Hz, 3 H); <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>OD)  $\delta$  178.1, 163.2, 162.1, 160.9, 159.5, 158.1, 127.7, 121.9, 115.5, 107.4, 105.2, 100.1, 99.3, 99.0, 96.3, 77.6, 77.2, 76.6, 72.9, 70.9, 70.7, 70.0, 68.7, 61.2, 166.

# Acetylation of authentic camellianin B which was obtained by deacetylation of camellianin A

To a solution of camellianin B derived from authentic camellianin A (8.5 mg, 0.015 mmol) in dry pyridine (1 mL) was added DMAP (2 mg) and Ac<sub>2</sub>O (1 mL) dropwise at 0  $^{\circ}$ C. After the addition was completed, the ice-bath was removed and the reaction mixture was stirred at 35  $^{\circ}$ C for another 37 h. General procedure was adopted to get the crude product which was further purified by silica gel chromatography (eluent

system: PE/EA = 2 : 3) to afford the proposed peracetylated camellianin B (13 mg, 98%) as a white powder:  $[\alpha]^{28}{}_{\rm D}$  = -60.0 (*c* 0.65, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 (d, *J* = 8.4 Hz, 2 H), 7.27 (d, *J* = 8.4 Hz, 2 H), 7.14 (d, *J* = 2.0 Hz, 1 H), 6.75 (d, *J* = 2.0 Hz, 1 H), 6.62 (s, 1 H), 5.44 (d, *J* = 2.0 Hz, 1 H), 5.36 (t, *J* = 8.8 Hz, 1 H), 5.28 (d, *J* = 6.4 Hz, 1 H), 5.22-5.15 (m, 3 H), 5.02 (t, *J* = 9.6 Hz, 1 H), 4.32-4.20 (m, 2 H), 4.16-4.13 (m, 1 H), 3.98-3.88 (m, 2 H), 2.37 (s, 3 H), 2.35 (s, 3 H), 2.17 (s, 6 H), 2.06 (s, 3 H), 2.05 (s, 3 H), 1.97 (s, 6 H), 0.96 (d, *J* = 6.0 Hz, 3 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  176.0, 170.6, 170.5, 170.2, 170.0, 169.8, 169.6, 169.0, 168.2, 160.4, 158.1, 156.6, 153.9, 153.1, 128.7, 127.4, 122.4, 113.7, 109.0, 106.5, 105.8, 99.7, 97.5, 73.2, 72.0, 70.9, 69.6, 68.9, 68.2, 67.1, 62.1, 21.2 (2 C), 21.0, 20.8, 20.7 (2 C), 20.6, 17.1.

#### Comparison of reported data of camellianin B

| Number            | Data reported by Cheng et al. <sup>S3</sup> | Data reported by Deng et al. <sup>S4</sup>       |  |  |
|-------------------|---------------------------------------------|--------------------------------------------------|--|--|
|                   | (DMSO-d <sub>6</sub> )                      | (DMSO-d <sub>6</sub> 400 MHz)                    |  |  |
| H-3               | 6.75 (s, 1 H)                               | 6.52 (s, 1 H)                                    |  |  |
| H-6 and 8         | 6.83 (d, <i>J</i> = 2.5 Hz, 2 H)            | For <b>H-6</b> : 6.50 (s, 1 H); For <b>H-8</b> : |  |  |
|                   |                                             | 6.60 (s, 1 H)                                    |  |  |
| H-3' and 5'       | 7.20 (d, <i>J</i> = 8.0 Hz, 2 H)            | 6.91 (d, <i>J</i> = 8.7 Hz, 2 H)                 |  |  |
| H-2' and 6'       | 8.16 (d, <i>J</i> = 8.0 Hz, 2 H)            | 7.86 (d, <i>J</i> = 8.7 Hz, 2 H)                 |  |  |
| H-4'              | 11.72 (s, 1 H)                              | 10.21 (s, 1 H)                                   |  |  |
| H-7               | 12.32 (s, 1 H)                              | 10.76 (s, 1 H)                                   |  |  |
| Н-6"              | 1.17 (d, <i>J</i> = 6.0 Hz, 3 H)            | 1.17 (d, <i>J</i> = 6.0 Hz, 3 H)                 |  |  |
| H-2", 3", 4", 5", | 4.96-3.10 (m, 10 H)                         | 4.96-3.10 (m, 10 H)                              |  |  |
| 6", 2", 3", 4",   |                                             |                                                  |  |  |
| and 5'''          |                                             |                                                  |  |  |
| H-1"              | 5.50 (d, J = 6.0 Hz, 1 H)                   | 5.24 (d, <i>J</i> = 5.9 Hz, 1 H)                 |  |  |
| H-1""             | 5.42 (s, 1 H)                               | 5.19 (s, 1 H)                                    |  |  |

