Supporting Information

Xiao Zhou, Xianhong Xu, Zhenyan Shi, Kun Liu, Hua Gao and Wenjun Li*
School of Pharmacy, Qingdao University, Qingdao, 266021, China.

A: General Information and Starting Materials 2
B: General Procedure for Cascade Reactions 2
C: Characterization Data 3
D: NMR Analysis 8
E: Reference 32

A: General Information and Starting Materials

General Information. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra and carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded on a Bruker ACF300 spectrometer (500 MHz and 125 MHz). Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent $\left(\mathrm{CDCl}_{3}: \delta 7.26\right)$. Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent $\left(\mathrm{CDCl}_{3}: \delta 77.16\right)$. Data are represented as follows: chemical shift, integration, multiplicity ($\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, t $=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), coupling constants in Hertz (Hz). All high resolution mass spectra were obtained on a Finnigan/MAT 95XL-T mass spectrometer. For thin layer chromatography (TLC), Merck pre-coated TLC plates (Merck 60 F254) were used, and compounds were visualized with a UV light at 254 nm . Flash chromatography separations were performed on Merck 60 ($0.040-0.063 \mathrm{~mm}$) mesh silica gel.
Starting Materials. All solvents, inorganic reagents and β-functionalized ketones were from commercial sources and used without purification unless otherwise noted. The nitrile oxides were prepared following the literature procedures. ${ }^{1}$

B: General Procedure for Cascade Reactions

To a solution of $\mathrm{MeOH}(0.3 \mathrm{~mL})$ were added β-functionalized ketones $\mathbf{1}$ (0.10 $\mathrm{mmol})$, nitrile oxides $2(0.30 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.30 \mathrm{mmol})$ and catalyst VIII $(0.02 \mathrm{mmol})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 48 h and then the solvent was removed under vacuum. The residue was purified by silica gel chromatography to yield the desired product.

C: Characterization Data

5-Methyl-N,3-diphenylisoxazole-4-carboxamide (3aa)

Yellow solid, 76% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ 7.66-7.56 (m, 5H), 7.27-7.24 (m, 1H), 7.20-7.18 (m, 2H), 7.09-7.06 (m, $2 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 175.3,159.8$, 159.3, 137.2, 130.8, 129.4, 129.3, 129.0, 128.0, 124.6, 119.6, 111.2, 13.2. HRMS (ESI): exact mass calculated for $\mathrm{M}^{+}\left(\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ requires m / z 279.1134, found $\mathrm{m} / \mathrm{z} 279.1137$.

3-(4-Fluorophenyl)-5-methyl- N -phenylisoxazole-4-carboxamide (3ab)

Yellow solid, 80% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ 7.68-7.65 (m, 2H), 7.30-7.22 (m, 5H), 7.12-7.09 (m, 2H), $2.75(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 174.9,164.1(\mathrm{~d}, J=$ 1000.0 Hz), $159.3,159.0,137.0,131.2(\mathrm{~d}, ~ J=35.0 \mathrm{~Hz}), 129.1,124.9$, 123.9 (d, $J=15.0 \mathrm{~Hz}$), 119.7, 116.6 (d, $J=85.0 \mathrm{~Hz}$), 111.4, 13.0. HRMS (ESI): exact mass calculated for $\mathrm{M}^{+}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{FN}_{2} \mathrm{O}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 297.1034$, found $\mathrm{m} / \mathrm{z} 297.1039$.

3-(4-Bromophenyl)-5-methyl- N -phenylisoxazole-4-carboxamide (3ac)

White solid, 85% yield. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta(\mathrm{ppm}) 7.68$ (d, $J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.29(\mathrm{~m}, 3 \mathrm{H})$, 7.13-7.05 (m, 2H), $2.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ (ppm) 174.9, 159.2, 158.9, 136.9, 132.6, 130.6, 129.1, 126.8, 125.4, 124.9, 119.8, 111.3, 13.0. HRMS (ESI): exact mass calculated for $\mathrm{M}^{+}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{O}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 357.0239$, found $\mathrm{m} / \mathrm{z} 357.0242$.

