Electronic Supplementary Information (ESI)

Cp*Rh(III)-Catalyzed Electrophilic Amination of Arylboronic Acids with Azo compounds for Synthesis of Arylhydrazides

Yan-Fung Lau, Chun-Ming Chan, Zhongyuan Zhou and Wing-Yiu Yu*

State Key Laboratory for Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

E-mail: wing-yiu.yu@polyu.edu.hk

Table of Content

- 1 General Experimental Section
- 2 Experimental Procedures and Physical Characterization
 - 2.1 General procedure for preparation of ethyl arylhydrazinecarboxylates
 - 2.2.1 Preparation of ethyl arylazocarboxylate by NBS oxidation
 - 2.2.2 Preparation of ethyl arylazocarboxylate by CAN oxidation
 - 2.3 General procedure for the Rh-catalyzed electrophilic amination
- 3 Results for Optimization Studies
- 4 Synthesis of [Cp*Rh^{III}] complexes
- 5 X-ray Crystallographic Data for 2-(4-methoxyphenyl)-2-phenyl-, 1-ethyl hydrazinecarboxylic acid ester (4aa);
 - Rhodium,bromo-(1,2,3,4,5-

pentamethylcyclopentadienyl)phenyl(triphenylphosphine) complex (**5a**); Rhodium,chloro-(1,2,3,4,5-

pentamethylcyclopentadienyl)phenyl(triphenylphosphine) complex (**5b**) and Rhodium,dichloro-(1,2,3,4,5-pentamethylcyclopentadienyl)(triphenylphosphine) complex

- 6 ¹H, ¹³C, ¹⁹F and ³¹P Spectra of compounds **2**, **3**, **4**, [Cp*RhCl₂(PPh₃)] and **5**
- 7 References

1. General Experimental Section

All the reactions were performed under a nitrogen atmosphere. All the solvents were freshly distilled and dried according to the standard methods prior to use.¹ $[Cp*RhCl_2]_2$ (Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl), $[Cp*Rh(OAc)_2]$, $[Cp*Rh(MeCN)_3(SbF_6)_2]$, $[Rh(COD)Cl]_2$ (COD = cyclooctadiene) and $[Rh(COD)(OH)]_2$ were synthesized by the literature methods.² Arylboronic acids, potassium phenyltrifluoroborate, phenylboronic acid pinacol eater, boric acid and diethyl azodicarboxylate (DEAD) were obtained commercially, and were used without purification.

Thin layer chromatography was performed on silica gel plates. Flash column chromatography was performed on silica gel (Merck, 230-400 mesh). ¹H, ¹³C, ¹⁹F and ³¹P NMR spectra were recorded on a Bruker DPX-400 MHz spectrometer. The chemical shift (δ) values were given in ppm and were referenced to residual solvent peaks, carbon multiplicities were determined by DEPT-135 and DEPT-90 experiments. Coupling constants (*J*) were reported in hertz (Hz). Mass spectra and high resolution mass spectra (HRMS) were obtained on a VG MICROMASS Fison VG platform, a Finnigan Model Mat 95 ST instrument, or a Bruker APEX 47e FT-ICR mass spectrometer. X-ray crystallographic study was performed by a Bruker CCD area detector diffractometer.

2. Experimental Procedures and Physical Characterization

2.1 General procedure for preparation of ethyl arylhydrazinecarboxylates

Scheme S1. General procedure for ethyl arylhydrazinecarboxylates preparation

$$\begin{array}{c} H \\ Ar^{N} \\ NH_{2} \end{array} + \begin{array}{c} O \\ CI \\ OEt \end{array} \xrightarrow{\begin{array}{c} 1 \text{ M NaOH} \\ DCM \end{array}} \\ 0 \ ^{\circ}C, 3 \text{ h} \end{array} \xrightarrow{\begin{array}{c} H \\ N \\ N \\ H \end{array}} Ar^{-N} \\ N \\ H \end{array} \xrightarrow{\begin{array}{c} CO_{2}Et \\ H \\ CO_{2}Et \end{array}}$$

Arylhydrazine (10.0 mmol) in anhydrous DCM (15 mL) was placed in a 100 mL 2-neck round bottom flask, and the mixture was immersed into an ice-bath. Ethyl chloroformate (10.0 mmol) was diluted with anhydrous DCM (5 mL) and was added dropwise via a dropping funnel. When half of the ethyl chloroformate was added, 1 M NaOH (10 mL) was added dropwise via another dropping funnel. The reaction mixture was stirred for 3 h. The reaction mixture was diluted with DCM (10 mL), followed by acidification with 1 M HCl (10 mL). After washing with deionized water (20 mL), the aqueous layer was extracted with DCM (20 mL \times 3). The combined organic layers were dried over MgSO₄ and concentrated by rotary evaporation.

2.2.1 Method A:

Preparation of ethyl arylazocarboxylates by NBS oxidation

To a mixture of arylhydrazides obtained from 2.1 (10.0 mmol) was dissolved in anhydrous toluene (50 mL). Pyridine (12.75 mmol) and NBS (12.75 mmol) were added sequentially. The reaction mixture was stirred vigorously at room temperature for 15 min. The reaction mixture was diluted with toluene (50 mL), washed with deionized water (50 mL), saturated Na₂S₂O₃ (30 mL), 1 M HCl (15 mL \times 2), saturated NaHCO₃ solution (30 mL) and deionized water (50 mL). The organic layer was dried over MgSO₄ and concentrated by rotary evaporation. The residue was purified by flash column chromatography to afford the corresponding azo compounds.

2.2.2 Method B:

Preparation of ethyl arylazocarboxylates by CAN oxidation

A solution of CAN (22.1 mmol) in MeOH (30 mL) was added dropwise under stirring into the solution of ethyl arylhydraiznecarboxylate (10.0 mmol) in MeOH (30 mL). The reaction mixture was stirred vigorously for 5 min. The reaction mixture was diluted with deionized water (30 mL), and the product was extracted with DCM (20 mL \times 3). The combined organic layers were washed with saturated NaHCO₃ solution (20 mL), brine (20 mL), dried over MgSO₄ and concentrated by rotary evaporation. The residue was purified by flash column chromatography to afford the corresponding azo compounds.

2985 (m), 1758 (s), 1454 (m), 1244 (s), 1191 (s), 1146 (s), 973 (w), 778 (m), 685 (s) HRMS (ESI) calcd. for C₉H₁₀N₂O₂Na (M+Na) 201.0634, found 201.0636.

CO2EtEluent: n-hexane / ethyl acetate 8:2, $R_F = 0.8$. The product was
obtained as a red oil (85% yield). ¹H NMR (400 MHz, CDCl₃): δ_H N7.84 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 4.52 (q, J = 6.8 Hz
2H), 2.44 (s, 3 H), 1.46 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz,
CDCl₃): δ_C 162.2 (CO), 149.9 (C), 145.2 (C), 130.0 (CH), 123.9
(CH), 64.4 (CH₂), 21.8 (CH₃), 14.2 (CH₃). IR (KBr): 3487 (br, w),
2971 (w), 1755 (s), 1508 (m), 1247 (s), 1197 (s), 1148 (s), 827 (m).

HRMS (ESI) calcd. for $C_{10}H_{12}N_2O_2Na$ (M+Na) 215.0791, found 215.0785.

N^{⊊ Ń}

ĊF₃

3d

Eluent: n-hexane / ethyl acetate 8:2, $R_F = 0.8$. The product was obtained as a red oil (83% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 7.87 (d, J = 8.6 Hz, 2H), 7.49 (d, J = 8.6 Hz, 2H), 4.51 (q, J = 7.2 Hz, 2H), 1.46 (t, J = 7.2Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ_C 162.0 (CO), 149.9 (C), 140.1 (C), 129.7 (CH), 125.0 (CH), 64.6 (CH₂), 14.2 (CH₃). IR (KBr): 3490 (br, w), 2983 (w), 1760 (s), 1500 (s),

1245 (s), 839 (m), 779 (m). HRMS (ESI) calcd. for $C_9H_9CIN_2O_2Na$ (M+Na) 235.0245, found 235.0255.

CO₂Et Eluent: n-hexane / ethyl acetate 75:25, $R_F = 0.7$. The product was obtained as a red oil (77% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 8.01 (d, J = 8.4 Hz, 2H), 7.81 (d, J = 8.4 Hz, 2H), 4.54 (m, 2H), 1.48 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ_C 161.8 (CO), 153.2 (C), 134.7 (q, J = 32.3 Hz, C), [127.5, 124.8, 122.1, 119.4 (q, J= 270.0 Hz, CF₃)], 126.5 (q, J = 3.6 Hz, CH), 123.8 (CH), 64.8

(CH₂), 14.1 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ_F -63.0. IR (KBr): 3490 (br, w), 2986 (w), 1762 (s), 1324 (s), 1247 (s), 1064 (s), 851 (m), 748 (w), 596 (w). HRMS (ESI) calcd. for C₁₀H₉F₃N₂O₂Na (M+Na) 269.0508, found 269.0517.

Boc Eluent: n-hexane / ethyl acetate 7:3, $R_F = 0.7$. The product was obtained as a red oil (88% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 7.90 (d, J = 6.9 Hz, 2H), 7.55 (t, J = 6.9 Hz, 1H), 7.50 (t, J = 6.8 Hz, 2H), 1.66 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ_C 161.2 (CO), 151.6 (C), 133.3 (CH), 129.2 (CH), 123.5 (CH), 84.9 (C), 27.8 (CH₃). IR (KBr): 3484 (br, w), 3063 (w), 2983 (m), 2933 (w), 1751 (s), 1507 (m), 1272

(s), 1256 (s), 842 (m), 780 (m), 685 (m). HRMS (ESI) calcd. for $C_{11}H_{14}N_2O_2Na$ (M+Na) 229.0947, found 229.0954.

2.3 General procedure for the Rh-catalyzed electrophilic amination

To a mixture of arylboronic acid (0.3 mmol) and [Cp*Rh(OAc)₂] (2 mol%) in a reaction vial (8 mL), azo compound (0.2 mmol) in anhydrous DMF (1 mL) was added. The reaction mixture was stirred at 40 °C under N2 atmosphere for 4 h. The reaction mixture was diluted with ethyl acetate (5 mL) followed by filtration with a short pad of silica gel. The reaction mixture was concentrated by rotary evaporation. The residue was purified by flash column chromatography.

Eluent: n-hexane / ethyl acetate 6:4, R_F = 0.6. The product Eluent: n-hexane / ethyl acetate 6:4, $R_F = 0.6$. The product was obtained as a pale yellow oil (99% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 7.43 (d, J = 8.0 Hz, 2H), 7.34 (t, J = 8.0 Hz, 2H), 7.21 (t, J = 8.0 Hz, 1H), 7.04 (br. s, 1H), 4.28–4.21(m) MHz, CDCl₃): δ_H 7.43 (d, J = 8.0 Hz, 2H), 7.34 (t, J = 8.0 Hz, 2H), 7.21 (t, J = 8.0 Hz, 1H), 7.04 (br, s, 1H), 4.28–4.21(m, 4H), 1.28 (t, J = 8.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ_C 156.4 (CO), 154.9 (CO), 141.7 (C), 128.6 (CH), 126.4

(CH), 124.4 (CH), 63.0 (CH₂), 62.3 (CH₂), 14.4 (CH₃). IR (KBr): 3303 (br, m), 2984 (m), 1724 (s), 1340 (s), 1304 (s), 1237 (s), 1062 (s). HRMS (ESI) calcd. for C₁₂H₁₆N₂O₄Na (M+Na) 275.1002, found 275.1002.

Eluent: n-hexane / ethyl acetate 7:3, $R_F = 0.3$. The product EtO₂C N $\stackrel{\text{H}}{\sim}$ CO₂Et was obtained as a pale yellow oil (99% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 7.32 (d, J = 6.8 Hz, 2H), 7.19 (s, 1H), 6.85 (d, J = 9.2 Hz, 2H), 4.24–4.18 (m, 4H), 3.79 (s, 3H), 1.26 (t, MHz, CDCl₃): δ_H 7.32 (d, J = 6.8 Hz, 2H), 7.19 (s, 1H), 6.85 (d, J = 9.2 Hz, 2H), 4.24–4.18 (m, 4H), 3.79 (s, 3H), 1.26 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ_C 158.2 (CO), 156.4 (CO), 134.8 (C), 126.8 (C), 113.9 (CH), 62.9 (CH₂), 62.2 (CH₂), 55.4 (CH₃), 14.5 (CH₃). IR (KBr): 3296

(s), 2993 (m), 2973 (w), 1734 (s), 1712 (s), 1340 (m), 1251 (s). HRMS (ESI) calcd. for C₁₃H₁₈N₂O₅Na (M+Na) 305.1108, found 305.1104.

Eluent: n-hexane / ethyl acetate 8:2, $R_F = 0.3$. The product EtO₂C_N/ $\overset{H}{N}$ _{CO₂Et Eluent: n-nexane / ethyl acetate 8:2, R_F = 0.3. The product was obtained as an orange oil (99% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 7.34 (br, s, 1H), 7.29 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.2 Hz, 2H) 4 25–4 18 (m 4H) 2 32 (s 3H)} 7.13 (d, J = 8.2 Hz, 2H), 4.25–4.18 (m, 4H), 2.32 (s, 3H), 1.26 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ_C 156.4 (CO), 155.2 (CO), 139.2 (C), 136.3 (C), 129.2 (CH), 124.6 (CH), 62.9 (CH₂), 62.2 (CH₂), 20.9 (CH₃), 14.4 (CH₃).

IR (KBr): 3306 (br, m), 2983 (m), 1721 (s), 1375 (s), 1336 (s), 1303 (s), 1235 (s), 1198 (m). HRMS (ESI) calcd. for C₁₃H₁₈N₂O₄Na (M+Na) 289.1159, found 289.1156.

Eluent: n-hexane / ethyl acetate 6:4, $R_F = 0.6$. The product was obtained as an orange oil (98% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 7.44 (d, J = 8.8 Hz, 2H), 7.32 (d, J = 8.8Hz, 2H), 7.06 (br, s, 1H), 4.28–4.20 (m, 4H), 1.27 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ_C 156.3 (CO), 140.7 (C), 131.7 (CH), 63.3 (CH₂), 62.5 (CH₂), 14.4 (CH₃), 14.4 (CH₃). IR (KBr): 3305 (br, s), 2983 (m), 2929 (w), 2907 (w),

2866 (w), 1724 (s), 1321 (s), 1236 (s), 1063 (s), 510 (m). HRMS (ESI) calcd. for C₁₂H₁₆BrN₂O₄ (M+H) 331.0288, found 331.0292.

