Supplementary Material (ESI) for Organic and Biomolecular Chemistry

Design, Synthesis and *in Vitro* Splicing Inhibition of Desmethyl and Carba-Derivatives of Herboxidiene

Arun K. Ghosh, Kai Lv, Nianchun Ma, Emilio L. Cárdenas, Kerstin A. Effenberger,

Melissa S. Jurica

Table of Contents

General experimental conditions	S1
Experimental details for new compounds (22-27)	S2-S3
Copies of ¹ H and ¹³ C spectra of new compounds	S4-S11

Experimental Section

All reactions were carried out under an inert atmosphere, either N₂ or Ar, using magnetic stirring and oven-dried glassware. All solvents were anhydrous and distilled prior to use. Dichloromethane and triethylamine were distilled from calcium hydride. Tetrahydrofuran, diethyl ether, and benzene were distilled from sodium/benzophenone. All other solvents were HPLC grade or better. Flash column chromatography was performed using EM Science 60-200 mesh silica gel. Thin-layer chromatography was performed using 60 F-254 E. Merck silica gel plates. ¹Hand ¹³C-NMR were recorded using Bruker AV-400 MHz, Avance DRX-500, Varian Mercury-Vx-300, and Gemini-2300 spectrometers and use Me₄Si as an internal standard. Optical rotations were recorded on a Perkin-Elmer 341 polarimeter. A Thermo Finnigan LCQ Classic mass was used for MS analyses. The purity of test compounds was determined by HRMS and HPLC analysis. All test compounds showed ≥95% purity. (1R,3S)-3-acetylcyclohexane-1-carboxylic acid (22): To a stirred solution of $ZnBr_2$ (877 mg, 3.8 mmol) in THF (10 mL) and Et_2O (10 mL) was added dropwise a solution of MeMgBr in THF (1.3 mL, 3 M, 3.9 mmol) at 0 °C over 5 min under argon and left to stir at the same temperature. After 30 min, the mixture was stirred for 1 h at 23 °C, and stopped stirring, settled to precipitate for 1 h.

To a stirred solution of $[Rh(nbd)Cl]_2$ (13 mg, 0.028 mmol) and (*S*)-*tert*-butyphosphinooxazoline (23 mg, 0.059 mmol) in THF (5 mL) in a separate flask was added the above preprepared methylzinc bromide solution (16 mL, decanted from the precipitate via syringe) and a solution of **18** (300 mg, 1.94 mmol) in THF (5 mL) at 0 °C. The mixture was stirred at 23 °C for 30 hrs, quenched by 1 M HCl (10 ml), diluted by H₂O (15 mL), extracted by Et₂O (3 × 20 mL), dried over anhydrous MgSO4, filtered and concentration. The residue was purified over silica gel chromatography (Hexane : Ethyl acetate = 2 : 1) to give compound **23** (160 mg, 48%, 91% ee) as a colorless oil. Chiral HPLC analysis was performed using a chiralcel OD-H column eluting with Hexane : i-PrOH = 99 : 1 0.5 mL/min. [α]²⁰_D = -3.8 (c 1.00, CH₂Cl₂).

Methyl 2-((1R,3S)-3-acetylcyclohexyl)acetate (24): To a stirred solution of **23** (40 mg, 0.23 mmol) in THF (4 mL) was added Et₃N (196 μ L, 1.4 mmol) and MsCl (54 μ L, 0.69 mmol) at 0 °C. The mixture was stirred at the same temperature for 30 min. A fresh prepared solution of CH₂N₂ in Et₂O (excess, 4 mL) was added to the mixture at 0 °C. The mixture was quenched by drops of acetic acid, diluted by H₂O (5 mL), extracted by Et₂O (3 × 10 mL), dried over anhydrous MgSO4, filtered and concentration. The residue was purified over silica gel chromatography (Hexane : Ethyl acetate : Et₃N= 2 : 1: 0.001) to give a colorless oil (35 mg, 78%) which should be used for the next step immediately.

To a stirred solution of above oil (35 mg, 0.18 mmol) in anhydrous MeOH was added a solution of silver benzoate (8.2 mg, 0.03 mmol) in dry Et₃N (100 µL, 0.71 mmol) at 23 °C under argon. The mixture was stirred for 1h and concentrated. The residue was purified over silica gel chromatography (Hexane : Ethyl acetate = 7 : 1) to give compound **24** (21 mg, 59%) as a colorless oil. $[\alpha]^{20}_{D}$ = +8.3 (c 1.00, CH₂Cl₂); HRMS-ESI (m/z) calc. for C₁₁H₁₈NaO₃ [M + Na]⁺ 221.1154, found 221.1147.

Methyl 2-((1R,3S)-3-((E)-1-iodoprop-1-en-2-yl)cyclohexyl)acetate (25): To a mixture of $CrCl_2$ (61 mg, 0.5 mmol) in THF (2 mL) was added dropwise the solution of the ketone **24** (10 mg, 0.05 mmol) and CHI_3 (59 mg, 0.15 mmol) in THF (2 mL). After being stirred at 23 °C under argon for 4 h, the mixture was quenched by water and extracted with EtOAc. The combined organic phase was washed with water, brine, dried over anhydrous Mg_2SO_4 and concentrated. The residue was purified column chromatography (hexane/EtOAc, 40:1) to give the vinyl iodide **25** (7 mg, 44%) as colorless oil which should be used for the next step immediately.