5-Methyl- N -phenyl-3-(4-(trifluoromethyl)phenyl)isoxazole-4-carboxamide (3ad)

5-Methyl- N-phenyl-3-(p-tolyl)isoxazole-4-carboxamide (3ae)

Yellow solid, 93% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ $7.53(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}$, $4 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 175.1,159.8,159.5,141.1,137.2,130.1,129.1,129.0$, 124.9, 124.6, 119.7, 111.1, 21.5, 13.1. HRMS (ESI): exact mass calculated for M^{+} $\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 293.1290$, found $\mathrm{m} / \mathrm{z} 293.1294$.

3-(3-Fluorophenyl)-5-methyl- N -phenylisoxazole-4-carboxamide (3af)

Yellow solid, 95% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ 7.52-7.50 (m, 1H), 7.45-7.40 (m, 2H), 7.27-7.25 (m, 4H), 7.16-7.09 $(\mathrm{m}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 174.9$, $162.8(\mathrm{~d}, J=1000.0 \mathrm{~Hz}), 159.2,158.8,137.0,131.1(\mathrm{~d}, J=30.0$ $\mathrm{Hz}), 129.9$ (d, $J=30.0 \mathrm{~Hz}$), 129.1, 124.8 (d, $J=40.0 \mathrm{~Hz}$), 119.8, $117.8(\mathrm{~d}, J=80.0 \mathrm{~Hz}), 115.3(\mathrm{~d}, J=90.0 \mathrm{~Hz}), 111.4,110.0$, 13.0. HRMS (ESI): exact mass calculated for $\mathrm{M}^{+}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{FN}_{2} \mathrm{O}_{2}\right)$ requires m / z 297.1034, found $\mathrm{m} / \mathrm{z} 297.1038$.

3-(3-Chlorophenyl)-5-methyl- N -phenylisoxazole-4-carboxamide (3ag)

Yellow solid, 54% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ $7.71(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}$, $3 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}): \delta(\mathrm{ppm}) 175.2,159.1,158.7,136.9,135.5,130.9,130.6$, 129.7, 129.2, 129.1, 127.2, 124.9, 119.9, 111.3, 13.1. HRMS (ESI): exact mass calculated for $\mathrm{M}^{+}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}_{2}\right)$ requires m / z 313.0744, found $\mathrm{m} / \mathrm{z} 313.0748$.

5-Methyl- N -phenyl-3-(3-(trifluoromethyl)phenyl)isoxazole-4-carboxamide (3ah)

White solid, 89% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ $7.99(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}$ $3 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}): ~ \delta(\mathrm{ppm}) 174.6,159.2,158.8,136.8,132.3,129.8,129.1$, $128.9,127.4,125.9,125.1,124.6,122.4,119.9,111.6,12.9$. HRMS (ESI): exact mass calculated for $\mathrm{M}^{+}\left(\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 347.1002$, found $\mathrm{m} / \mathrm{z} 347.1008$.

3-(3-Methoxyphenyl)-5-methyl- N -phenylisoxazole-4-carboxamide (3ai)

White solid, 91% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ 7.49-7.46 (m, 1H), 7.28-7.21 (m, 5H), 7.17-7.07 (m, 3H), 3.83 $(\mathrm{s}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ 175.4, 160.2, 159.7, 159.3, 137.2, 130.6, 129.2, 129.0, 124.6, $121.3,119.6,117.1,114.1,111.1,55.5,13.2$. HRMS (ESI): exact mass calculated for $\mathrm{M}^{+}\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$ requires m / z

5-Methyl- N-phenyl-3-(m-tolyl)isoxazole-4-carboxamide (3aj)

Yellow solid, 88% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ 7.46-7.41 (m, 4H), 7.27-7.24 (m, 1H), 7.20-7.17 (m, 3H), 7.09-7.06 (m, 1H), $2.80(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}): \delta(\mathrm{ppm}) 175.4,159.9,159.3,139.5,137.2,131.6$, $129.9,129.3,129.0,127.9,126.3,124.9,119.5,111.1,21.3,13.2$. HRMS (ESI): exact mass calculated for $\mathrm{M}^{+}\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ requires m / z 293.1290, found $\mathrm{m} / \mathrm{z} 293.1295$.