Eluent: n-hexane / ethyl acetate 8:2, $R_F = 0.4$. The product EtO₂C N $\stackrel{\text{H}}{\sim}$ CO₂Et was obtained as a clear oil (98% yield). ¹H NMR (400 MHz, CD₂Cl₂): δ_H 7.76 (br, s, 1H), 7.57 (d, J = 8.3 Hz, 2H), 7.48(d, J = 8.2 Hz, 2H), 4.31–4.22 (m, 4H), 1.34–1.29 (m, 6H), 0.34 (s, 9H). ¹³C NMR (100 MHz, CD₂Cl₂): δ_C 156.4 (CO), 154.8 (CO), 142.4 (C), 138.2 (C), 133.7 (CH), 122.9 (CH), 63.0 (CH₂), 62.2 (CH₂), 14.3 (CH₃), 14.2 (CH₃), -1.4 (CH₃). IR

(KBr): 3299 (br, m), 2983 (m), 2956 (m), 1728 (m), 1596 (m), 1505 (m), 1248 (m), 1183 (m), 1063 (m), 851 (m), 7575 (m), 727 (m), 620 (w), 523 (m). HRMS (ESI) calcd. for C₁₅H₂₅N₂O₄Si (M+H) 325.1578, found 325.1566.

Eluent: n-hexane / ethyl acetate 6:4, $R_F = 0.4$. The product EtO₂C_N, $\stackrel{\text{H}}{\sim}$ CO₂Et was obtained as an orange oil (83% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 9.96 (s, 1H), 7.85 (d, J = 8.8 Hz, 2H), 7.67 (d, J = 8.8 Hz, 2H), 7.04 (br, s, 1H), 4.33–4.23 (m, 4H), 1.34–1.30 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ_{C} 191.1 (CHO), 156.2 (CO), 154.0 (CO), 146.8 (C), 133.2 (C), 130.4 (CH), 63.6 (CH₂), 62.8 (CH₂), 14.4 (CH₃), 14.3 (CH₃). IR

(KBr): 3466 (br, s), 2984 (w), 1731 (s), 1602 (s), 1317 (s), 1298 (s), 1238 (m), 1198 (m). HRMS (ESI) calcd. for $C_{13}H_{17}N_2O_5$ (M+H) 281.1132, found 281.1133.

Eluent: n-hexane / ethyl acetate 6:4, $R_F = 0.4$. The product was obtained as a yellow solid (93% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 7.92 (d, J = 8.8 Hz, 2H), 7.56 (d, J = 8.8Hz, 2H), 7.17 (br, s, 1H), 4.31–4.21 (m, 4H), 2.57 (s, 3H), 1.33 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ_C 197.1 (CO), 156.2 (CO), 145.7 (C), 129.0 (CH), 122.1 (C), 63.4 (CH₂), 62.6 (CH₂), 26.5 (CH₃), 14.4 (CH₃), 14.3 (CH₃).

IR (KBr): 3307 (s), 2986 (m), 2953 (w), 1750 (s), 1686 (s), 1508 (s), 1231 (s), 1209 (s), 1067 (s). HRMS (ESI) calcd. for $C_{14}H_{19}N_2O_5$ (M+H) 295.1288, found 295.1291.

Eluent: n-hexane / ethyl acetate 6:4, $R_F = 0.5$. The product was obtained as an orange oil (90% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 8.00 (d, J = 8.8 Hz, 2H), 7.53 (d, J = 8.8Hz, 2H), 7.10 (br, s, 1H), 4.36 (q, J = 7.2 Hz, 2H), 4.30–4.21 (m, 4H), 1.38 (t, J = 7.2 Hz, 3H), 1.29 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ_C 166.0 (CO), 156.2 (CO), 154.2 (CO), 145.5 (C), 130.2 (CH), 122.2 (C), 63.4 (CH₂), 62.6

(CH₂), 61.0 (CH₂), 14.4 (CH₃), 14.3 (CH₃), 14.3 (CH₃). IR (KBr): 3457 (br, m), 2983 (m), 1717 (s), 1371 (m), 1276 (s), 1234 (m). HRMS (ESI) calcd. for $C_{15}H_{20}N_2O_6Na$ (M+Na) 347.1214, found 347.1214.

(w), 1747 (s), 1710 (s), 1666 (s), 1519 (s), 1308 (m), 1261 (s), 1197 (m), 1066 (m). HRMS (ESI) calcd. for C₁₄H₂₀N₃O₅ (M+H) 310.1397, found 310.1398.

1291 (s), 1276 (s), 1064 (s). HRMS (ESI) calcd. for $C_{13}H_{19}N_2O_6S$ (M+H) 331.0958, found 331.0963.

Eluent: n-hexane / ethyl acetate 7:3, $R_F = 0.2$. The product was obtained as an orange solid (99% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 7.80 (s, 1H), 7.69 (d, J = 8.8 Hz, 2H), 7.51 (d, J = 8.4 Hz, 1H), 7.18 (s, 1H), 7.15-7.11 (m, 2H), 4.30-4.19 (m, 4H), 3.91 (s, 3H), 1.31–1.27 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ_C 157.9 (CO), 156.5 (CO), 137.3 (C), 133.1 (C), 129.5 (CH), 128.7 (C), 127.2 (CH), 119.3 (CH),

105.6 (CH), 63.1 (CH₂), 62.3 (CH₂), 55.4 (CH₃), 14.5 (CH₃). IR (KBr): 3289 (s), 2983 (m), 1756 (s), 1716 (s), 1328 (s), 1229 (s), 1178 (s), 1060 (s). HRMS (ESI) calcd. for C₁₇H₂₀N₂O₅Na (M+Na) 355.1264, found 355.1263.

Eluent: n-hexane / ethyl acetate 7:3, $R_F = 0.7$. The product EtO₂C_N, $\stackrel{\text{H}}{\underset{1}{\overset{\text{CO}_2\text{Et}}{\overset{\text{Etuent. In-income / current /$ Hz, 1H), 7.17 (d, J = 8 Hz, 1H), 7.11 (s, 1H), 4.29–4.21 (m, 4H), 1.29 (t, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ_C 156.3 (CO), 154.5 (CO), 142.7 (CH), 134.2 (CH), 129.6

(CH), 126.2 (CH), 123.9 (C), 121.8 (C), 63.3 (CH₂), 62.5 (CH₂), 14.4 (CH₃), 14.4 (CH₃). IR (KBr): 3298 (br, s), 3072 (w), 2983 (m), 2932 (w), 2904 (w), 2866 (w), 1727 (s), 1329 (s), 1237 (s), 780 (m), 760 (m). HRMS (ESI) calcd. for C₁₂H₁₆N₂O₄ClNa (M+Na) 309.0613, found 309.0615.

Eluent: n-hexane / ethyl acetate 7:3, $R_F = 0.7$. The product $EtO_2C_N^{-N}CO_2Et$ was obtained as an orange solid (80% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 7.98 (s, 2H), 7.68 (s, 1H), 6.97 (br, s, 1H), 4.35–4.27 (m, 4H), 1.33 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ_C 156.2 (CO), 153.8 (CO), 143.0 (C), 132.0 $(q, J = 30 \text{ Hz}, \text{CCF}_3), 124.4 \text{ (CH)}, 121.7 \text{ (CH)}, 119.0 \text{ (CH)},$

63.9 (CH₂), 63.0 (CH₂), 14.8 (CH₃), 14.3 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): $\delta_{\rm F}$ -63.0. IR (KBr): 3261 (m), 3031 (w), 2983 (w), 2923 (w), 1731 (s), 1279 (s), 1170 (s), 1122 (s), 887 (m), 684 (m). HRMS (ESI) calcd. for $C_{14}H_{13}F_6N_2O_4$ (M+H) 387.0785, found 387.0786.

Eluent: n-hexane / ethyl acetate 8:2, $R_F = 0.3$. The product was obtained as a white solid (80% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 7.54 (d, J = 15.6 Hz, 1H), 7.32–7.28 (m, 3H), 7.17 (d, J = 6.8 Hz, 1H), 6.80 (1H), 6.14 (s, 1H), 4.26 (m, 4H), 1.32 (br, s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ_C 153.3 (CO), 136.0 (C), 128.6 (CH), 126.5 (CH), 126.3 (CH), 125.8 (CH), 110.2 (CH), 62.6 (CH₂), 14.4 (CH₃). IR (KBr):

3280 (m), 3078 (w), 3018 (w), 2981 (w), 2929 (w), 1748 (s), 1692 (s), 1654 (s), 1330 (m), 1301 (s), 1278 (m). HRMS (ESI) calcd. for C₁₄H₁₈N₂O₄Na (M+Na) 301.1159, found 301.1160.

Eluent: n-hexane / ethyl acetate 6:4, $R_F = 0.6$. The product 4.21 (m, 4H), 1.30 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ_C 140.2 (C), 124.4 (CH), 63.2 (CH₂), 62.4 (CH₂), 14.5 (CH₃), 14.4 (CH₃). IR (KBr): 3274 (m), 1707 (m), 1632

(m), 1597 (m), 1269 (m), 1246 (m), 744 (m). HRMS (ESI) calcd. for C₁₀H₁₅N₂O₄S (M+H) 259.0747, found 259.0749.

Eluent: n-hexane / ethyl acetate 7:3, $R_F = 0.5$. The product EtO₂C_N, $\overset{H}{N}$ _{CO₂Et was obtained as an orange solid (45% yield). ¹H NMR (400 MHz CDCl₂): δ_{ii} 7 71 (d. I = 8.0 Hz 1H) 7 63 (d. I = 7.6} MHz, CDCl₃): δ_H 7.71 (d, J = 8.0 Hz, 1H), 7.63 (d, J = 7.6Hz, 1H), 7.31 (t, J = 7.4 Hz, 1H), 7.25 (t, J = 7.3 Hz, 1H), 7.09 (br, s, 2H), 4.35 (q, J = 7.1 Hz, 2H), 4.29–4.27 (m, 2H), 1.35 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ_C 144.1 (C), 137.9 (C), 124.5 (CH), 123.6 (C), 122.9 (C), 121.7

(CH), 64.0 (CH₂), 62.8 (CH₂), 14.4 (CH₃), 14.4 (CH₃). IR (KBr): 3299 (m), 2970 (w), 1747 (s), 1693 (s), 1354 (s), 1302 (s), 1233 (m). HRMS (ESI) calcd. for C₁₄H₁₇N₂O₄S (M+H) 309.0904, found 309.0907.

Eluent: n-hexane / ethyl acetate 7:3, $R_F = 0.3$. The product 2H), 4.31–4.22 (m, 4H), 1.30 (m, 6H). ¹³C NMR (100 MHz,

CDCl₃): δ_C 155.7 (CO), 153.8 (CO), 144.1 (C), 124.9 (CH), 63.6 (CH₂), 62.6 (CH₂), 14.4 (CH₃), 14.4 (CH₃). IR (KBr): 3414 (m), 2980 (w), 1718 (s), 1331 (s), 1309 (s), 1244 (s), 1061 (m). HRMS (ESI) calcd. for C₁₀H₁₅N₂O₄S (M+H) 281.0566, found 281.0563.

Eluent: n-hexane / ethyl acetate 8:2, $R_F = 0.5$. The product was obtained as an orange solid (81% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 7.26–7.20 (m, 4H), 7.03 (s, 1H), 6.92–6.87 (m, 5H), 4.19 (q, J = 7.1 Hz, 2H), 3.81 (s, 3H), 1.02 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ_C 147.5 (CO), 139.0 (C), 128.9 (CH), 125.5 (C), 125.0 (C), 120.7 (CH), 115.4 (CH), 114.6 (CH), 61.8 (CH₂), 55.5 (CH₃), 14.5 (CH₃). IR (KBr):

3285 (m), 2955 (w), 2930 (w), 1707 (s), 1508 (s), 1280 (m), 1247 (s). HRMS (ESI) calcd. for $C_{16}H_{19}N_2O_3$ (M+H) 287.1390, found 287. 1387.

Eluent: n-hexane / ethyl acetate 8:2, $R_F = 0.6$. The product was obtained as a pale yellow solid (83% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 7.26 (t, J = 8.4 Hz, 2H), 7.13 (s, 4H), 7.05 (d, J = 7.6 Hz, 2H), 6.97 (t, J = 7.2 Hz, 1H), 4.21–4.19 (m, 2H), 2.33 (s, 3H) 1.27 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ_C 146.8 (CO), 143.6 (C), 133.6 (C), 131.9 (C), 129.8 (CH), 129.0 (CH), 121.9 (CH), 121.4 (CH), 117.7

(CH), 61.9 (CH₂), 20.8 (CH₃), 14.5 (CH₃). IR (KBr): 3279 (s), 3024 (w), 2980 (w), 2904 (w), 1709 (s), 1510 (s), 1247 (s), 1049 (s). HRMS (ESI) calcd. for $C_{16}H_{19}N_2O_2$ (M+H) 271.1441, found 271.1441.

Eluent: n-hexane / ethyl acetate 9:1, $R_F = 0.2$. The product was obtained as a yellow solid (67% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 7.36 (d, J = 8.8 Hz, 2H), 7.31 (t, J = 7.9 Hz, 2H), 7.16 (d, J = 6.9 Hz, 2H), 7.07 (t, J = 7.3 Hz, 1H), 6.99 (d, J = 8.7 Hz, 2H), 6.85 (br, s, 1H), 4.20 (m, 2H), 1.28 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ_C 145.5 (CO), 132.2 (C), 132.1 (C), 132.0 (CH), 131.0 (C), 129.3 (CH), 123.9 (CH),

120.3 (CH), 62.1 (CH₂), 14.5 (CH₃). IR (KBr): 3270 (s), 2977 (w), 1707 (s), 1250 (s), 607 (m), 502 (m). HRMS (ESI) calcd. for $C_{15}H_{14}BrN_2O_2$ (M-H) 333.0244, found 333.0250.

Eluent: n-hexane / ethyl acetate 7:3, $R_F = 0.4$. The product was obtained as a yellow oil (44% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 7.91 (d, J = 8.8 Hz, 2H), 7.41–7.35 (m, 4H), 7.21 (t, J = 7.1 Hz, 1H), 7.07 (br, s, 1H), 6.98 (d, J = 8.2Hz, 2H), 4.21 (m, 2H), 3.87 (s, 3H), 1.30–1.14 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ_C 166.9 (CO), 155.7 (CO), 150.6 (C), 144.4 (C), 131.0 (CH), 129.5 (CH), 125.9 (CH), 123.9

(CH), 122.2 (C), 114.5 (CH), 62.1 (CH₂), 51.8 (CH₃), 14.5 (CH₃). IR (KBr): 3280 (m), 2983 (w), 2951 (w), 1716 (s), 1607 (s), 1592 (s), 1277 (s), 1230 (s). HRMS (ESI) calcd. for $C_{17}H19N_2O4$ (M+H) 315.1345, found 315.1343.

Eluent: n-hexane / ethyl acetate 8:2, $R_F = 0.3$. The product was obtained as a pink solid (73% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 7.68 (d, J = 8.8 Hz, 1H), 7.62 (d, J = 8.8 Hz, 1H), 7.56 (br, s, 1H), 7.36 (d, J = 6.4 Hz, 1H), 7.31–7.28 (m, 2H), 7.12 (d, J = 8.8 Hz, 4H), 7.02–6.99 (m, 2H), 4.23–4.22 (m, 2H), 3.92 (s, 3H), 1.23 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ_C 157.1 (CO), 146.7 (C), 141.8 (C), 132.0 (C),

131.7 (C), 129.5 (CH), 129.1 (CH), 128.8 (CH), 127.8 (CH), 122.3 (CH), 119.2 (CH), 118.1 (CH), 117.8 (C), 117.0 (C), 105.9 (CH), 61.9 (CH₂), 55.4 (CH₃), 14.5 (CH₃). IR (KBr): 3289 (s), 2983 (w), 2929 (w), 1708 (s), 1247 (s). HRMS (ESI) calcd. for $C_{20}H_{21}N_2O_3$ (M+H) 337.1547, found 337.1545.

Eluent: n-hexane / ethyl acetate 8:2, $R_F = 0.2$. The product was obtained as a purple solid (73% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 7.23 (t, J = 7.6 Hz, 2H), 7.03 (br, s, 1H), 6.95–6.90 (m, 3H), 6.83–6.76 (m, 3H), 5.96 (s, 2H), 4.19 (q, J = 7.2 Hz, 2H), 1.24 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ_C 155.9 (CO), 148.2 (C), 147.2 (C), 145.0 (C), 140.4 (C), 131.8 (CH), 129.0 (CH), 121.2 (CH), 116.2 (CH), 108.4

(CH), 105.3 (CH), 101.4 (CH₂), 61.9 (CH₂), 14.5 (CH₃). IR (KBr): 3279 (s), 2983 (w), 2929 (w), 2879 (w), 1709 (s), 1243 (m), 1217 (s), 1039 (m). HRMS (ESI) calcd. for C₁₆H₁₆N₂O₄Na (M+Na) 323.1002, found 323.1004.

4ga

²Et MHz, CDCl₃): δ_H 7.30 (t, J = 8.4 Hz, 1H), 7.11 (d, J = 6.4 Hz, 1H), 7.02 (d, J = 8.4 Hz, 3H), 6.96 (t, J = 7.6 Hz, 1H), 6.81 (t, J = 8.8 Hz, 1H), 6.44 (br, s, 1H), 5.86 (br, s, 1H), 4.17 (q, J =7.2 Hz, 2H), 1.26 (br, s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ_C 164.5 (d, J = 13Hz, CH), 162.0 (d, J = 13 Hz, CH), 156.8

Eluent: n-hexane / ethyl acetate 8:2, $R_F = 0.3$. The product was obtained as an orange solid (83% yield). ¹H NMR (400

(C), 144.7 (C), 141.7 (C), 130.1 (CH), 129.5 (CH), 120.8 (C), 112.4 (t, J = 25 Hz, C), 103.0 (t, J = 25 Hz, C), 62.0 (CH₂), 14.5 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): $\delta_{\rm F}$ -108.9. IR (KBr): 3238 (s), 3081 (w), 2989 (w), 1725 (m), 1625 (s), 1284 (s), 1251 (s), 755 (s). HRMS (ESI) calcd. for C₁₅H₁₅F₂N₂O₂ (M+H) 293.1096, found 293.1102.

Eluent: n-hexane / ethyl acetate 7:3, $R_F = 0.5$. The product was obtained as a white solid (93% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 7.17 (m, 2H), 7.05 (d, J = 8.2 Hz, 2H), 6.97 (s, 1H), 6.88–6.85 (m, 4H), 4.21–4.16 (m, 2H), 3.80 (s, 3H), 2.28 (s, 3H), 1.24 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ_C 156.6 (CO), 145.0 (C), 139.7 (C), 130.8 (C), 129.6 (CH), 123.9 (C), 123.6 (C),

116.8 (C), 114.5 (CH), 61.7 (CH₂), 55.5 (CH₃), 20.6 (CH₃), 14.5 (CH₃). IR (KBr): 3293 (m), 2983 (w), 2832 (w), 1711 (s), 1507 (s), 1244 (s), 815 (m), 586 (w). HRMS (ESI) calcd. for $C_{17}H_{20}N_2O_3Na$ (M+Na) 323.1366, found 323.1364.

Eluent: n-hexane / ethyl acetate 7:3, $R_F = 0.5$. The product was obtained as a white solid (80% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 7.26 (s, 2H), 7.23 (s, 1H), 7.17 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 8.9 Hz, 2H), 6.82 (d, J = 8.9 Hz, 2H), 4.19 (t, J = 7.2 Hz, 2H), 3.81 (s, 3H), 1.27 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ_C 157.5 (CO), 155.9 (C), 146.3 (C), 138.4 (C), 128.8 (CH), 125.8

(C), 125.3 (C), 116.3 (CH), 114.7 (CH), 61.9 (CH₂), 55.5 (CH₃), 14.5 (CH₃). IR (KBr): 3292 (s), 2976 (w), 2838 (w), 1707 (s), 838 (m), 824 (s), 617 (m), 581 (m), 541 (m). HRMS (ESI) calcd. for $C_{16}H_{17}CIN_2O_3Na$ (M+Na) 343.0820, found 343.0820.

Eluent: n-hexane / ethyl acetate 7:3, $R_F = 0.6$. The product was obtained as a white solid (78% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 7.43 (d, J = 8.6 Hz, 2H), 7.30 (br, d, 2H), 7.07 (s, 1H), 6.92 (d, J = 8.9, 2H), 6.86 (d, J = 8.44 Hz, 2H), 4.20 (t, J = 7.2 Hz, 2H), 3.83 (s, 3H), 1.28 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ_C 158.4 (CO), 155.7 (C), 150.4 (C), 137.4 (C), 127.5

(CH), 126.3 (q, J = 3.65 Hz, CH), 123.3 (C), 121.6 (q, J = 32.4 Hz, C), 115.0 (CH), 113.2 (CH), 62.1 (CH₂), 55.5 (CH₃), 14.5 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): $\delta_{\rm F}$ -61.4. IR (KBr): 3269 (m), 2980 (w), 2838 (w), 1716 (s), 1615 (m), 1509 (s), 1325 (s), 1251 (s), 1117 (s), 1069 (m), 833 (m), 586 (w), 539 (w). HRMS (ESI) calcd. for C₁₇H₁₇F₃N₂O₃Na (M+Na) 377.1083, found 377.1083.

Eluent: n-hexane / ethyl acetate 8:2, $R_F = 0.5$. The product was obtained as a white solid (88% yield). ¹H NMR (400 MHz, CDCl₃): δ_H 7.26–7.20 (m, 4H), 6.92–6.87 (m, 5H), 6.82 (s, 1H), 3.81 (s, 3H), 1.48 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ_C 155.0 (CO), 147.5 (C), 139.1 (C), 128.9 (CH), 125.1 (CH), 124.4 (C), 120.6 (CH), 115.4 (CH), 114.6 (CH), 55.5 (CH₃), 28.3 (CH₃). IR (KBr): 3327 (s), 2965 (m), 2834 (w), 1707 (s),

1597 (m), 1030 (s), 836 (s), 749 (s), 690 (m), 578 (m). HRMS (ESI) calcd. for $C_{18}H_{22}N_2O_3Na$ (M+Na) 337.1523, found 337.1523.

3. Results for Optimization Studies

Table S1. Catalyst screening^a

	B(OH)	2	R ¹ _N-NHR ¹	
		catalyst (5 mol%)		
		solvent, 80 °C, 4 h, N ₂		
	ÓMe		 ОМе	
Entry	\mathbb{R}^1	Catalyst	Solvent	Yield/%
1	CO ₂ Et	[Cp*Rh(OAc) ₂]	THF	85
2	CO ₂ ^t Bu	[Cp*Rh(OAc) ₂]	THF	42
3	Ph	[Cp*Rh(OAc) ₂]	THF	0
4	CO ₂ Et	[Cp*RhCl ₂] ₂	THF	10
5 ^b	CO ₂ Et	[Cp*RhCl ₂] ₂	THF	40
6°	CO ₂ Et	[Cp*RhCl ₂] ₂	THF	0
7 ^d	CO ₂ Et	[Cp*RhCl ₂] ₂	THF	8
8	CO ₂ Et	[Cp*Rh(MeCN) ₃ (SbF ₆) ₂]	THF	85
9	CO ₂ Et	[Cp*IrCl ₂] ₂	THF	0
10 ^b	CO ₂ Et	$[Cp*IrCl_2]_2$	THF	9
11 ^e	CO ₂ Et	[Rh(COD)Cl] ₂	THF	11
12	CO ₂ Et	[Rh(COD)(OH)] ₂	DMF	0
13 ^f	CO ₂ Et	[Ir(COD)Cl] ₂	THF	0
14	CO ₂ Et	$[Pd(PPh_3)_4]$	DCE	0
15	CO ₂ Et	$[Pd_2(dba)_3 \cdot CHCl_3]$	DCE	27

^aConditions: **1** (0.3 mmol), **2** (0.2 mmol), catalyst (5 mol% on metal basis) in solvent (1 mL) at 80 °C for 4 h under N₂ atmosphere. ^bAgOAc (1.1 equiv) was added. ^cPivOH (1.1 equiv) was added. ^dZn (50 mol%) was added. ^eCsOAc (1.1 equiv) was added. ^fBathocuproine (10 mol%) and KOPiv (1.1 equiv) were added.

B(C	H) ₂ EtO ₂ C _N -NHCO ₂ Et		
	[Cp*Rh(O/	Ac) ₂] (5 mol%)	
	+ DEAD	, T, 4 h, N ₂	
Г ОМ	е	T OI	Ме
1b	,	2	?b
Entry	Solvent	Temp/ °C	Yield/%
1	H ₂ O	80	39
2	^t BuOH	80	64
3	MeOH	80	18
4	MeCN	80	3
5	acetone	80	64
6	EA	80	51
7	dioxane	80	50
8	toluene	80	14
9	DCE	80	31
10	n-hexane	80	24
11	TBME	80	28
12	DMA	80	92
13	DMPU	80	95
14	DMF	80	99
15	THF	100	70
16	THF	60	82
17	THF	50	55
18	DMF	60	99
19	DMF	40	98
20 ^b	DMF	40	99

Table S2. Reaction Optimization^a

^aConditions: **1** (0.3 mmol), **2** (0.2 mmol), $[Cp*Rh(OAc)_2]$ (5 mol%) in solvent (1 mL) for 4 h under N₂ atmosphere. ^b $[Cp*Rh(OAc)_2]$ (2 mol%) was used.

4. Synthesis of [Cp*Rh^{III}] complexes

4.1 Synthesis of [Cp*RhCl₂(PPh₃)]

A mixture of $[Cp*RhCl_2]_2$ (0.95 mmol) and triphenylphosphine (2.28 mmol) was dissolved in anhydrous DCM (30 mL). The reaction mixture was stirred for 1 h under room temperature. The reaction mixture was filtered and rinsed with DCM (5 mL) to afford 99% of the pure complex as a red powder.

[Cp*RhCl₂(PPh₃)] was isolated as a red powder (99% yield). ¹H NMR (CDCl₃, 400 MHz): δ_H 7.82–7.80 (m, 6H), 7.37 (m, 9H), 1.36 (d, J = 3.4 Hz, 15H), ¹³C NMR (CDCl₃, 100 MHz); δ_C 134.8 (CH), 134.7 (CH), 130.4 (C), 127.9 (CH), 99.16 (d, J = 4.1 Hz, C), 8.8 (CH₃). ³¹P NMR (CDCl₃, 162 MHz); δ_p 30.0 (d, J = 144.5 Hz). HRMS (ESI) calcd. for C₂₈H₃₀ClPRh (M+ = [Cp*RhCl(PPh₃)]⁺) 535.0829, found 535.0834.

4.2.1 Synthesis of [Cp*Rh(Ph)(Br)(PPh₃)] (5a)

To a 10 mL-Schlenk tube, $[Cp*RhCl_2(PPh_3)]$ (0.28 mmol) in anhydrous THF (5 mL) was added and immersed into an ice-bath. 2.7 M Phenylmagnesium bromide (0.27 mL) was added slowly via a syringe for 30 min. The reaction mixture was stirred for 2 h at 0 °C under nitrogen atmosphere. The excess Grignard reagent was hydrolyzed with aqueous ammonium chloride and the mixture was filtered. The organic layer was washed with water (10 mL) and dried over anhydrous magnesium sulfate. After the solvent was removed in *vacuo*, the residue was purified by flash column chromatography on silica gel using (n-hexane / ethyl acetate = 7 : 3, v / v) as eluent.. Recrystallization of the complex from diethyl ether affords 71% of the pure complex as a red crystal.

[Cp*Rh(Ph)(Br)(PPh₃)] was isolated as a red crystal (71% yield). ¹H NMR (CDCl₃, 400 MHz): δ_H 7.85 (t, J = 8.5 Hz, 2H), 7.42–7.40 (m, 7H), 7.19–7.15 (m, 4H), 6.99 (m, 3H), 6.91–6.81 (m, 4H), 1.37 (d, J = 2.3 Hz, 15H), ¹³C NMR (CDCl₃, 100 MHz); δ_C 157.6 (d, J = 21 Hz, C), 140.5 (C), 136.0 (d, J = 37 Hz, CH), 134.6 (CH), 131.0 (d, J = 26 Hz, CH), 130.3 (CH), 128.5 (d, J = 77 Hz, CH), 123.1 (CH), 101.4 (t, J = 4 Hz, C), 9.8 (CH₃). ³¹P NMR (CDCl₃, 162 MHz); δ_P 39.8 (d, J = 160.3 Hz). HRMS (ESI) calcd. for C₃₄H₃₅PRh (M+ = [Cp*Rh(Ph)(PPh₃)]⁺) 577.1531, found 577.1516.

4.2.2 Synthesis of [Cp*Rh(Ph)(Cl)(PPh₃)] (5b)

To a 200 mL-Schlenk flask, $[Cp*RhCl_2(PPh_3)]$ (5 mmol) and PhB(OH)₂ (10 mmol) were added. The flask was evacuated and back-filled with N₂ for three times. Distilled THF (50 mL) and NEt₃ (50 mL) were added to the reaction flask. The reaction mixture was stirred at 50 °C for 2 h. After that, solvents were removed by rotary evaporation, and the residue was re-dissolved in a small amount of dichloromethane (DCM). The dissolved mixture was then purified by flash column chromatography on silica gel using (n-hexane / ethyl acetate = 7 : 3, v / v) as eluent. Recrystallization of the complex from diethyl ether affords 83% of the pure complex as red crystal.

[Cp*Rh(Ph)(Cl)(PPh₃)] was isolated as a red crystal (83% yield). ¹H NMR (CDCl₃, 400 MHz): δ_H 7.84–7.43 (m, 9H), 7.19–6.98 (m, 8H), 6.82 (t, J = 7.2 Hz, 1H), 6.61–6.47 (m, 2H), 1.31 (d, J = 2.4 Hz, 15H), ¹³C NMR (CDCl₃, 100 MHz); δ_C 157.6 (d, J = 21 Hz, C), 140.5 (C), 136.0 (d, J = 37 Hz, CH), 134.6 (CH), 131.0 (d, J = 26 Hz, CH), 130.3 (CH), 128.5 (d, J = 77 Hz, CH), 123.1 (CH), 101.4 (t, J = 4 Hz, C), 9.8 (CH₃). ³¹P NMR (CDCl₃, 162 MHz); δ_P 39.8 (d, J = 159.1 Hz). HRMS (ESI) calcd. for C₃₄H₃₅PRh (M+ = [Cp*Rh(Ph)(PPh₃)]⁺) 577.1531, found 577.1516.

5. X-ray Crystallographic Data

Figure S1. Molecular structure of 2-(4-methoxyphenyl)-2-phenyl-, 1-ethyl hydrazinecarboxylic acid ester (**4aa**) (CCDC number = 1455771)

CCDC number	1455771	
Identification code	lyf1	
Empirical formula	$C_{16} H_{18} N_2 O_3$	
Formula weight	286.32	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pc2(1)b	
Unit cell dimensions	a = 9.7693(4) Å	α= 90°.
	b = 16.4783(7) Å	β= 90°.
	c = 19.4329(7) Å	$\gamma = 90^{\circ}$.
Volume	3128.3(2) Å ³	
Z	8	
Density (calculated)	1.216 Mg/m ³	
Absorption coefficient	0.085 mm ⁻¹	
F(000)	1216	
Crystal size	0.60 x 0.42 x 0.42 mm ³	
Theta range for data collection	2.08 to 27.43°.	
Index ranges	-12<=h<=12, -19<=k<=21, -25<=l<=22	
Reflections collected	32425	
Independent reflections	flections $6403 [R(int) = 0.0756]$	
Completeness to theta = 27.43°	leteness to theta = 27.43° 99.6 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.6050	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6403 / 4 / 399	
Goodness-of-fit on F ²	1.005	
Final R indices [I>2sigma(I)]	R1 = 0.0681, wR2 = 0.1709	
R indices (all data)	R1 = 0.1627, $wR2 = 0.2424$	
Absolute structure parameter	ter -1(2)	
Extinction coefficient 0.0053(5)		
Largest diff. peak and hole 0.481 and -0.175 e.Å ⁻³		

Table S3. Crystal data and structure refinement for 2-(4-methoxyphenyl)-2-phenyl-,1-ethyl hydrazinecarboxylic acid ester

O(1)-C(14)	1.210(4)
O(2)-C(14)	1.344(5)
O(2)-C(15)	1.438(6)
O(3)-C(10)	1.387(5)
O(3)-C(13)	1.428(6)
N(1)-C(1)	1.386(5)
N(1)-N(2)	1.404(4)
N(1)-C(7)	1.452(5)
N(2)-C(14)	1.316(5)
N(2)-H(2A)	0.8600
C(1)-C(6)	1.383(6)
C(1)-C(2)	1.395(6)
C(2)-C(3)	1.343(6)
C(2)-H(2B)	0.9300
C(3)-C(4)	1.368(8)
C(3)-H(3A)	0.9300
C(4)-C(5)	1.384(8)
C(4)-H(4A)	0.9300
C(5)-C(6)	1.367(5)
C(5)-H(5A)	0.9300
C(6)-H(6A)	0.9300
C(7)-C(12)	1.382(5)
C(7)-C(8)	1.389(5)
C(8)-C(9)	1.370(5)
C(8)-H(8A)	1.06(3)
C(9)-C(10)	1.381(5)
C(9)-H(9A)	0.9300
C(10)-C(11)	1.390(5)
C(11)-C(12)	1.356(6)
C(11)-H(11A)	0.9300
C(12)-H(12A)	0.9300
C(13)-H(13A)	0.9600
C(13)-H(13B)	0.9600
C(13)-H(13C)	0.9600
C(15)-C(16)	1.347(8)

Table S4. Bond lengths [Å] and angles [°] for 2-(4-methoxyphenyl)-2-phenyl-, 1-ethyl hydrazinecarboxylic acid ester

C(15)-H(15A)	0.9700
C(15)-H(15B)	0.9700
C(16)-H(16A)	0.9600
С(16)-Н(16В)	0.9600
С(16)-Н(16С)	0.9600
O(4)-C(30)	1.212(4)
O(5)-C(30)	1.349(5)
O(5)-C(31)	1.436(5)
O(6)-C(26)	1.371(4)
O(6)-C(29)	1.429(5)
N(3)-C(17)	1.401(5)
N(3)-N(4)	1.406(4)
N(3)-C(23)	1.430(4)
N(4)-C(30)	1.323(5)
N(4)-H(4B)	0.8600
C(17)-C(22)	1.384(5)
C(17)-C(18)	1.385(5)
C(18)-C(19)	1.377(6)
C(18)-H(18A)	0.97(3)
C(19)-C(20)	1.375(6)
С(19)-Н(19А)	0.9300
C(20)-C(21)	1.356(7)
C(20)-H(20A)	0.9300
C(21)-C(22)	1.376(6)
C(21)-H(21A)	0.9300
C(22)-H(22A)	0.9300
C(23)-C(28)	1.368(4)
C(23)-C(24)	1.375(5)
C(24)-C(25)	1.383(5)
C(24)-H(24A)	0.84(3)
C(25)-C(26)	1.381(5)
C(25)-H(25A)	1.13(4)
C(26)-C(27)	1.389(5)
C(27)-C(28)	1.375(5)
C(27)-H(27A)	0.9300
C(28)-H(28A)	0.87(3)
C(28)-H(28A) C(29)-H(29A)	0.87(3) 0.9600

C(29)-H(29C)	0.9600
C(31)-C(32)	1.346(7)
C(31)-H(31A)	0.9700
C(31)-H(31B)	0.9700
C(32)-H(32A)	0.9600
C(32)-H(32B)	0.9600
C(32)-H(32C)	0.9600
C(14)-O(2)-C(15)	117.0(4)
C(10)-O(3)-C(13)	118.3(4)
C(1)-N(1)-N(2)	119.4(3)
C(1)-N(1)-C(7)	124.5(3)
N(2)-N(1)-C(7)	114.5(3)
C(14)-N(2)-N(1)	119.2(3)
C(14)-N(2)-H(2A)	120.4
N(1)-N(2)-H(2A)	120.4
C(6)-C(1)-N(1)	120.5(4)
C(6)-C(1)-C(2)	117.4(4)
N(1)-C(1)-C(2)	121.9(4)
C(3)-C(2)-C(1)	120.0(5)
C(3)-C(2)-H(2B)	120.0
C(1)-C(2)-H(2B)	120.0
C(2)-C(3)-C(4)	123.9(6)
C(2)-C(3)-H(3A)	118.0
C(4)-C(3)-H(3A)	118.0
C(5)-C(4)-C(3)	116.0(5)
C(5)-C(4)-H(4A)	122.0
C(3)-C(4)-H(4A)	122.0
C(4)-C(5)-C(6)	121.8(5)
C(4)-C(5)-H(5A)	119.1
C(6)-C(5)-H(5A)	119.1
C(1)-C(6)-C(5)	120.8(5)
C(1)-C(6)-H(6A)	119.6
C(5)-C(6)-H(6A)	119.6
C(12)-C(7)-C(8)	119.5(4)
C(12)-C(7)-N(1)	119.2(3)
C(8)-C(7)-N(1)	121.2(3)
C(9)-C(8)-C(7)	120.5(3)

C(9)-C(8)-H(8A)	111.6(16)
C(7)-C(8)-H(8A)	127.9(16)
C(8)-C(9)-C(10)	119.7(3)
C(8)-C(9)-H(9A)	120.2
C(10)-C(9)-H(9A)	120.2
C(9)-C(10)-O(3)	124.7(3)
C(9)-C(10)-C(11)	119.5(4)
O(3)-C(10)-C(11)	115.8(3)
C(12)-C(11)-C(10)	120.8(4)
С(12)-С(11)-Н(11А)	119.6
C(10)-C(11)-H(11A)	119.6
C(11)-C(12)-C(7)	120.0(3)
С(11)-С(12)-Н(12А)	120.0
C(7)-C(12)-H(12A)	120.0
O(3)-C(13)-H(13A)	109.5
O(3)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
O(3)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
O(1)-C(14)-N(2)	125.7(4)
O(1)-C(14)-O(2)	125.1(4)
N(2)-C(14)-O(2)	109.2(3)
C(16)-C(15)-O(2)	111.6(6)
C(16)-C(15)-H(15A)	109.3
O(2)-C(15)-H(15A)	109.3
C(16)-C(15)-H(15B)	109.3
O(2)-C(15)-H(15B)	109.3
H(15A)-C(15)-H(15B)	108.0
C(15)-C(16)-H(16A)	109.5
C(15)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(15)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(30)-O(5)-C(31)	116.3(3)
C(26)-O(6)-C(29)	117.5(3)
C(17)-N(3)-N(4)	117.3(3)

C(17)-N(3)-C(23)	124.9(3)
N(4)-N(3)-C(23)	115.6(3)
C(30)-N(4)-N(3)	119.8(3)
C(30)-N(4)-H(4B)	120.1
N(3)-N(4)-H(4B)	120.1
C(22)-C(17)-C(18)	118.6(4)
C(22)-C(17)-N(3)	121.2(3)
C(18)-C(17)-N(3)	120.1(3)
C(19)-C(18)-C(17)	120.0(4)
C(19)-C(18)-H(18A)	115(2)
C(17)-C(18)-H(18A)	124(2)
C(20)-C(19)-C(18)	121.0(5)
C(20)-C(19)-H(19A)	119.5
C(18)-C(19)-H(19A)	119.5
C(21)-C(20)-C(19)	118.7(5)
C(21)-C(20)-H(20A)	120.6
C(19)-C(20)-H(20A)	120.6
C(20)-C(21)-C(22)	121.5(4)
C(20)-C(21)-H(21A)	119.2
C(22)-C(21)-H(21A)	119.2
C(21)-C(22)-C(17)	120.0(4)
C(21)-C(22)-H(22A)	120.0
C(17)-C(22)-H(22A)	120.0
C(28)-C(23)-C(24)	118.9(3)
C(28)-C(23)-N(3)	122.5(3)
C(24)-C(23)-N(3)	118.6(3)
C(23)-C(24)-C(25)	121.2(3)
C(23)-C(24)-H(24A)	120(2)
C(25)-C(24)-H(24A)	119(2)
C(26)-C(25)-C(24)	119.0(3)
C(26)-C(25)-H(25A)	126(2)
C(24)-C(25)-H(25A)	114(2)
O(6)-C(26)-C(25)	115.9(3)
O(6)-C(26)-C(27)	123.8(3)
C(25)-C(26)-C(27)	120.3(3)
C(28)-C(27)-C(26)	119.0(3)
C(28)-C(27)-H(27A)	120.5
C(26)-C(27)-H(27A)	120.5

C(23)-C(28)-C(27)	121.5(3)
C(23)-C(28)-H(28A)	126.1(19)
C(27)-C(28)-H(28A)	112.3(19)
O(6)-C(29)-H(29A)	109.5
O(6)-C(29)-H(29B)	109.5
H(29A)-C(29)-H(29B)	109.5
O(6)-C(29)-H(29C)	109.5
H(29A)-C(29)-H(29C)	109.5
H(29B)-C(29)-H(29C)	109.5
O(4)-C(30)-N(4)	126.3(4)
O(4)-C(30)-O(5)	124.9(4)
N(4)-C(30)-O(5)	108.9(3)
C(32)-C(31)-O(5)	111.0(5)
C(32)-C(31)-H(31A)	109.4
O(5)-C(31)-H(31A)	109.4
C(32)-C(31)-H(31B)	109.4
O(5)-C(31)-H(31B)	109.4
H(31A)-C(31)-H(31B)	108.0
C(31)-C(32)-H(32A)	109.5
C(31)-C(32)-H(32B)	109.5
H(32A)-C(32)-H(32B)	109.5
C(31)-C(32)-H(32C)	109.5
H(32A)-C(32)-H(32C)	109.5
H(32B)-C(32)-H(32C)	109.5

Symmetry transformations used to generate equivalent atoms:

Figure S2a. Molecular structure of Rhodium, bromo-(1,2,3,4,5pentamethylcyclopentadienyl)phenyl(triphenylphosphine) complex (**5a**) (CCDC number = 1455769)

1455769	
lyf5	
RhBr(C ₁₀ H ₁₅)(C ₆ H ₅)P(C ₆ H ₅) ₃	
657.41	
296(2) K	
0.71073 Å	
Triclinic	
P-1	
a = 10.4383(2) Å	α= 104.905(2)°.
b = 15.6767(4) Å	β=100.8330(10)°.
c = 19.2505(5) Å	$\gamma = 98.7530(10)^{\circ}$.
2922.39(12) Å ³	
4	
1.494 Mg/m ³	
2.027 mm ⁻¹	
1336	
0.32 x 0.18 x 0.10 mm ³	
1.38 to 27.52°.	
-13<=h<=13, -20<=k<=20, -25<=l<=24	
80719	
dependent reflections $13409 [R(int) = 0.0940]$	
99.6 %	
Semi-empirical from equivalents	
0.8230 and 0.5631	
Full-matrix least-squares on F ²	
13409 / 6 / 667	
1.003	
R1 = 0.0825, $wR2 = 0.2105$	
R1 = 0.1486, $wR2 = 0.2502$	
1.191 and -1.215 e.Å ⁻³	
	1455769 lyf5 RhBr(C ₁₀ H ₁₅)(C ₆ H ₅)P(C ₆ H ₅) ₃ 657.41 296(2) K 0.71073 Å Triclinic P-1 a = 10.4383(2) Å b = 15.6767(4) Å c = 19.2505(5) Å 2922.39(12) Å ³ 4 1.494 Mg/m ³ 2.027 mm ⁻¹ 1336 0.32 x 0.18 x 0.10 mm ³ 1.38 to 27.52°. -13<=h<=13, -20<=k<=20, -25 80719 13409 [R(int) = 0.0940] 99.6 % Semi-empirical from equivaler 0.8230 and 0.5631 Full-matrix least-squares on F ² 13409 / 6 / 667 1.003 R1 = 0.0825, wR2 = 0.2105 R1 = 0.1486, wR2 = 0.2502 1.191 and -1.215 e.Å ⁻³

Table S5. Crystal data and structure refinement for Rhodium, bromo-(1,2,3,4,5-pentamethylcyclopentadienyl)phenyl(triphenylphosphine) complex

Rh(1)-C(11)	2.067(4)
Rh(1)-C(1)	2.192(4)
Rh(1)-C(2)	2.232(4)
Rh(1)-C(3)	2.242(5)
Rh(1)-C(4)	2.292(4)
Rh(1)-C(5)	2.294(4)
Rh(1)-P(1)	2.2983(11)
Rh(1)-Br(1)	2.4778(9)
P(1)-C(17)	1.820(5)
P(1)-C(23)	1.830(4)
P(1)-C(29)	1.837(5)
C(1)-C(2)	1.435(7)
C(1)-C(5)	1.457(7)
C(1)-C(6)	1.489(8)
C(2)-C(3)	1.411(8)
C(2)-C(7)	1.496(7)
C(3)-C(4)	1.439(7)
C(3)-C(8)	1.515(8)
C(4)-C(5)	1.396(8)
C(4)-C(9)	1.516(8)
C(5)-C(10)	1.491(8)
C(6)-H(6A)	0.9600
C(6)-H(6B)	0.9600
C(6)-H(6C)	0.9600
C(7)-H(7A)	0.9600
C(7)-H(7B)	0.9600
C(7)-H(7C)	0.9600
C(8)-H(8A)	0.9600
C(8)-H(8B)	0.9600
C(8)-H(8C)	0.9600
C(9)-H(9A)	0.9600
C(9)-H(9B)	0.9600
C(9)-H(9C)	0.9600
C(10)-H(10A)	0.9600
C(10)-H(10B)	0.9600

Table S6. Bond lengths [Å] and angles [°] for Rhodium, bromo-(1,2,3,4,5-pentamethylcyclopentadienyl)phenyl(triphenylphosphine) complex

0.9600
1.375(7)
1.406(6)
1.392(7)
0.9300
1.360(8)
0.9300
1.357(9)
0.9300
1.412(7)
0.9300
0.9300
1.380(6)
1.403(6)
1.400(8)
0.9300
1.352(7)
0.9300
1.362(8)
0.9300
1.370(9)
0.9300
0.9300
1.372(6)
1.400(6)
1.364(6)
0.9300
1.372(8)
0.9300
1.364(8)
0.9300
1.382(6)
0.9300
0.9300
1.368(7)
1.385(8)
1.380(8)
0.9300

C(31)-C(32)	1.354(10)
C(31)-H(31A)	0.9300
C(32)-C(33)	1.359(10)
C(32)-H(32A)	0.9300
C(33)-C(34)	1.376(8)
C(33)-H(33A)	0.9300
C(34)-H(34A)	0.9300
Rh(2)-C(45)	2.060(4)
Rh(2)-C(39)	2.202(5)
Rh(2)-C(37)	2.211(6)
Rh(2)-C(38)	2.221(6)
Rh(2)-C(36)	2.264(5)
Rh(2)-C(35)	2.298(5)
Rh(2)-P(2)	2.3194(14)
Rh(2)-Br(2)	2.4911(10)
P(2)-C(51)	1.836(5)
P(2)-C(57)	1.852(4)
P(2)-C(63)	1.853(5)
C(35)-C(36)	1.391(9)
C(35)-C(39)	1.462(8)
C(35)-C(40)	1.479(8)
C(36)-C(37)	1.438(8)
C(36)-C(41)	1.498(9)
C(37)-C(38)	1.396(10)
C(37)-C(42)	1.485(10)
C(38)-C(39)	1.441(9)
C(38)-C(43)	1.540(10)
C(39)-C(44)	1.476(10)
C(40)-H(40A)	0.9600
C(40)-H(40B)	0.9600
C(40)-H(40C)	0.9600
C(41)-H(41A)	0.9600
C(41)-H(41B)	0.9600
C(41)-H(41C)	0.9600
C(42)-H(42A)	0.9600
C(42)-H(42B)	0.9600
C(42)-H(42C)	0.9600
C(43)-H(43A)	0.9600

C(43)-H(43B)	0.9600
C(43)-H(43C)	0.9600
C(44)-H(44A)	0.9600
C(44)-H(44B)	0.9600
C(44)-H(44C)	0.9600
C(45)-C(50)	1.361(8)
C(45)-C(46)	1.401(7)
C(46)-C(47)	1.361(7)
C(46)-H(46A)	0.9300
C(47)-C(48)	1.343(9)
C(47)-H(47A)	0.9300
C(48)-C(49)	1.377(9)
C(48)-H(48A)	0.9300
C(49)-C(50)	1.403(8)
C(49)-H(49A)	0.9300
C(50)-H(50A)	0.9300
C(51)-C(52)	1.376(7)
C(51)-C(56)	1.384(7)
C(52)-C(53)	1.422(10)
C(52)-H(52A)	0.9300
C(53)-C(54)	1.361(9)
C(53)-H(53A)	0.9300
C(54)-C(55)	1.329(7)
C(54)-H(54A)	0.9300
C(55)-C(56)	1.406(8)
C(55)-H(55A)	0.9300
C(56)-H(56A)	0.9300
C(57)-C(58)	1.370(7)
C(57)-C(62)	1.374(8)
C(58)-C(59)	1.383(7)
C(58)-H(58A)	0.9300
C(59)-C(60)	1.348(9)
C(59)-H(59A)	0.9300
C(60)-C(61)	1.361(9)
C(60)-H(60A)	0.9300
C(61)-C(62)	1.370(8)
C(61)-H(61A)	0.9300
C(62)-H(62A)	0.9300

C(63)-C(68)	1.375(7)
C(63)-C(64)	1.409(7)
C(64)-C(65)	1.378(8)
C(64)-H(64A)	0.9300
C(65)-C(66)	1.375(9)
C(65)-H(65A)	0.9300
C(66)-C(67)	1.373(9)
C(66)-H(66A)	0.9300
C(67)-C(68)	1.385(7)
C(67)-H(67A)	0.9300
C(68)-H(68A)	0.9300
C(11)-Rh(1)-C(1)	101.20(17)
C(11)-Rh(1)-C(2)	88.97(16)
C(1)-Rh(1)-C(2)	37.83(19)
C(11)-Rh(1)-C(3)	113.02(18)
C(1)-Rh(1)-C(3)	62.41(19)
C(2)-Rh(1)-C(3)	36.78(19)
C(11)-Rh(1)-C(4)	149.06(17)
C(1)-Rh(1)-C(4)	61.87(18)
C(2)-Rh(1)-C(4)	61.52(18)
C(3)-Rh(1)-C(4)	37.00(18)
C(11)-Rh(1)-C(5)	138.58(18)
C(1)-Rh(1)-C(5)	37.82(18)
C(2)-Rh(1)-C(5)	61.90(17)
C(3)-Rh(1)-C(5)	60.90(18)
C(4)-Rh(1)-C(5)	35.44(19)
C(11)-Rh(1)-P(1)	87.50(12)
C(1)-Rh(1)-P(1)	113.07(14)
C(2)-Rh(1)-P(1)	148.85(15)
C(3)-Rh(1)-P(1)	159.35(13)
C(4)-Rh(1)-P(1)	122.38(14)
C(5)-Rh(1)-P(1)	102.49(13)
C(11)-Rh(1)-Br(1)	95.86(12)
C(1)-Rh(1)-Br(1)	151.59(14)
C(2)-Rh(1)-Br(1)	121.09(15)
C(3)-Rh(1)-Br(1)	90.06(14)
C(4)-Rh(1)-Br(1)	92.26(13)

C(5)-Rh(1)-Br(1)	123.80(14)
P(1)-Rh(1)-Br(1)	90.06(4)
C(17)-P(1)-C(23)	100.71(19)
C(17)-P(1)-C(29)	103.6(2)
C(23)-P(1)-C(29)	102.05(19)
C(17)-P(1)-Rh(1)	116.82(14)
C(23)-P(1)-Rh(1)	120.23(15)
C(29)-P(1)-Rh(1)	111.17(15)
C(2)-C(1)-C(5)	107.2(5)
C(2)-C(1)-C(6)	123.4(5)
C(5)-C(1)-C(6)	127.0(5)
C(2)-C(1)-Rh(1)	72.6(2)
C(5)-C(1)-Rh(1)	74.9(2)
C(6)-C(1)-Rh(1)	131.6(3)
C(3)-C(2)-C(1)	107.7(4)
C(3)-C(2)-C(7)	127.3(5)
C(1)-C(2)-C(7)	125.1(5)
C(3)-C(2)-Rh(1)	72.0(3)
C(1)-C(2)-Rh(1)	69.6(2)
C(7)-C(2)-Rh(1)	124.7(3)
C(2)-C(3)-C(4)	108.6(5)
C(2)-C(3)-C(8)	125.8(5)
C(4)-C(3)-C(8)	125.4(5)
C(2)-C(3)-Rh(1)	71.2(3)
C(4)-C(3)-Rh(1)	73.4(3)
C(8)-C(3)-Rh(1)	125.0(3)
C(5)-C(4)-C(3)	108.4(5)
C(5)-C(4)-C(9)	128.0(5)
C(3)-C(4)-C(9)	123.6(5)
C(5)-C(4)-Rh(1)	72.4(2)
C(3)-C(4)-Rh(1)	69.6(2)
C(9)-C(4)-Rh(1)	126.2(3)
C(4)-C(5)-C(1)	107.9(4)
C(4)-C(5)-C(10)	127.2(5)
C(1)-C(5)-C(10)	124.5(5)
C(4)-C(5)-Rh(1)	72.2(2)
C(1)-C(5)-Rh(1)	67.3(2)
C(10)-C(5)-Rh(1)	131.1(3)

C(1)-C(6)-H(6A)	109.5
C(1)-C(6)-H(6B)	109.5
H(6A)-C(6)-H(6B)	109.5
C(1)-C(6)-H(6C)	109.5
H(6A)-C(6)-H(6C)	109.5
H(6B)-C(6)-H(6C)	109.5
C(2)-C(7)-H(7A)	109.5
C(2)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
С(2)-С(7)-Н(7С)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
C(3)-C(8)-H(8A)	109.5
C(3)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(3)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(4)-C(9)-H(9A)	109.5
C(4)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(4)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
С(5)-С(10)-Н(10А)	109.5
C(5)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
С(5)-С(10)-Н(10С)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(12)-C(11)-C(16)	117.1(4)
C(12)-C(11)-Rh(1)	122.4(3)
C(16)-C(11)-Rh(1)	120.2(4)
C(11)-C(12)-C(13)	122.0(5)
С(11)-С(12)-Н(12А)	119.0
C(13)-C(12)-H(12A)	119.0
C(14)-C(13)-C(12)	120.9(5)
C(14)-C(13)-H(13A)	119.5
C(12)-C(13)-H(13A)	119.5
--------------------	----------
C(15)-C(14)-C(13)	118.8(5)
C(15)-C(14)-H(14A)	120.6
C(13)-C(14)-H(14A)	120.6
C(14)-C(15)-C(16)	121.6(5)
C(14)-C(15)-H(15A)	119.2
C(16)-C(15)-H(15A)	119.2
C(11)-C(16)-C(15)	119.6(5)
С(11)-С(16)-Н(16А)	120.2
C(15)-C(16)-H(16A)	120.2
C(18)-C(17)-C(22)	117.3(5)
C(18)-C(17)-P(1)	122.9(3)
C(22)-C(17)-P(1)	119.4(3)
C(17)-C(18)-C(19)	121.1(4)
C(17)-C(18)-H(18A)	119.5
C(19)-C(18)-H(18A)	119.5
C(20)-C(19)-C(18)	119.8(5)
C(20)-C(19)-H(19A)	120.1
C(18)-C(19)-H(19A)	120.1
C(19)-C(20)-C(21)	120.3(6)
C(19)-C(20)-H(20A)	119.8
C(21)-C(20)-H(20A)	119.8
C(20)-C(21)-C(22)	120.8(5)
C(20)-C(21)-H(21A)	119.6
C(22)-C(21)-H(21A)	119.6
C(21)-C(22)-C(17)	120.7(5)
C(21)-C(22)-H(22A)	119.7
C(17)-C(22)-H(22A)	119.7
C(28)-C(23)-C(24)	117.1(3)
C(28)-C(23)-P(1)	123.4(3)
C(24)-C(23)-P(1)	119.5(3)
C(25)-C(24)-C(23)	122.0(4)
C(25)-C(24)-H(24A)	119.0
C(23)-C(24)-H(24A)	119.0
C(24)-C(25)-C(26)	119.5(5)
C(24)-C(25)-H(25A)	120.2
C(26)-C(25)-H(25A)	120.2
C(27)-C(26)-C(25)	119.9(4)

C(27)-C(26)-H(26A)	120.1
C(25)-C(26)-H(26A)	120.1
C(26)-C(27)-C(28)	120.5(5)
С(26)-С(27)-Н(27А)	119.8
C(28)-C(27)-H(27A)	119.8
C(23)-C(28)-C(27)	121.0(4)
C(23)-C(28)-H(28A)	119.5
C(27)-C(28)-H(28A)	119.5
C(34)-C(29)-C(30)	118.3(5)
C(34)-C(29)-P(1)	124.3(4)
C(30)-C(29)-P(1)	117.2(4)
C(31)-C(30)-C(29)	120.5(6)
C(31)-C(30)-H(30A)	119.7
C(29)-C(30)-H(30A)	119.7
C(32)-C(31)-C(30)	119.2(6)
C(32)-C(31)-H(31A)	120.4
C(30)-C(31)-H(31A)	120.4
C(31)-C(32)-C(33)	121.8(6)
C(31)-C(32)-H(32A)	119.1
C(33)-C(32)-H(32A)	119.1
C(32)-C(33)-C(34)	118.8(6)
C(32)-C(33)-H(33A)	120.6
C(34)-C(33)-H(33A)	120.6
C(29)-C(34)-C(33)	121.4(6)
C(29)-C(34)-H(34A)	119.3
C(33)-C(34)-H(34A)	119.3
C(45)-Rh(2)-C(39)	103.2(2)
C(45)-Rh(2)-C(37)	105.4(2)
C(39)-Rh(2)-C(37)	63.2(2)
C(45)-Rh(2)-C(38)	85.9(2)
C(39)-Rh(2)-C(38)	38.0(2)
C(37)-Rh(2)-C(38)	36.7(3)
C(45)-Rh(2)-C(36)	142.8(2)
C(39)-Rh(2)-C(36)	62.4(2)
C(37)-Rh(2)-C(36)	37.5(2)
C(38)-Rh(2)-C(36)	61.4(2)
C(45)-Rh(2)-C(35)	141.0(2)
C(39)-Rh(2)-C(35)	37.9(2)

5(2) 5(2) 35(15) 17(17) 02(15) 53(18) 35(16)
5(2) 35(15) 17(17) 02(15) 53(18) 35(16)
35(15) 17(17) 02(15) 53(18) 35(16)
17(17) 02(15) 53(18) 35(16)
02(15) 53(18) 35(16)
53(18) 35(16)
35(16)
= (1 =)
15(15)
33(15)
78(18)
51(18)
70(18)
57(16)
)2(16)
77(4)
2(2)
3(2)
)(2)
38(17)
3(18)
7(16)
3(5)
(5)
(6)
9(3)
5(3)
7(4)
7(6)
6(6)
4(6)
5(3)
3(3)
5(4)
3(5)
2(6)
5(7)
)(4)

C(36)-C(37)-Rh(2)	73.3(3)
C(42)-C(37)-Rh(2)	125.5(4)
C(37)-C(38)-C(39)	109.2(5)
C(37)-C(38)-C(43)	127.2(6)
C(39)-C(38)-C(43)	123.6(7)
C(37)-C(38)-Rh(2)	71.2(3)
C(39)-C(38)-Rh(2)	70.3(3)
C(43)-C(38)-Rh(2)	125.8(4)
C(38)-C(39)-C(35)	105.6(6)
C(38)-C(39)-C(44)	125.7(6)
C(35)-C(39)-C(44)	126.6(5)
C(38)-C(39)-Rh(2)	71.7(3)
C(35)-C(39)-Rh(2)	74.6(3)
C(44)-C(39)-Rh(2)	131.2(4)
C(35)-C(40)-H(40A)	109.5
C(35)-C(40)-H(40B)	109.5
H(40A)-C(40)-H(40B)	109.5
С(35)-С(40)-Н(40С)	109.5
H(40A)-C(40)-H(40C)	109.5
H(40B)-C(40)-H(40C)	109.5
C(36)-C(41)-H(41A)	109.5
C(36)-C(41)-H(41B)	109.5
H(41A)-C(41)-H(41B)	109.5
C(36)-C(41)-H(41C)	109.5
H(41A)-C(41)-H(41C)	109.5
H(41B)-C(41)-H(41C)	109.5
C(37)-C(42)-H(42A)	109.5
C(37)-C(42)-H(42B)	109.5
H(42A)-C(42)-H(42B)	109.5
C(37)-C(42)-H(42C)	109.5
H(42A)-C(42)-H(42C)	109.5
H(42B)-C(42)-H(42C)	109.5
C(38)-C(43)-H(43A)	109.5
C(38)-C(43)-H(43B)	109.5
H(43A)-C(43)-H(43B)	109.5
C(38)-C(43)-H(43C)	109.5
H(43A)-C(43)-H(43C)	109.5
H(43B)-C(43)-H(43C)	109.5

C(39)-C(44)-H(44A)	109.5
C(39)-C(44)-H(44B)	109.5
H(44A)-C(44)-H(44B)	109.5
C(39)-C(44)-H(44C)	109.5
H(44A)-C(44)-H(44C)	109.5
H(44B)-C(44)-H(44C)	109.5
C(50)-C(45)-C(46)	115.7(4)
C(50)-C(45)-Rh(2)	124.2(4)
C(46)-C(45)-Rh(2)	119.0(4)
C(47)-C(46)-C(45)	123.0(5)
C(47)-C(46)-H(46A)	118.5
C(45)-C(46)-H(46A)	118.5
C(48)-C(47)-C(46)	120.4(5)
C(48)-C(47)-H(47A)	119.8
C(46)-C(47)-H(47A)	119.8
C(47)-C(48)-C(49)	119.3(5)
C(47)-C(48)-H(48A)	120.4
C(49)-C(48)-H(48A)	120.4
C(48)-C(49)-C(50)	119.9(6)
C(48)-C(49)-H(49A)	120.0
C(50)-C(49)-H(49A)	120.0
C(45)-C(50)-C(49)	121.6(5)
C(45)-C(50)-H(50A)	119.2
C(49)-C(50)-H(50A)	119.2
C(52)-C(51)-C(56)	118.9(5)
C(52)-C(51)-P(2)	119.2(4)
C(56)-C(51)-P(2)	121.9(3)
C(51)-C(52)-C(53)	119.4(5)
C(51)-C(52)-H(52A)	120.3
C(53)-C(52)-H(52A)	120.3
C(54)-C(53)-C(52)	120.8(5)
C(54)-C(53)-H(53A)	119.6
C(52)-C(53)-H(53A)	119.6
C(55)-C(54)-C(53)	119.2(6)
C(55)-C(54)-H(54A)	120.4
C(53)-C(54)-H(54A)	120.4
C(54)-C(55)-C(56)	122.2(5)
C(54)-C(55)-H(55A)	118.9

C(56)-C(55)-H(55A)	118.9
C(51)-C(56)-C(55)	119.4(4)
C(51)-C(56)-H(56A)	120.3
C(55)-C(56)-H(56A)	120.3
C(58)-C(57)-C(62)	118.2(4)
C(58)-C(57)-P(2)	121.1(4)
C(62)-C(57)-P(2)	120.6(4)
C(57)-C(58)-C(59)	119.6(5)
C(57)-C(58)-H(58A)	120.2
C(59)-C(58)-H(58A)	120.2
C(60)-C(59)-C(58)	121.5(6)
C(60)-C(59)-H(59A)	119.2
C(58)-C(59)-H(59A)	119.2
C(59)-C(60)-C(61)	119.3(5)
C(59)-C(60)-H(60A)	120.4
C(61)-C(60)-H(60A)	120.4
C(60)-C(61)-C(62)	120.0(7)
C(60)-C(61)-H(61A)	120.0
C(62)-C(61)-H(61A)	120.0
C(61)-C(62)-C(57)	121.4(6)
C(61)-C(62)-H(62A)	119.3
C(57)-C(62)-H(62A)	119.3
C(68)-C(63)-C(64)	118.2(5)
C(68)-C(63)-P(2)	119.1(4)
C(64)-C(63)-P(2)	122.8(4)
C(65)-C(64)-C(63)	121.0(6)
C(65)-C(64)-H(64A)	119.5
C(63)-C(64)-H(64A)	119.5
C(66)-C(65)-C(64)	119.5(6)
C(66)-C(65)-H(65A)	120.2
C(64)-C(65)-H(65A)	120.2
C(67)-C(66)-C(65)	120.0(6)
C(67)-C(66)-H(66A)	120.0
C(65)-C(66)-H(66A)	120.0
C(66)-C(67)-C(68)	120.7(6)
C(66)-C(67)-H(67A)	119.7
C(68)-C(67)-H(67A)	119.7
C(63)-C(68)-C(67)	120.5(5)

C(63)-C(68)-H(68A)	119.8
C(67)-C(68)-H(68A)	119.8

Symmetry transformations used to generate equivalent atoms:

Figure S2b. Molecular structure of Rhodium, chloro-(1,2,3,4,5pentamethylcyclopentadienyl)phenyl(triphenylphosphine) complex (**5b**) (CCDC number = 1455768)

CCDC number	1455768	
Identification code	nfn22	
Empirical formula	RhCl(C ₁₆ H ₂₀)P(C ₆ H ₅) ₃	
Formula weight	612.95	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 10.4496(3) Å	α= 104.775(2)°.
	b = 15.6045(5) Å	β=100.930(2)°.
	c = 19.2722(6) Å	$\gamma = 98.868(2)^{\circ}$.
Volume	2914.84(15) Å ³	
Ζ	4	
Density (calculated)	1.397 Mg/m ³	
Absorption coefficient	0.754 mm ⁻¹	
F(000)	1264	
Crystal size	0.18 x 0.16 x 0.10 mm ³	
Theta range for data collection	1.38 to 27.58°.	
Index ranges	-13<=h<=13, -20<=k<=20, -25<=l<=25	
Reflections collected	66539	
Independent reflections	12997 [R(int) = 0.0884]	
Completeness to theta = 27.58°	96.3 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.5939	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	12997 / 0 / 745	
Goodness-of-fit on F ²	1.000	
Final R indices [I>2sigma(I)]	R1 = 0.0611, $wR2 = 0.1183$	
R indices (all data)	R1 = 0.1110, $wR2 = 0.1373$	
	K1 = 0.1110, WK2 = 0.1373	

Table S7. Crystal data and structure refinement for Rhodium, chloro-(1,2,3,4,5-pentamethylcyclopentadienyl)phenyl(triphenylphosphine) complex

Rh(1)-C(11)	2.054(3)
Rh(1)-C(5)	2.201(3)
Rh(1)-C(1)	2.229(3)
Rh(1)-C(2)	2.229(4)
Rh(1)-C(3)	2.280(3)
Rh(1)-C(4)	2.292(3)
Rh(1)-P(1)	2.2939(10)
Rh(1)-Cl(1)	2.4074(10)
P(1)-C(23)	1.821(4)
P(1)-C(29)	1.834(3)
P(1)-C(17)	1.836(4)
C(1)-C(2)	1.405(6)
C(1)-C(5)	1.440(6)
C(1)-C(6)	1.508(6)
C(2)-C(3)	1.447(6)
C(2)-C(7)	1.502(6)
C(3)-C(4)	1.389(6)
C(3)-C(8)	1.501(6)
C(4)-C(5)	1.447(6)
C(4)-C(9)	1.513(6)
C(5)-C(10)	1.499(6)
C(6)-H(6A)	0.9600
C(6)-H(6B)	0.9600
C(6)-H(6C)	0.9600
C(7)-H(7A)	0.9600
C(7)-H(7B)	0.9600
C(7)-H(7C)	0.9600
C(8)-H(8A)	0.9600
C(8)-H(8B)	0.9600
C(8)-H(8C)	0.9600
C(9)-H(9A)	0.9600
C(9)-H(9B)	0.9600
C(9)-H(9C)	0.9600
C(10)-H(10A)	0.9600
C(10)-H(10B)	0.9600

Table S8. Bond lengths [Å] and angles [°] for Rhodium, chloro-(1,2,3,4,5-pentamethylcyclopentadienyl)phenyl(triphenylphosphine) complex

C(10)-H(10C)	0.9600
C(11)-C(12)	1.384(5)
C(11)-C(16)	1.399(5)
C(12)-C(13)	1.380(5)
C(12)-H(12A)	0.9300
C(13)-C(14)	1.369(6)
С(13)-Н(13А)	0.88(4)
C(14)-C(15)	1.364(7)
C(14)-H(14A)	0.9300
C(15)-C(16)	1.387(6)
C(15)-H(15A)	0.9300
C(16)-H(16A)	0.95(3)
C(17)-C(18)	1.372(6)
C(17)-C(22)	1.394(6)
C(18)-C(19)	1.385(6)
C(18)-H(18A)	0.88(3)
C(19)-C(20)	1.366(7)
C(19)-H(19A)	0.9300
C(20)-C(21)	1.358(8)
C(20)-H(20A)	0.85(4)
C(21)-C(22)	1.376(6)
C(21)-H(21A)	0.9300
C(22)-H(22A)	0.89(4)
C(23)-C(24)	1.376(5)
C(23)-C(28)	1.391(5)
C(24)-C(25)	1.383(7)
C(24)-H(24A)	0.9300
C(25)-C(26)	1.358(7)
C(25)-H(25A)	0.87(3)
C(26)-C(27)	1.372(6)
C(26)-H(26A)	0.86(5)
C(27)-C(28)	1.384(6)
C(27)-H(27A)	0.9300
C(28)-H(28A)	0.83(3)
C(29)-C(30)	1.379(5)
C(29)-C(34)	1.386(5)
C(30)-C(31)	1.379(5)
С(30)-Н(30А)	0.94(3)

C(31)-C(32)	1.355(6)
C(31)-H(31A)	0.84(4)
C(32)-C(33)	1.353(6)
C(32)-H(32A)	0.84(3)
C(33)-C(34)	1.387(5)
C(33)-H(33A)	0.82(3)
C(34)-H(34A)	0.87(3)
Rh(2)-C(45)	2.059(4)
Rh(2)-C(35)	2.198(4)
Rh(2)-C(38)	2.209(5)
Rh(2)-C(39)	2.232(4)
Rh(2)-C(37)	2.270(4)
Rh(2)-C(36)	2.296(4)
Rh(2)-P(2)	2.3194(11)
Rh(2)-Cl(2)	2.4153(11)
P(2)-C(57)	1.832(4)
P(2)-C(63)	1.836(4)
P(2)-C(51)	1.844(4)
C(35)-C(39)	1.431(7)
C(35)-C(36)	1.450(6)
C(35)-C(40)	1.489(7)
C(36)-C(37)	1.397(6)
C(36)-C(41)	1.500(6)
C(37)-C(38)	1.460(6)
C(37)-C(42)	1.504(7)
C(38)-C(39)	1.424(7)
C(38)-C(43)	1.482(7)
C(39)-C(44)	1.489(7)
C(40)-H(40A)	0.9600
C(40)-H(40B)	0.9600
C(40)-H(40C)	0.9600
C(41)-H(41A)	0.9600
C(41)-H(41B)	0.9600
C(41)-H(41C)	0.9600
C(42)-H(42A)	0.9600
C(42)-H(42B)	0.9600
C(42)-H(42C)	0.9600
C(43)-H(43A)	0.9600

C(43)-H(43B)	0.9600
С(43)-Н(43С)	0.9600
C(44)-H(44A)	0.9600
C(44)-H(44B)	0.9600
C(44)-H(44C)	0.9600
C(45)-C(50)	1.385(6)
C(45)-C(46)	1.391(5)
C(46)-C(47)	1.387(6)
C(46)-H(46A)	0.96(4)
C(47)-C(48)	1.345(7)
C(47)-H(47A)	0.9300
C(48)-C(49)	1.371(6)
C(48)-H(48A)	0.9300
C(49)-C(50)	1.380(6)
C(49)-H(49A)	0.9300
C(50)-H(50A)	0.9300
C(51)-C(56)	1.380(6)
C(51)-C(52)	1.403(6)
C(52)-C(53)	1.389(7)
C(52)-H(52A)	0.9300
C(53)-C(54)	1.376(8)
C(53)-H(53A)	0.9300
C(54)-C(55)	1.369(8)
C(54)-H(54A)	0.84(4)
C(55)-C(56)	1.380(6)
C(55)-H(55A)	0.9300
C(56)-H(56A)	0.9300
C(57)-C(58)	1.384(6)
C(57)-C(62)	1.389(6)
C(58)-C(59)	1.384(6)
C(58)-H(58A)	0.94(3)
C(59)-C(60)	1.348(6)
C(59)-H(59A)	0.9300
C(60)-C(61)	1.352(7)
C(60)-H(60A)	0.9300
C(61)-C(62)	1.378(7)
C(61)-H(61A)	0.9300
C(62)-H(62A)	0.89(3)

C(63)-C(64)	1.366(6)
C(63)-C(68)	1.403(6)
C(64)-C(65)	1.394(6)
C(64)-H(64A)	0.9300
C(65)-C(66)	1.346(7)
C(65)-H(65A)	0.9300
C(66)-C(67)	1.345(7)
C(66)-H(66A)	0.81(4)
C(67)-C(68)	1.387(6)
C(67)-H(67A)	0.9300
C(68)-H(68A)	0.9300
C(11)-Rh(1)-C(5)	101.63(14)
C(11)-Rh(1)-C(1)	88.93(13)
C(5)-Rh(1)-C(1)	37.93(14)
C(11)-Rh(1)-C(2)	112.54(14)
C(5)-Rh(1)-C(2)	62.52(15)
C(1)-Rh(1)-C(2)	36.75(15)
C(11)-Rh(1)-C(3)	149.04(13)
C(5)-Rh(1)-C(3)	61.76(15)
C(1)-Rh(1)-C(3)	61.67(14)
C(2)-Rh(1)-C(3)	37.40(14)
C(11)-Rh(1)-C(4)	138.77(14)
C(5)-Rh(1)-C(4)	37.51(14)
C(1)-Rh(1)-C(4)	61.78(14)
C(2)-Rh(1)-C(4)	61.06(14)
C(3)-Rh(1)-C(4)	35.37(15)
C(11)-Rh(1)-P(1)	87.53(10)
C(5)-Rh(1)-P(1)	113.40(11)
C(1)-Rh(1)-P(1)	149.17(11)
C(2)-Rh(1)-P(1)	159.86(11)
C(3)-Rh(1)-P(1)	122.50(11)
C(4)-Rh(1)-P(1)	103.00(10)
C(11)-Rh(1)-Cl(1)	94.90(10)
C(5)-Rh(1)-Cl(1)	152.37(11)
C(1)-Rh(1)-Cl(1)	121.74(11)
C(2)-Rh(1)-Cl(1)	90.76(11)
C(3)-Rh(1)-Cl(1)	93.07(11)

C(4)-Rh(1)-Cl(1)	124.57(11)
P(1)-Rh(1)-Cl(1)	89.09(4)
C(23)-P(1)-C(29)	101.45(16)
C(23)-P(1)-C(17)	104.39(18)
C(29)-P(1)-C(17)	100.71(16)
C(23)-P(1)-Rh(1)	116.22(12)
C(29)-P(1)-Rh(1)	120.81(12)
C(17)-P(1)-Rh(1)	111.03(12)
C(2)-C(1)-C(5)	107.8(3)
C(2)-C(1)-C(6)	127.0(4)
C(5)-C(1)-C(6)	125.2(4)
C(2)-C(1)-Rh(1)	71.6(2)
C(5)-C(1)-Rh(1)	70.0(2)
C(6)-C(1)-Rh(1)	125.0(2)
C(1)-C(2)-C(3)	108.3(4)
C(1)-C(2)-C(7)	126.6(4)
C(3)-C(2)-C(7)	124.8(4)
C(1)-C(2)-Rh(1)	71.6(2)
C(3)-C(2)-Rh(1)	73.2(2)
C(7)-C(2)-Rh(1)	126.0(3)
C(4)-C(3)-C(2)	108.2(4)
C(4)-C(3)-C(8)	128.0(4)
C(2)-C(3)-C(8)	123.7(4)
C(4)-C(3)-Rh(1)	72.8(2)
C(2)-C(3)-Rh(1)	69.4(2)
C(8)-C(3)-Rh(1)	126.8(3)
C(3)-C(4)-C(5)	108.4(3)
C(3)-C(4)-C(9)	125.9(4)
C(5)-C(4)-C(9)	125.5(4)
C(3)-C(4)-Rh(1)	71.8(2)
C(5)-C(4)-Rh(1)	67.82(19)
C(9)-C(4)-Rh(1)	130.3(3)
C(1)-C(5)-C(4)	107.0(4)
C(1)-C(5)-C(10)	124.4(4)
C(4)-C(5)-C(10)	126.5(4)
C(1)-C(5)-Rh(1)	72.09(19)
C(4)-C(5)-Rh(1)	74.7(2)
C(10)-C(5)-Rh(1)	131.4(3)

C(1)-C(6)-H(6A)	109.5
C(1)-C(6)-H(6B)	109.5
H(6A)-C(6)-H(6B)	109.5
C(1)-C(6)-H(6C)	109.5
H(6A)-C(6)-H(6C)	109.5
H(6B)-C(6)-H(6C)	109.5
C(2)-C(7)-H(7A)	109.5
С(2)-С(7)-Н(7В)	109.5
H(7A)-C(7)-H(7B)	109.5
С(2)-С(7)-Н(7С)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
C(3)-C(8)-H(8A)	109.5
C(3)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(3)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(4)-C(9)-H(9A)	109.5
C(4)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(4)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
C(5)-C(10)-H(10A)	109.5
C(5)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
С(5)-С(10)-Н(10С)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(12)-C(11)-C(16)	115.6(3)
C(12)-C(11)-Rh(1)	123.0(3)
C(16)-C(11)-Rh(1)	121.2(3)
C(13)-C(12)-C(11)	122.1(4)
C(13)-C(12)-H(12A)	118.9
С(11)-С(12)-Н(12А)	118.9
C(14)-C(13)-C(12)	121.1(4)
C(14)-C(13)-H(13A)	118(2)

С(12)-С(13)-Н(13А)	121(2)
C(15)-C(14)-C(13)	118.4(4)
C(15)-C(14)-H(14A)	120.8
C(13)-C(14)-H(14A)	120.8
C(14)-C(15)-C(16)	120.7(4)
C(14)-C(15)-H(15A)	119.6
C(16)-C(15)-H(15A)	119.6
C(15)-C(16)-C(11)	121.9(4)
C(15)-C(16)-H(16A)	125.2(19)
С(11)-С(16)-Н(16А)	112.9(19)
C(18)-C(17)-C(22)	118.4(4)
C(18)-C(17)-P(1)	118.1(3)
C(22)-C(17)-P(1)	123.5(3)
C(17)-C(18)-C(19)	120.1(4)
C(17)-C(18)-H(18A)	118(2)
C(19)-C(18)-H(18A)	122(2)
C(20)-C(19)-C(18)	120.4(5)
C(20)-C(19)-H(19A)	119.8
C(18)-C(19)-H(19A)	119.8
C(21)-C(20)-C(19)	120.4(5)
C(21)-C(20)-H(20A)	122(3)
C(19)-C(20)-H(20A)	118(3)
C(20)-C(21)-C(22)	119.7(5)
C(20)-C(21)-H(21A)	120.2
C(22)-C(21)-H(21A)	120.2
C(21)-C(22)-C(17)	121.0(5)
C(21)-C(22)-H(22A)	119(2)
C(17)-C(22)-H(22A)	120(2)
C(24)-C(23)-C(28)	117.8(4)
C(24)-C(23)-P(1)	119.4(3)
C(28)-C(23)-P(1)	122.6(3)
C(23)-C(24)-C(25)	120.8(4)
C(23)-C(24)-H(24A)	119.6
C(25)-C(24)-H(24A)	119.6
C(26)-C(25)-C(24)	120.4(4)
C(26)-C(25)-H(25A)	122(3)
C(24)-C(25)-H(25A)	117(3)
C(25)-C(26)-C(27)	120.5(5)

C(25)-C(26)-H(26A)	121(3)
C(27)-C(26)-H(26A)	118(3)
C(26)-C(27)-C(28)	119.1(4)
C(26)-C(27)-H(27A)	120.5
C(28)-C(27)-H(27A)	120.5
C(27)-C(28)-C(23)	121.4(4)
C(27)-C(28)-H(28A)	120(3)
C(23)-C(28)-H(28A)	119(3)
C(30)-C(29)-C(34)	117.7(3)
C(30)-C(29)-P(1)	119.9(3)
C(34)-C(29)-P(1)	122.3(3)
C(31)-C(30)-C(29)	121.2(4)
C(31)-C(30)-H(30A)	121(2)
C(29)-C(30)-H(30A)	118(2)
C(32)-C(31)-C(30)	119.8(4)
C(32)-C(31)-H(31A)	118(2)
C(30)-C(31)-H(31A)	122(2)
C(33)-C(32)-C(31)	120.9(4)
C(33)-C(32)-H(32A)	120(2)
C(31)-C(32)-H(32A)	119(2)
C(32)-C(33)-C(34)	119.8(4)
C(32)-C(33)-H(33A)	124(2)
C(34)-C(33)-H(33A)	116(2)
C(29)-C(34)-C(33)	120.6(4)
C(29)-C(34)-H(34A)	120.0(19)
C(33)-C(34)-H(34A)	119.0(19)
C(45)-Rh(2)-C(35)	103.41(16)
C(45)-Rh(2)-C(38)	104.75(17)
C(35)-Rh(2)-C(38)	63.06(18)
C(45)-Rh(2)-C(39)	85.08(16)
C(35)-Rh(2)-C(39)	37.67(17)
C(38)-Rh(2)-C(39)	37.39(19)
C(45)-Rh(2)-C(37)	142.63(17)
C(35)-Rh(2)-C(37)	62.03(17)
C(38)-Rh(2)-C(37)	38.02(17)
C(39)-Rh(2)-C(37)	62.24(18)
C(45)-Rh(2)-C(36)	140.93(16)
C(35)-Rh(2)-C(36)	37.56(16)

C(38)-Rh(2)-C(36)	61.85(16)
C(39)-Rh(2)-C(36)	61.93(16)
C(37)-Rh(2)-C(36)	35.61(16)
C(45)-Rh(2)-P(2)	92.74(11)
C(35)-Rh(2)-P(2)	108.79(13)
C(38)-Rh(2)-P(2)	161.90(12)
C(39)-Rh(2)-P(2)	143.23(14)
C(37)-Rh(2)-P(2)	124.13(13)
C(36)-Rh(2)-P(2)	101.47(12)
C(45)-Rh(2)-Cl(2)	91.90(11)
C(35)-Rh(2)-Cl(2)	153.83(13)
C(38)-Rh(2)-Cl(2)	92.77(14)
C(39)-Rh(2)-Cl(2)	125.47(14)
C(37)-Rh(2)-Cl(2)	92.99(13)
C(36)-Rh(2)-Cl(2)	123.54(12)
P(2)-Rh(2)-Cl(2)	91.26(4)
C(57)-P(2)-C(63)	102.21(19)
C(57)-P(2)-C(51)	102.38(19)
C(63)-P(2)-C(51)	102.83(18)
C(57)-P(2)-Rh(2)	115.51(14)
C(63)-P(2)-Rh(2)	120.00(14)
C(51)-P(2)-Rh(2)	111.73(14)
C(39)-C(35)-C(36)	108.0(4)
C(39)-C(35)-C(40)	124.2(4)
C(36)-C(35)-C(40)	126.0(4)
C(39)-C(35)-Rh(2)	72.4(2)
C(36)-C(35)-Rh(2)	74.9(2)
C(40)-C(35)-Rh(2)	130.3(3)
C(37)-C(36)-C(35)	108.0(4)
C(37)-C(36)-C(41)	126.2(4)
C(35)-C(36)-C(41)	125.3(4)
C(37)-C(36)-Rh(2)	71.2(2)
C(35)-C(36)-Rh(2)	67.6(2)
C(41)-C(36)-Rh(2)	132.7(3)
C(36)-C(37)-C(38)	108.3(4)
C(36)-C(37)-C(42)	126.5(4)
C(38)-C(37)-C(42)	125.0(5)
C(36)-C(37)-Rh(2)	73.2(2)

C(38)-C(37)-Rh(2)	68.7(2)
C(42)-C(37)-Rh(2)	127.0(3)
C(39)-C(38)-C(37)	107.6(4)
C(39)-C(38)-C(43)	126.6(5)
C(37)-C(38)-C(43)	125.5(5)
C(39)-C(38)-Rh(2)	72.2(3)
C(37)-C(38)-Rh(2)	73.2(3)
C(43)-C(38)-Rh(2)	125.4(3)
C(38)-C(39)-C(35)	107.7(4)
C(38)-C(39)-C(44)	127.1(5)
C(35)-C(39)-C(44)	125.1(5)
C(38)-C(39)-Rh(2)	70.5(3)
C(35)-C(39)-Rh(2)	69.9(2)
C(44)-C(39)-Rh(2)	127.2(3)
C(35)-C(40)-H(40A)	109.5
C(35)-C(40)-H(40B)	109.5
H(40A)-C(40)-H(40B)	109.5
C(35)-C(40)-H(40C)	109.5
H(40A)-C(40)-H(40C)	109.5
H(40B)-C(40)-H(40C)	109.5
C(36)-C(41)-H(41A)	109.5
C(36)-C(41)-H(41B)	109.5
H(41A)-C(41)-H(41B)	109.5
C(36)-C(41)-H(41C)	109.5
H(41A)-C(41)-H(41C)	109.5
H(41B)-C(41)-H(41C)	109.5
C(37)-C(42)-H(42A)	109.5
C(37)-C(42)-H(42B)	109.5
H(42A)-C(42)-H(42B)	109.5
C(37)-C(42)-H(42C)	109.5
H(42A)-C(42)-H(42C)	109.5
H(42B)-C(42)-H(42C)	109.5
C(38)-C(43)-H(43A)	109.5
C(38)-C(43)-H(43B)	109.5
H(43A)-C(43)-H(43B)	109.5
C(38)-C(43)-H(43C)	109.5
H(43A)-C(43)-H(43C)	109.5
H(43B)-C(43)-H(43C)	109.5

109.5
109.5
109.5
109.5
109.5
109.5
116.1(4)
124.2(3)
118.6(3)
121.9(4)
119(2)
119(2)
120.4(4)
119.8
119.8
119.5(4)
120.2
120.2
120.4(5)
119.8
119.8
121.7(4)
119.2
119.2
118.4(4)
118.9(3)
122.7(4)
121.1(5)
119.5
119.5
119.0(5)
120.5
120.5
120.3(5)
125(3)
114(3)
121.0(5)
119.5

C(56)-C(55)-H(55A)	119.5
C(55)-C(56)-C(51)	120.2(5)
C(55)-C(56)-H(56A)	119.9
C(51)-C(56)-H(56A)	119.9
C(58)-C(57)-C(62)	117.4(4)
C(58)-C(57)-P(2)	122.3(3)
C(62)-C(57)-P(2)	120.2(3)
C(59)-C(58)-C(57)	120.0(4)
C(59)-C(58)-H(58A)	120(2)
C(57)-C(58)-H(58A)	120(2)
C(60)-C(59)-C(58)	121.2(4)
C(60)-C(59)-H(59A)	119.4
C(58)-C(59)-H(59A)	119.4
C(59)-C(60)-C(61)	120.1(5)
C(59)-C(60)-H(60A)	119.9
C(61)-C(60)-H(60A)	119.9
C(60)-C(61)-C(62)	119.9(4)
C(60)-C(61)-H(61A)	120.1
C(62)-C(61)-H(61A)	120.1
C(61)-C(62)-C(57)	121.4(4)
C(61)-C(62)-H(62A)	114(2)
C(57)-C(62)-H(62A)	124(2)
C(64)-C(63)-C(68)	117.9(4)
C(64)-C(63)-P(2)	122.4(3)
C(68)-C(63)-P(2)	119.6(3)
C(63)-C(64)-C(65)	120.7(4)
C(63)-C(64)-H(64A)	119.7
C(65)-C(64)-H(64A)	119.7
C(66)-C(65)-C(64)	120.4(5)
C(66)-C(65)-H(65A)	119.8
C(64)-C(65)-H(65A)	119.8
C(67)-C(66)-C(65)	120.6(4)
C(67)-C(66)-H(66A)	123(3)
C(65)-C(66)-H(66A)	116(3)
C(66)-C(67)-C(68)	120.5(5)
C(66)-C(67)-H(67A)	119.7
C(68)-C(67)-H(67A)	119.7
C(67)-C(68)-C(63)	119.9(4)

C(67)-C(68)-H(68A)	120.0
C(63)-C(68)-H(68A)	120.0

Symmetry transformations used to generate equivalent atoms:

Figure S3. Molecular structure of Rhodium, dichloro-(1,2,3,4,5pentamethylcyclopentadienyl)(triphenylphosphine) complex (CCDC number 1455770)

CCDC number	1455770	
Identification code	lyf6	
Empirical formula	C ₂₉ H ₃₂ Cl ₄ P Rh	
Formula weight	656.23	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/n	
Unit cell dimensions	a = 8.5942(2) Å	α=90°.
	b = 16.8880(4) Å	β= 91.8090(10)°.
	c = 19.6492(4) Å	$\gamma = 90^{\circ}$.
Volume	2850.44(11) Å ³	
Z	4	
Density (calculated)	1.529 Mg/m ³	
Absorption coefficient	1.048 mm ⁻¹	
F(000)	1336	
Crystal size	0.38 x 0.14 x 0.10 mm ³	
Theta range for data collection	1.59 to 27.60°.	
Index ranges	-11<=h<=11, -21<=k<=21, -25<=l<=24	
Reflections collected	48750	
Independent reflections	6594 [R(int) = 0.0615]	
Completeness to theta = 27.60°	99.7 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.6497	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6594 / 0 / 376	
Goodness-of-fit on F ²	1.001	
Final R indices [I>2sigma(I)]	R1 = 0.0337, wR2 = 0.0657	
R indices (all data)	R1 = 0.0559, wR2 = 0.0750	
Largest diff. peak and hole	0.851 and -0.711 e.Å ⁻³	