Methyl 2-((1R,3S)-3-((2E,4E,6S,8E,10S,11R,12R)-12-hydroxy-11-methoxy-6,8,10-trimethyltrideca-2,4,8-trien-2-yl)cyclohexyl)acetate (26): A mixture of vinyl iodide 25 (12 mg, 0.037 mmol), boronate 7 (16 mg, 0.034 mmol), Pd(PPh₃)₄ (3 mg, 0.002 mmol) and Cs₂CO₃ (220 mg, 0.67 mmol) in THF (2 mL) was stirred at 55 °C under argon for 4 h. It was quenched with water, and then extracted with ether. The combined organic phase was washed with water, brine, dried (Na₂SO₄) and concentrated. The residue was purified column chromatography (hexane/EtOAc, 30:1) to give a colorless oil (13 mg, 72%).

To a solution of above oil (10 mg, 0.023 mmol) in THF (2 mL) was added 1N HCl in MeOH (0.2 mL) at 23 °C. The mixture was stirred for 1 h at the same temperature, and concentrated. The residue was purified column chromatography (hexane : EtOAc = 4 : 1) to give the de-protected product **26** (6.8 mg, 87%) as a colorless oil. $[\alpha]^{20}_{D}$ = -19.2 (c 0.25, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) 6.18 (dd, *J* = 10.9, 15.1 Hz, 1H), 5.76 (d, *J* = 10.7 Hz, 1H), 5.46 (dd, *J* = 7.5, 15.1 Hz), 4.96 (d, *J* = 9.5 Hz, 1H), 3.70 (brs, 1H), 3.65 (s, 3H), 3.50 (s, 3H), 2.70 (dd, *J* = 4.0, 6.8 Hz, 1H), 2.74-2.60 (m, 1H), 2.37 (t, *J* = 7.0 Hz, 1H), 2.20 (dd, *J* = 3.1, 7.2 Hz, 2H), 2.01 (dd, *J* = 6.9, 13.4 Hz, 1H), 1.95-1.70 (m, 4H), 1.69 (s, 3H), 1.60 (d, *J* = 3 Hz, 3H), 1.35-1.24 (m, 3H), 1.19 (d, *J* = 6.5 Hz, 3H), 0.95 (d, *J* = 6.8 Hz, 3H), 0.93 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) 173.3, 140.8, 138.1, 133.6, 129.4, 124.5, 122.9, 89.6, 67.8, 61.3, 51.3, 47.5, 46.8, 41.9, 37.8, 34.9, 34.7, 34.6, 32.5, 30.9, 25.8, 20.3, 19.9, 16.4, 16.2, 14.7; HRMS-ESI (m/z) calc. for C₂₆H₄₄NaO₄ [M + Na]⁺ 443.3137, found 443.3117.

2-((1R,3S)-3-((S,2E,4E)-7-((2R,3R)-3-((2R,3R,4R)-4-hydroxy-3-methoxypentan-2-yl)-2-

methyloxiran-2-yl)-6-methylhepta-2,4-dien-2-yl)cyclohexyl) acetic acid (27): To a solution of the 26 (7 mg, 0.016 mmol) and VO(acac)₂ (0.88 mg, 0.003 mmol) in CH₂Cl₂ (1 mL) was added t-BuOOH (5.5 M in decane, 13.3 μ L, 0.07 mmol) at -78 °C. After being stirred at -15– -20 °C for 48 h, it was quenched with Me₂S and stirred at 23 °C for 30 min. It was concentrated and used for next reaction directly. To a solution of the above crude product in MeOH (1 mL) and water (0.2 mL) was added K₂CO₃ (14.7 mg, 0.11 mmol). After being refluxed for 2 h, it was cooled, treated with aq. NaHSO₄ (0.01 M, 50 mL) and extracted with EtOAc. The combined organic phase was washed with brine, dried (Na₂SO₄) and concentrated. The residue was purified by column chromatography $(CH_2CI_2 : MeOH = 15 : 1)$ to give the acid **27** (2.8 mg, 40% for 2 steps) as a semi solid. $[\alpha]^{20}_{D} = -15.0$ (c 0.10, CH₂Cl₂); ¹H NMR (500 MHz, CD₃OD) 6.24 (dd, J = 10.5, 15.0 Hz, 1H), 5.74 (d, J = 11.0 Hz, 1H), 5.33 (dd, J = 9.0, 14.5 Hz, 1H), 3.77 (t, J = 6.4 Hz, 1H), 3.51 (s, 3H), 2.96 (dd, J = 4.0, 6.4 Hz, 1H), 2.62 (d, J = 9.4 Hz, 1H), 2.40 (brs, 1H), 2.15 (t, J = 6.5 Hz, 1H), 1.95-1.88 (m, 2H), 1.80-1.73 (m, 3H), 1.67 (s, 3H), 1.47-1.44 (m, 1H), 1.40-1.30 (m, 1H), 1.17-1.10 (m, 2H), 1.08 (d, J = 6.8 Hz, 3H), 1.01 (d, J = 6.6 Hz, 1H), 0.95-0.87 (m, 2H), 0.80 (d, J = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD) 175.4, 140.7, 136.6, 125.7, 122.8, 86.9, 68.4, 66.4, 61.2, 60.3, 41.6, 37.7, 34.9, 34.8, 34.7, 32.2, 30.8, 25.6, 21.1, 18.2, 15.2, 13.4, 9.6; HRMS-ESI (m/z) calc. for C₂₅H₄₂NaO₅ [M + Na]⁺ 445.2930, found 445.2913.

NMR Spectra for compound 17

NMR Spectra for compound 5

NMR Spectra for compound 19

NMR Spectra for compound 22

NMR Spectra for compound 6

NMR Spectra for compound 26

NMR Spectra for compound 27