Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Synthesis of furo[3,2-c]coumarin derivatives using

visible-light-promoted radical alkyne insertion with

bromocoumarins

Hui Zhou,^a Xinzhao Deng,^a Zhenjun Ma,^a Aihua Zhang,^a Qixue Qin,^b Ren Xiang Tan^{*a} and Shouyun Yu^{*b}

^a Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China.
E-mail: rxtan@nju.edu.cn.
^b State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
E-mail: yushouyun@nju.edu.cn.

Table of Contents

1. List of the substrates	S2
2. Biological evaluation	S2
3. Reference	S3
4. NMR spectra for all compounds	S4

1. List of the substrates

3-Bromo-4-hydroxycoumarin could be generated by treatment of commercially available 4-hydroxycoumarin with NBS using $Mg(ClO_4)_2$ as a Lewis acid.¹ All alkynes were obtained from commercial suppliers and used without further purification.

2. Biological evaluation

(1) Cell Culture

Cells were maintained in cell culture dishes in Dulbecco's modified Eagle's medium (DMEM, WISENT), supplemented with 10% Fetal bovine serum (FBS, Gibco) 100 U/mL penicillin (Sangon Biotech, Shanghai, China), and 100 μ g/mL streptomycin (Sangon Biotech, Shanghai, China). The cells were grown in a carbon dioxide incubator (37 °C, 5% CO₂).

(2) Cytotoxicity

The cytotoxicity was tested on the three cell lines (human lung carcinoma A549, human promyelocytic leukemia HL-60 and human colon carcinoma SW480) by MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide] (Sigma-Aldrich) assay as described.² Briefly, the test cell at the exponential growth phase were collected and transferred into 96-well plates. After incubated for 24 h, compound dilutions were dispensed to the established culture plates, and doxorubicin $\frac{S2}{S37}$

(Sigma-Aldrich) used as a positive control. Two days (48 h) later, the MTT solution (0.1 mg per well) was then added to each well. After further incubation for 4 h, the supernatant was removed, the crystals were fully dissolved in DMSO (150 mL), and the absorbance of each well was read at 570 nm (Sunrise, Tecan). The IC₅₀ value was determined as the concentration, at which a half of the test cell growth was inhibited. The experiment was performed in triplicate, and the data expressed as means \pm SD.³ (3) Acetylcholinesterase inhibitory activity assay

The AchE inhibitory activities were measured by a spectrophotometric method developed by Ellman et al.⁴ The reaction was run at 25°C in a final volume of 200 μ L of a 0.1M phosphate buffer (pH = 8.0), 333 μ M 5,5-dithio-bis (2-nitrobenzoic acid) (DTNB, Sigma-Aldrich), 0.035 U/mL AchE (Sigma-Aldrich), and 530 μ M of acetylthiocholine iodide (Sigma-Aldrich) in 96-well microplates. Test compounds were added to the assay solution and followed at 412 nm for 5 min with a plate reader (Sunrise, Tecan). Seven different concentrations of each compound were used in order to measure the inhibition of AChE activity. IC₅₀ (concentration of the drug producing 50% of enzyme–activity inhibition) values were determined graphically from log concentration–inhibition curves.⁵

3. Reference

(a) L. Zhang, T. Meng, R. Fan and J. Wu, J. Org. Chem., 2007, 72, 7279; (b) Z.
 Wang, B. Wang, and J. Wu, J. Comb. Chem., 2007, 9, 811.

4. NMR Spectra for All Compounds

S4 / S37

S6 / S37

S7 / S37

S8 / S37

S9 / S37

S12 / S37

S19 / S37

S21 / S37

S22 / S37

S26 / S37

S29 / S37

S30 / S37

S32 / S37

--0.00