Table S9. Crystal data and structure refinement for Rhodium, dichloro-(1,2,3,4,5-pentamethylcyclopentadienyl)(triphenylphosphine) complex

Rh(1)-C(1)	2.1699(19)
Rh(1)-C(4)	2.1786(19)
Rh(1)-C(5)	2.1877(19)
Rh(1)-C(3)	2.213(2)
Rh(1)-C(2)	2.229(2)
Rh(1)-P(1)	2.3439(5)
Rh(1)-Cl(1)	2.3997(6)
Rh(1)-Cl(2)	2.4152(5)
P(1)-C(23)	1.828(2)
P(1)-C(11)	1.829(2)
P(1)-C(17)	1.833(2)
C(1)-C(5)	1.432(3)
C(1)-C(2)	1.442(3)
C(1)-C(6)	1.491(3)
C(2)-C(3)	1.407(3)
C(2)-C(7)	1.493(3)
C(3)-C(4)	1.441(3)
C(3)-C(8)	1.493(3)
C(4)-C(5)	1.416(3)
C(4)-C(9)	1.500(3)
C(5)-C(10)	1.499(3)
C(6)-H(6A)	0.9600
C(6)-H(6B)	0.9600
C(6)-H(6C)	0.9600
C(7)-H(7A)	0.9600
C(7)-H(7B)	0.9600
C(7)-H(7C)	0.9600
C(8)-H(8A)	0.9600
C(8)-H(8B)	0.9600
C(8)-H(8C)	0.9600
C(9)-H(9A)	0.9600
C(9)-H(9B)	0.9600
C(9)-H(9C)	0.9600
С(10)-Н(10С)	0.94(3)
C(10)-H(10B)	0.96(3)

Table S10. Bond lengths [Å] and angles [°] for Rhodium, dichloro-(1,2,3,4,5-pentamethylcyclopentadienyl)(triphenylphosphine) complex

C(10)-H(10A)	0.91(3)
C(11)-C(16)	1.383(3)
C(11)-C(12)	1.393(3)
C(12)-C(13)	1.378(3)
C(12)-H(12A)	0.91(2)
C(13)-C(14)	1.374(4)
C(13)-H(13A)	0.9300
C(14)-C(15)	1.371(4)
C(14)-H(14A)	0.93(2)
C(15)-C(16)	1.394(3)
C(15)-H(15A)	0.88(2)
C(16)-H(16A)	0.898(18)
C(17)-C(18)	1.386(3)
C(17)-C(22)	1.386(3)
C(18)-C(19)	1.385(3)
C(18)-H(18A)	0.9300
C(19)-C(20)	1.361(4)
C(19)-H(19A)	0.89(2)
C(20)-C(21)	1.370(4)
C(20)-H(20A)	0.96(3)
C(21)-C(22)	1.384(3)
C(21)-H(21A)	0.91(2)
C(22)-H(22A)	0.9300
C(23)-C(24)	1.383(3)
C(23)-C(28)	1.388(3)
C(24)-C(25)	1.389(3)
C(24)-H(24A)	0.93(2)
C(25)-C(26)	1.367(4)
C(25)-H(25A)	0.93(2)
C(26)-C(27)	1.374(4)
C(26)-H(26A)	0.9300
C(27)-C(28)	1.381(3)
C(27)-H(27A)	0.9300
C(28)-H(28A)	0.89(3)
C(29)-Cl(3)	1.726(3)
C(29)-Cl(4)	1.741(3)
C(29)-H(29A)	0.9700
C(29)-H(29B)	0.9700

C(1)-Rh(1)-C(4)	64.09(8)
C(1)-Rh(1)-C(5)	38.38(8)
C(4)-Rh(1)-C(5)	37.84(7)
C(1)-Rh(1)-C(3)	63.59(7)
C(4)-Rh(1)-C(3)	38.30(8)
C(5)-Rh(1)-C(3)	63.37(8)
C(1)-Rh(1)-C(2)	38.23(8)
C(4)-Rh(1)-C(2)	63.03(8)
C(5)-Rh(1)-C(2)	63.18(8)
C(3)-Rh(1)-C(2)	36.92(7)
C(1)-Rh(1)-P(1)	108.39(6)
C(4)-Rh(1)-P(1)	120.99(6)
C(5)-Rh(1)-P(1)	97.99(5)
C(3)-Rh(1)-P(1)	159.11(6)
C(2)-Rh(1)-P(1)	144.64(6)
C(1)-Rh(1)-Cl(1)	103.18(6)
C(4)-Rh(1)-Cl(1)	151.16(6)
C(5)-Rh(1)-Cl(1)	140.84(6)
C(3)-Rh(1)-Cl(1)	113.16(6)
C(2)-Rh(1)-Cl(1)	90.67(6)
P(1)-Rh(1)-Cl(1)	87.130(19)
C(1)-Rh(1)-Cl(2)	154.62(6)
C(4)-Rh(1)-Cl(2)	93.26(5)
C(5)-Rh(1)-Cl(2)	126.74(6)
C(3)-Rh(1)-Cl(2)	91.69(5)
C(2)-Rh(1)-Cl(2)	122.59(6)
P(1)-Rh(1)-Cl(2)	92.749(19)
Cl(1)-Rh(1)-Cl(2)	91.46(2)
C(23)-P(1)-C(11)	105.30(9)
C(23)-P(1)-C(17)	101.86(9)
C(11)-P(1)-C(17)	102.52(9)
C(23)-P(1)-Rh(1)	115.34(7)
C(11)-P(1)-Rh(1)	109.97(7)
C(17)-P(1)-Rh(1)	120.18(7)
C(5)-C(1)-C(2)	107.26(17)
C(5)-C(1)-C(6)	127.3(2)
C(2)-C(1)-C(6)	124.3(2)

C(5)-C(1)-Rh(1)	71.48(11)
C(2)-C(1)-Rh(1)	73.11(11)
C(6)-C(1)-Rh(1)	130.39(15)
C(3)-C(2)-C(1)	108.37(18)
C(3)-C(2)-C(7)	127.4(2)
C(1)-C(2)-C(7)	124.2(2)
C(3)-C(2)-Rh(1)	70.93(11)
C(1)-C(2)-Rh(1)	68.66(11)
C(7)-C(2)-Rh(1)	127.01(15)
C(2)-C(3)-C(4)	108.01(18)
C(2)-C(3)-C(8)	127.0(2)
C(4)-C(3)-C(8)	124.8(2)
C(2)-C(3)-Rh(1)	72.15(12)
C(4)-C(3)-Rh(1)	69.54(11)
C(8)-C(3)-Rh(1)	127.38(15)
C(5)-C(4)-C(3)	108.02(18)
C(5)-C(4)-C(9)	128.0(2)
C(3)-C(4)-C(9)	123.37(19)
C(5)-C(4)-Rh(1)	71.43(11)
C(3)-C(4)-Rh(1)	72.15(11)
C(9)-C(4)-Rh(1)	129.01(15)
C(4)-C(5)-C(1)	108.19(18)
C(4)-C(5)-C(10)	126.3(2)
C(1)-C(5)-C(10)	125.09(19)
C(4)-C(5)-Rh(1)	70.73(11)
C(1)-C(5)-Rh(1)	70.14(11)
C(10)-C(5)-Rh(1)	130.34(15)
C(1)-C(6)-H(6A)	109.5
C(1)-C(6)-H(6B)	109.5
H(6A)-C(6)-H(6B)	109.5
C(1)-C(6)-H(6C)	109.5
H(6A)-C(6)-H(6C)	109.5
H(6B)-C(6)-H(6C)	109.5
C(2)-C(7)-H(7A)	109.5
C(2)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(2)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5

H(7B)-C(7)-H(7C)	109.5
C(3)-C(8)-H(8A)	109.5
C(3)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(3)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(4)-C(9)-H(9A)	109.5
C(4)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(4)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
C(5)-C(10)-H(10C)	114.3(16)
C(5)-C(10)-H(10B)	112.2(16)
H(10C)-C(10)-H(10B)	109(2)
C(5)-C(10)-H(10A)	108.5(16)
H(10C)-C(10)-H(10A)	109(2)
H(10B)-C(10)-H(10A)	103(2)
C(16)-C(11)-C(12)	118.75(19)
C(16)-C(11)-P(1)	123.95(16)
C(12)-C(11)-P(1)	117.25(15)
C(13)-C(12)-C(11)	120.4(2)
C(13)-C(12)-H(12A)	121.3(14)
С(11)-С(12)-Н(12А)	118.3(14)
C(14)-C(13)-C(12)	120.3(2)
C(14)-C(13)-H(13A)	119.9
C(12)-C(13)-H(13A)	119.9
C(15)-C(14)-C(13)	120.4(2)
C(15)-C(14)-H(14A)	118.0(14)
C(13)-C(14)-H(14A)	121.5(14)
C(14)-C(15)-C(16)	119.7(2)
C(14)-C(15)-H(15A)	122.1(16)
C(16)-C(15)-H(15A)	118.2(16)
C(11)-C(16)-C(15)	120.6(2)
C(11)-C(16)-H(16A)	120.9(12)
C(15)-C(16)-H(16A)	118.5(12)
C(18)-C(17)-C(22)	118.38(19)

C(18)-C(17)-P(1)	119.18(16)
C(22)-C(17)-P(1)	122.32(16)
C(19)-C(18)-C(17)	120.1(2)
C(19)-C(18)-H(18A)	119.9
C(17)-C(18)-H(18A)	119.9
C(20)-C(19)-C(18)	121.1(2)
C(20)-C(19)-H(19A)	121.6(17)
С(18)-С(19)-Н(19А)	117.3(17)
C(19)-C(20)-C(21)	119.3(2)
C(19)-C(20)-H(20A)	123.4(16)
С(21)-С(20)-Н(20А)	117.3(16)
C(20)-C(21)-C(22)	120.6(2)
C(20)-C(21)-H(21A)	124.2(15)
C(22)-C(21)-H(21A)	115.1(15)
C(21)-C(22)-C(17)	120.4(2)
C(21)-C(22)-H(22A)	119.8
C(17)-C(22)-H(22A)	119.8
C(24)-C(23)-C(28)	118.6(2)
C(24)-C(23)-P(1)	119.13(16)
C(28)-C(23)-P(1)	122.27(17)
C(23)-C(24)-C(25)	120.2(2)
C(23)-C(24)-H(24A)	121.9(14)
C(25)-C(24)-H(24A)	117.8(14)
C(26)-C(25)-C(24)	120.5(2)
C(26)-C(25)-H(25A)	120.4(15)
C(24)-C(25)-H(25A)	119.0(15)
C(25)-C(26)-C(27)	119.7(2)
C(25)-C(26)-H(26A)	120.1
C(27)-C(26)-H(26A)	120.1
C(26)-C(27)-C(28)	120.2(2)
C(26)-C(27)-H(27A)	119.9
C(28)-C(27)-H(27A)	119.9
C(27)-C(28)-C(23)	120.6(2)
C(27)-C(28)-H(28A)	122.4(17)
C(23)-C(28)-H(28A)	116.8(17)
Cl(3)-C(29)-Cl(4)	112.18(15)
Cl(3)-C(29)-H(29A)	109.2
Cl(4)-C(29)-H(29A)	109.2

Cl(3)-C(29)-H(29B)	109.2
Cl(4)-C(29)-H(29B)	109.2
H(29A)-C(29)-H(29B)	107.9

Symmetry transformations used to generate equivalent atoms:

6. ¹H and ¹³C Spectra

Figure S4. ¹H NMR spectrum of 3a

Figure S5. ¹³C NMR spectrum of 3a

Figure S7. ¹³C NMR spectrum of **3b**

Figure S9. ¹³C NMR spectrum of 3c

Figure S11. ¹³C NMR spectrum of 3d

Figure S12. ¹⁹F NMR spectrum of 3d

Figure S14. ¹³C NMR spectrum of 3e

Figure S16. ¹³C NMR spectrum of 2a

Figure S18. ¹³C NMR spectrum of 2b

Figure S20. ¹³C NMR spectrum of 2c

Figure S22. ¹³C NMR spectrum of 2d

Figure S24. ¹³C NMR spectrum of 2e

Figure S26. ¹³C NMR spectrum of 2f

Figure S28. ¹³C NMR spectrum of 2g

Figure S30. ¹³C NMR spectrum of 2h

Figure S32. ¹³C NMR spectrum of 2i

Figure S34. ¹³C NMR spectrum of 2j

Figure S36. ¹³C NMR spectrum of 2k

Figure S38. ¹³C NMR spectrum of 21

Figure S40. ¹³C NMR spectrum of 2m

Figure S43. ¹³C NMR spectrum of 2n

Figure S45. ¹³C NMR spectrum of 20

Figure S47. ¹³C NMR spectrum of **2p**

Figure S49. ¹³C NMR spectrum of 2q

Figure S51. ¹³C NMR spectrum of 4aa

Figure S53. ¹³C NMR spectrum of 4ba

Figure S55. ¹³C NMR spectrum of 4ca

Figure S57. ¹³C NMR spectrum of 4da

Figure S58. ¹H NMR spectrum of 4ea

Figure S59. ¹³C NMR spectrum of 4ea

Figure S61. ¹³C NMR spectrum of 4fa

Figure S63. ¹³C NMR spectrum of 4ga

Figure S64. ¹⁹F NMR spectrum of 4ga

Figure S66. ¹³C NMR spectrum of 4ab

Figure S68. ¹³C NMR spectrum of 4ac

Figure S70. ¹³C NMR spectrum of 4ad

Figure S71. ¹⁹F NMR spectrum of 4ad

Figure S73. ¹³C NMR spectrum of 4ae

Figure S74. ¹H NMR spectrum of [Cp*RhCl₂(PPh₃)]

Figure S75. ¹³C NMR spectrum of [Cp*RhCl₂(PPh₃)]

Figure S76. ³¹P NMR spectrum of [Cp*RhCl₂(PPh₃)]

Figure S78. ¹³C NMR spectrum of 5a

Figure S79. ³¹P NMR spectrum of 5a

Figure S81. ¹³C NMR spectrum of 5b

Figure S82. ³¹P NMR spectrum of 5b

RhCp(PPh3)(Ph)Cl

7. References

- W. L. F. Armarego and D. D. Perrin, *Purification of Laboratory Chemicals*, 4th ed., Butterworth Heinemann [a division of Reed Educational & Professional Publishers], Oxford, 1997.
- 2 (a) C. White, A. Yates, P. M. Maitlis and D. M. Heinekey, *Inorganic Synthesis*, Grimes, R. N., Eds, Inorganic Synthesis, Inc., 1992, 29, 228-232; (b) G. Giordano, R. H. Crabtree, R. M. Heintz, D. Forster and D. E. Morris, *Inorganic Synthesis*, Angelici, R. J., Eds, Inorganic Synthesis, Inc., 1989, 28, 88-90; (c) P. M. Boyer, C. P. Roy, J. M. Bielski and J. S. Merola, *Inorg. Chim. Acta.*, 1996, 245, 7-15.