3-(2-Bromophenyl)-5-methyl- N -phenylisoxazole-4-carboxamide (3ak)

Yellow solid, 76% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 7.82$ (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.22(\mathrm{~m}$, $2 \mathrm{H}), 7.14-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{br}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 175.4,159.1,158.9,137.2$, 133.7, 132.4, 131.9, 129.7, 129.0, 128.3, 124.6, 123.8, 119.7, 111.8, 13.3. HRMS (ESI): exact mass calculated for $\mathrm{M}^{+}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{O}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 357.0239$, found $\mathrm{m} / \mathrm{z} 357.0243$.

5-Methyl-3-(naphthalen-2-yl)-N-phenylisoxazole-4-carboxamide (3al)

Yellow solid, 65% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ $8.20(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.91(\mathrm{~m}, 2 \mathrm{H})$, 7.72-7.70 (m, 1H), 7.64-7.59 (m, 2H), 7.21-7.13 (m, 4H), 7.06-7.03 (m, 1H), $2.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ (ppm) 175.4, 159.8, 159.4, 137.1, 134.0, 133.0, 129.4, 129.3, 129.0, 128.5, 128.0, 127.8, 127.3, 125.6, 125.1, 124.7, 119.7, 111.3, 13.2. HRMS (ESI): exact mass calculated for $\mathrm{M}^{+}\left(\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ requires m / z 329.1285, found $\mathrm{m} / \mathrm{z} 329.1285$.

3-Cyclohexyl-5-methyl- N-phenylisoxazole-4-carboxamide (3am)

Yellow solid, 93% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ 7.54-7.52 (m, 2H), 7.38-7.35 (m, 3H), 7.18-7.16 (m, 1H), 2.97-2.92 (m, $1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.71(\mathrm{~m}$, $1 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.25(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}): \delta(\mathrm{ppm}) 169.9,165.9,160.6,137.3,129.2,125.0,120.2,112.2$, 36.2, 31.5, 26.2, 25.8, 12.7. HRMS (ESI): exact mass calculated for $\mathrm{M}^{+}\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 285.1598$, found $\mathrm{m} / \mathrm{z} 285.1601$.

5-Methyl- N -phenyl-3-propylisoxazole-4-carboxamide (3an)

White solid, 89% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ 7.53-7.52 (m, 2H), $7.42(\mathrm{br}, 1 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H})$, $2.81(\mathrm{t}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=$ $15.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 170.9,161.5$, 160.3, 137.2, 129.2, 125.0, 120.2, 112.4, 27.9, 21.1, 13.9, 12.8. HRMS (ESI): exact mass calculated for $\mathrm{M}^{+}\left(\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 245.1285$, found $\mathrm{m} / \mathrm{z} 245.1289$.

N-(4-chlorophenyl)-5-methyl-3-phenylisoxazole-4-carboxamide (3ba)

Yellow solid, 73% yield. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta(\mathrm{ppm})$ 7.65-7.57 (m, 5H), 7.22-7.20 (m, 2H), 7.14-7.12 (m, 2H), 7.05 (br, 1 H), $2.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ 175.6, 159.7, 159.2, 135.7, 130.9, 129.6, 129.5, 129.3, 129.0, 127.9, 120.7, 110.9, 13.2. HRMS (ESI): exact mass calculated for $\mathrm{M}^{+}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 313.0744$, found m / z 313.0747.

N-(4-methoxyphenyl)-5-methyl-3-phenylisoxazole-4-carboxamide (3ca)

Yellow solid, 76% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ (ppm) 7.66-7.65 (m, 2H), 7.59-7.55 (m, 3H), 7.13 (d, $J=$ $10.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{br}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ 175.0, 159.8, 159.2, 156.6, 130.8, 130.2, 129.4, 129.2, 128.0, 121.4, 114.2, 111.2, 55.5, 13.1. HRMS (ESI): exact mass calculated for $\mathrm{M}^{+}\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 309.1239$, found $\mathrm{m} / \mathrm{z} 309.1244$.