| Table S1. <sup>1</sup> | H NMR c | omparison o | f reported | data of | camellianin B |
|------------------------|---------|-------------|------------|---------|---------------|
|------------------------|---------|-------------|------------|---------|---------------|

## <sup>1</sup>H NMR and <sup>13</sup>C NMR comparison of camellianin B between synthetic sample and authentic sample derived from camellianin A

| Number <sup>a</sup> | Sample derived from camellianin A      | Synthetic sample                         |  |
|---------------------|----------------------------------------|------------------------------------------|--|
|                     | (CD <sub>3</sub> OD, 400 MHz)          | (CD <sub>3</sub> OD, 400 MHz)            |  |
| 1                   | 7.82 (d, <i>J</i> = 8.8 Hz, 2 H)       | 7.84 (d, <i>J</i> = 8.8 Hz, 2 H)         |  |
| 2                   | 6.93 (d, <i>J</i> = 8.8 Hz, 2 H)       | 6.93 (d, <i>J</i> = 8.8 Hz, 2 H)         |  |
| 3                   | 6.62 (d, <i>J</i> = 2.4 Hz, 1 H)       | 6.78 (d, <i>J</i> = 2.4 Hz, 1 H)         |  |
| 4                   | 6.60 (d, <i>J</i> = 2.4 Hz, 1 H)       | 6.71 (d, <i>J</i> = 2.4 Hz, 1 H)         |  |
| 5                   | 6.51 (s, 1 H)                          | 6.58 (s, 1 H)                            |  |
| 6                   | 5.38 (d, <i>J</i> = 1.6 Hz, 1 H)       | 4.90 (d, <i>J</i> = 1.6 Hz, 1 H)         |  |
| 7                   | 5.30 (d, <i>J</i> = 7.2 Hz, 1 H)       | 4.89 (d, <i>J</i> = 7.2 Hz, 1 H)         |  |
| 8                   | 3.96-3.83 (m, 4 H)                     | 4.04-4.00 (m, 1 H), 3.93 (dd, <i>J</i> = |  |
|                     |                                        | 2.0, 12.4 Hz, 1 H), 3.87 (dd, <i>J</i> = |  |
|                     |                                        | 1.6, 3.2 Hz, 1 H)                        |  |
| 9                   | 3.70-3.65 (m, 2 H)                     | 3.76-3.61 (m, 5 H)                       |  |
| 10                  | 3.63 (dd, <i>J</i> = 7.2, 8.0 Hz, 1 H) | 3.58-3.53 (m, 1 H)                       |  |
| 11                  | 3.58-3.54 (m, 2 H)                     | 3.44 (t, J = 9.6  Hz, 1  H)              |  |
| 12                  | 1.13 (d, <i>J</i> = 6.4 Hz, 3 H)       | 1.29 (d, <i>J</i> = 6.0 Hz, 3 H)         |  |

**Table S2**. <sup>1</sup>H NMR comparison of reported data for camellianin B

<sup>a</sup> Sequence number

#### **References:**

[S1] Nitz, M.; Bundle, D. R. J. Org. Chem. 2001, 66, 8411-8423.

[S1] (a) Boutet, J.; Mulard, L. A. Eur. J. Org. Chem. 2008, 5526-5542. (b) Barroso, S.;

Geerdink, D.; Horst, B. t.; Casas-Arce, E.; Minnaard, A. J. Eur. J. Org. Chem. 2013, 4642-4654.

[S3] Cheng, G.; Jin, J.; Wen, Y. Acta Pharmaceutica. Sinica 1987, 22, 203-207.

[S4] Li, W.; Dai, R.-J.; Yu, Y.-H.; Li, L.; Wu, C.-M.; Luan, W.-W.; Meng W.-W.;

Zhuang, X.-S.; Deng, Y.-L. Biol. Pharm. Bull. 2007, 30, 1123-1129.





























































































