5-Methyl-3-phenyl- N -(p-tolyl)isoxazole-4-carboxamide (3da)

Yellow solid, 90% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ $7.65-7.56(\mathrm{~m}, 5 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 5 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta(\mathrm{ppm}) 175.1,159.8$, 159.2, 134.6, 134.3, 130.8, 129.5, 129.4, 129.2, 128.0, 119.6, 111.3, 20.8, 13.1. HRMS (ESI): exact mass calculated for M^{+} $\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 293.1290$, found $\mathrm{m} / \mathrm{z} 293.1294$.

N-(2-chlorophenyl)-5-methyl-3-phenylisoxazole-4-carboxamide (3ea)

White solid, 93% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ 8.46-8.45 (m, 1H), $7.68(\mathrm{br}, 1 \mathrm{H}), 7.63-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.50(\mathrm{~m}$, $3 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 175.6,160.1,159.5,134.3,130.8,129.5,129.4,129.0$, 127.6, 124.8, 122.5, 121.4, 111.3, 13.3. HRMS (ESI): exact mass calculated for M^{+} $\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 313.0744$, found $\mathrm{m} / \mathrm{z} 313.0748$.

N-(2-methoxyphenyl)-5-methyl-3-phenylisoxazole-4-carboxamide (3fa)

Yellow solid, 93% yield. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta(\mathrm{ppm}) 8.44$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{br}, 1 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.50(\mathrm{~m}$, 3 H), 7.01-6.92 (m, 2H), 6.73 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44$ ($\mathrm{s}, 3 \mathrm{H}$), 2.80 $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 175.0,160.1,159.3$, $147.8,130.3,129.4,129.1,127.9,127.2,123.9,120.9,119.6,111.8$, 109.8, 55.3, 13.2. HRMS (ESI): exact mass calculated for M^{+} $\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 309.1239$, found $\mathrm{m} / \mathrm{z} 309.1245$.

N-(2,4-dimethylphenyl)-5-methyl-3-phenylisoxazole-4-carboxamide (3ga)

Yellow solid, 91% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): ~ \delta(\mathrm{ppm})$ 7.82 (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.65-7.64 (m, 2H), 7.54-7.52 (m, $3 \mathrm{H}), 6.99(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{br}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H})$, $2.79(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}): \delta(\mathrm{ppm}) 175.2,159.9,159.4,134.7,132.7,131.1,130.7$, 129.4, 129.3, 128.2, 128.0, 127.2, 122.1, 111.5, 20.8, 16.7, 13.2. HRMS (ESI): exact mass calculated for $\mathrm{M}^{+}\left(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 307.1441$, found $m / z 307.1445$.

5-Isopropyl-N,3-diphenylisoxazole-4-carboxamide (3ha)

Yellow solid, 72% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ 7.66-7.65 (m, 2H), 7.59-7.54 (m, 3H), 7.26-7.23 (m, 1H), 7.20-7.18 (m, $2 \mathrm{H})$, , 7.09-7.06 (m, 2H), 3.96-3.87 (m, 1H), $1.44(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 182.5,159.8,159.3,137.2$, 130.7, 129.4, 129.2, 129.0, 128.1, 124.6, 119.6, 109.6, 27.6, 20.4. HRMS (ESI): exact mass calculated for $\mathrm{M}^{+}\left(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 307.1441$, found $m / z 307.1443$.

N,3,5-triphenylisoxazole-4-carboxamide (3ia)

Yellow solid, 52% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ 7.95-7.94 (m, 2H), 7.80-7.78 (m, 2H), 7.50-7.47 (m, 6H), 7.40-7.29 (m, $5 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 169.3$, 161.1, 160.3, 137.1, 131.2, 130.5, 129.1, 129.0, 128.9, 128.4, 127.8, 127.7, 126.5, 125.1, 120.1, 111.6. HRMS (ESI): exact mass calculated for M^{+} $\left(\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 341.1290$, found $\mathrm{m} / \mathrm{z} 341.1293$.

(3,5-Diphenylisoxazol-4-yl)(phenyl)methanone (3ja)

Yellow solid, 54% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ 7.82-7.80 (m, 2H), 7.71-7.70 (m, 2H), 7.58-7.57 (m, 2H), 7.48-7.45 (m, $1 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 190.9$, 169.1, 162.2, 136.8, 134.0, 130.8, 129.9, 129.8, 128.8, 128.7, 128.6, $128.2,128.0,127.5,126.6,114.1$. HRMS (ESI): exact mass calculated for M^{+} $\left(\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{NO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 326.1181$, found $\mathrm{m} / \mathrm{z} 326.1185$.

D: NMR Analysis

5-Methyl-N,3-diphenylisoxazole-4-carboxamide (3aa)

[^0]
3-(4-Fluorophenyl)-5-methyl- N -phenylisoxazole-4-carboxamide (3ab)

3－（4－Bromophenyl）－5－methyl－ N －phenylisoxazole－4－carboxamide（3ac）

 ジッチンジが
i

5-Methyl- N -phenyl-3-(4-(trifluoromethyl)phenyl)isoxazole-4-carboxamide (3ad)

5-Methyl- N-phenyl-3-(p-tolyl)isoxazole-4-carboxamide (3ae)

ज大日GAKANA 888

ì í

3-(3-Fluorophenyl)-5-methyl- N -phenylisoxazole-4-carboxamide (3af)

3-(3-Chlorophenyl)-5-methyl- N -phenylisoxazole-4-carboxamide (3ag)


```
i
```


3-(3-Methoxyphenyl)-5-methyl- N -phenylisoxazole-4-carboxamide (3ai)
जGBAKAKNAN888
Vivizivirivis

5-Methyl- N-phenyl-3-(m-tolyl)isoxazole-4-carboxamide (3aj)

```
Q4FN=NANRME888
```


3-(2-Bromophenyl)-5-methyl- N-phenylisoxazole-4-carboxamide (3ak)

5-Methyl-3-(naphthalen-2-yl)-N-phenylisoxazole-4-carboxamide (3al)

3-Cyclohexyl-5-methyl- N-phenylisoxazole-4-carboxamide (3am)

2	8
8	8
	1

$\begin{array}{lllll}3 & 8 & 8 & 8 & 2 \\ 1 & 1 & 1 & 1 & 1\end{array}$

5-Methyl- N -phenyl-3-propylisoxazole-4-carboxamide (3an)

N -(4-chlorophenyl)-5-methyl-3-phenylisoxazole-4-carboxamide (3ba)

89gem8\%

A8E
ERO

N-(4-methoxyphenyl)-5-methyl-3-phenylisoxazole-4-carboxamide (3ca)

	2*	2
- +ivinivivil	凹V	1

5-Methyl-3-phenyl- N -(p-tolyl)isoxazole-4-carboxamide (3da)

N-(2-chlorophenyl)-5-methyl-3-phenylisoxazole-4-carboxamide (3ea)

N-(2-methoxyphenyl)-5-methyl-3-phenylisoxazole-4-carboxamide (3fa)

会
$\begin{array}{ll}7 & 8 \\ i\end{array}$

N-(2,4-dimethylphenyl)-5-methyl-3-phenylisoxazole-4-carboxamide (3ga)

5-Isopropyl-N,3-diphenylisoxazole-4-carboxamide (3ha)

 rininirivijisitivin

8 8. 5838
-4ysins

$N, 3,5-$ triphenylisoxazole-4-carboxamide (3ia)

viruirigijisis

(3,5-Diphenylisoxazol-4-yl)(phenyl)methanone (3ja)

E: References

1. M. P. Bourbeau, J. T. Rider, Org. Lett. 2006, 8, 3679-3680.

[^0]:

