Efficient access to *cis*-decalinol frameworks: Copper(I)-catalyzed borylative cyclization of allene cyclohexanediones

Yi-Shuang Zhao,^{a,b} Xiao-Qi Tang,^b Jing-Chao Tao,^{*,a} Ping Tian^{*,b,c} and Guo-Qiang Lin^{b,c}

^{b.} CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. Tel.: +86-21-54925081. E-mail: tianping@sioc.ac.cn.

^{c.} Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.

^{a.} College of Chemistry and Molecular Engineering, Zhengzhou University, 75 Daxue Road, Zhengzhou, Henan 450052, China. Tel.: +86-371-67767200.

TABLE OF CONTENTS:

1. GENERAL INFORMATION	S4
2. SUBSTRATE PREPARATION	S4
2.1 General Procedures for the Preparation of 1a-1k (except 1e,1j)	S4 S8
3. SCOPE OF THE SUBSTRATES IN TABLE 2	S9
4. SCOPE OF THE SUBSTRATES IN TABLE 3	S13
5 Initial Evaluation Of Various Chiral Ligands	S18
 5.1 Evaluation of Various Chiral Ligands for Cu-catalyzed asymmetric cyclization of a 1a using B₂(pin)₂ (2) as boron source. 5.2 Chiral Ligands((S)-DTBM-Segphos) for Cu-catalyzed asymmetric cyclization of alle using B₂(nep)₂ (4) as boron source. 	allene diketone S18 ne diketone 1a S20
6. TRANSFORMATIONS OF THE CYCLIZATION PRODUCT 5b	S21
7. RELATIVE CONFIGURATION CONFIRMATION	S23
7.1 Relative Configuration Confirmation of 3K 7.2 Relative Configuration Confirmation of 5e	S23 S25
8. ¹ H NMR, ¹³ C NMR COPIES	S27

¹H Nmr, ¹³C Nmr Copies

Substrates 1

¹ H NMR copy of $1a$	8
¹ H NMR copy of $1b$ S3(9
¹ H NMR copy of 1c	1 2
¹³ C NMR copy of 1c S33	3
¹ H NMR copy of 1d S3 ²	4
¹³ C NMR copy of 1d S3 ⁵	5
¹ H NMR copy of 1e S36	5
¹³ C NMR copy of 1e S37	7
¹ H NMR copy of 1f S38	8
¹³ C NMR copy of 1f S39	9
¹ H NMR copy of 1g S40)
¹³ C NMR copy of 1g S41	1
¹ H NMR copy of 1h S42	2
¹³ C NMR copy of 1h S43	3
¹ H NMR copy of 1i S44	4
¹³ C NMR copy of 1i S45	5
¹ H NMR copy of 1j S46	5
¹³ C NMR copy of 1j S47	7
¹ H NMR copy of 1k S48	8
¹³ C NMR copy of 1k S49	9

Products 3

¹ H NMR copy of 3a	.850
¹³ C NMR copy of 3a	S51
¹ H NMR copy of 3b	.S52

¹³ C NMR copy of 3b	S53	¹³ (
¹ H NMR copy of 3c ¹³ C NMR copy of 3c	S54 S55	¹ H ¹³ (
¹ H NMR copy of 3d ¹³ C NMR copy of 3d	S56 S57	¹ H ¹³ (
¹ H NMR copy of 3e ¹³ C NMR copy of 3e	S58 S59	¹ H ¹³ (
¹ H NMR copy of 3f ¹³ C NMR copy of 3f	S60 S61	¹ H ¹³ (
¹ H NMR copy of 3 g ¹³ C NMR copy of 3 g	S62 S63	¹ H ¹³ (
¹ H NMR copy of 3h ¹³ C NMR copy of 3h	S64 S65	¹ H ¹³ (
¹ H NMR copy of 3i ¹³ C NMR copy of 3i	S66 S67	¹ H ¹³ (
¹ H NMR copy of 3j ¹³ C NMR copy of 3j	S68 S69	¹ H ¹³ (
¹ H NMR copy of 3k ¹³ C NMR copy of 3k	S70 S71	

Products 5

¹ H NMR copy ¹³ C NMR cop	of 5a by of 5a	
¹ H NMR copy ¹³ C NMR cop	of 5b by of 5b	
¹ H NMR copy ¹³ C NMR copy	y of 5c y of 5c	S76 S77
1		~

¹H NMR copy of **5d**.....S78

¹³ C NMR copy of 5d	.S79
¹ H NMR copy of 5e	.880
¹³ C NMR copy of 5e	.S81
¹ H NMR copy of 5f	.S82
13 C NMR copy of 5f	.S83
¹ H NMR copy of 5g	.S84
¹³ C NMR copy of 5g	.S85
¹ H NMR copy of 5h	.S86
¹³ C NMR copy of 5h	.S87
¹ H NMR copy of 5 i	.S88
¹³ C NMR copy of 5 i	.S89
¹ H NMR copy of 5 j	.S90
¹³ C NMR copy of 5 j	.S91
¹ H NMR copy of 5 k	.S92
¹³ C NMR copy of 5 k	.S93
¹ H NMR copy of 5m	. S 94
¹³ C NMR copy of 5m	.S95

Transformations of The

Cyclization Product 5b

¹ H NMR copy of 6b	S96
¹³ C NMR copy of 6b	S97
¹ H NMR copy of 7b	S98
¹³ C NMR copy of 7b	S99

1. GENERAL INFORMATION

All solvents were dried before use following the standard procedures. Unless otherwise indicated, all starting materials purchased from commercial suppliers were used without further purification. The ¹H and ¹³C NMR spectra were recorded on Bruker AV-400 MHz in the indicated solvents. Chemical shifts are reported in δ (ppm) referenced to an internal TMS standard for ¹H NMR and CDCl₃ (δ = 77.10 ppm) for ¹³C NMR. Coupling constants (*J*) are quoted in Hz. Optical rotations were measured on a JASCO P-1030 polarimeter. IR spectra were recorded on Nicolet iN 10 MX. ESI mass spectra were recorded on Agilent1200/G6100A, Microwave heating was performed on a Milestone MicroSYNTH.

2. SUBSTRATE PREPARATION

2.1 General Procedures for the Preparation of 1a-1k $(\mbox{ except 1e},\mbox{ 1j})$ $^{[1]}$

To a well-stirred solution of cyclohexane-1,3-diones 8 (10 mmol), Hantzsch ester 10 (10 mmol) and the catalyst proline (20 mol%) in DCM (50 mL) was added

^{[1] 2-}methylcyclohexane-1,3-dione (**11a**, CAS: 1193-55-1) was purchased from Energy Chemical (China)

aldehyde 9 (20 mmol) under argon atmosphere at room temperature. The resulting solution was stirred for 12–20 hours. Then the reaction mixture was diluted with water (100 mL) and extracted with DCM (50 mL \times 3). The combined organic phases were washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was used in the next step without any further purification.

To a well-stirred solution of the previous residue, 18-crown-6 (10 mmol) in DMF (50 mL) was added *t*-BuOK (10 mmol) in several portions under argon atmosphere at 0°C and allowed to stir for 30 minutes, then 5-iodine-1-pentyne (10 mmol)) was added slowly in 10 min. The resulting solution was warmed to room temperature (80 °C for **11g–11k**) and allowed to stir for 20 hours. The reaction mixture was quenched with water (150 mL) and extracted with diethyl ether (50 mL × 3). The combined organic phases were washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford the crude compound **12**. The crude compound **12** was used in the next step without any further purification.

To a well-stirred solution of the previous crude compound **12**, paraformaldehyde (15 mmol) and CuBr (1 mmol) in dioxane (25 mL) was added *i*-Pr₂NH (20 mmol) under argon atmosphere at room temperature. The reaction mixture was refluxed at 110°C for 2.0 h. The resulting mixture was cooled to rt, quenched with saturated aqueous NaCl (10 mL), then extracted with ethyl acetate (10 mL × 3). The combined organic phases were dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel (300–400 mesh) column chromatography to afford the desired product **1a-1k** (except **1e, 1j**).

2-(Hexa-4,5-dien-1-yl)-2-methylcyclohexane-1,3-dione (1a)

Pale yellow oil. 597.4 mg, 29% yield; ¹H NMR (400 MHz, CD₃OD) δ (ppm) 5.10–5.02 (m, 1H), 4.86–4.63 (m, 2H), 2.81–2.72 (m, 2H), 2.64–2.56 (m, 2H), 2.04–1.93 (m, 3H), 1.87–1.79 (m, 3H), 1.30–1.19 (m, 2H), 1.18 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ (ppm) 212.39, 209.97, 89.94, 75.03, 66.76, 38.75, 37.94, 29.24, 25.24, 19.21, 18.80; IR (KBr) ν (cm⁻¹) 2933, 2294, 1725, 1694, 1458, 1374, 1317, 1269, 1171, 1132, 1103, 1025, 846, 557, 417; HRMS (EI)

for [C₁₃H₁₈O₂]⁺⁺: calcd. 206.1301, found: 206.1299.

2-Ethyl-2-(hexa-4,5-dien-1-yl)cyclohexane-1,3-dione (1b)

Pale yellow oil. 462.2 mg, 21% yield; ¹H NMR (400 MHz, CD₃OD) δ (ppm) 5.01–4.96 (m, 1H), 4.63–4.59 (m, 2H), 2.60–2.55 (m, 4H), 1.96–1.87 (m, 4H), 1.80–1.71 (m, 4H), 1.23–1.14 (m, 2H), 0.75-0.70 (m, 3H); ¹³C NMR (100 MHz, CD₃OD) δ (ppm) 211.19, 208.53, 89.29, 75.04, 69.22, 39.54, 35.31, 29.57, 28.52, 24.65, 16.99, 9.60; IR (KBr) v (cm⁻¹) 2959, 2931, 2863, 1955, 1722, 1694, 1455, 1366, 1268,

1171, 1021, 847, 721, 556, 417; HRMS (EI) for [C₁₄H₂₀O₂]⁺⁺: calcd. 220.1458, found: 220.1463.

2-(Hexa-4,5-dien-1-yl)-2-propylcyclohexane-1,3-dione (1c)

Pale yellow oil. 220.1 mg, 9.4% yield; ¹H NMR (400 MHz, CD₃OD) δ (ppm) 5.07–5.02 (m, 1H), 4.67–4.62 (m, 2H), 2.65–2.61 (m, 4H), 1.96–1.89 (m, 4H), 1.77–1.67 (m, 4H), 1.23–1.12 (m, 2H), 1.11–1.06 (m, 2H), 0.87–0.85 (m, 3H); ¹³C NMR (100 MHz, CD₃OD) δ (ppm) 212.95, 209.89, 89.98, 75.01, 70.02, 40.14, 39.54, 36.51, 29.52, 25.63, 19.38, 18.07, 14.86; IR (KBr) ν (cm⁻¹) 2960, 2932, 2873, 1955, 1723, 1693, 1458, 1317, 1258, 1211, 1031, 845, 727,

555, 418; HRMS (EI) for [C15H22O2]⁺: calcd. 234.1614, found: 234.1620.

2-(Hexa-4,5-dien-1-yl)-2-isobutylcyclohexane-1,3-dione (1d)

Pale yellow oil. 134 mg, 5.4% yield; ¹H NMR (400 MHz, CD₃OD) δ (ppm) 5.06–5.02 (m, 1H), 4.66–4.62 (m, 2H), 2.73–2.60 (m, 4H), 1.98–1.88 (m, 4H), 1.76–1.71 (m, 4H), 1.56–1.52 (m, 1H), 1.22–1.17 (m, 2H), 0.81–0.78 (m, 6H); ¹³C NMR (100 MHz, CD₃OD) δ (ppm) 213.35, 209.96, 89.93, 74.96, 69.26, 46.21, 40.30, 38.15, 29.50, 26.31, 25.58, 24.48, 18.18; IR (KBr) ν (cm⁻¹) 2925, 2854, 1955, 1819, 1786, 1723, 1693, 1641, 1597, 1467, 1369, 1256,

1107, 1032, 846, 555, 411; HRMS (EI) for [C₁₆H₂₄O₂]⁺⁺: calcd. 248.1771, found: 248.1776.

2-(Hexa-4,5-dien-1-yl)-2-(3-phenylpropyl)cyclohexane-1,3-dione (1f)

Pale yellow oil. 459.1 mg, 14.8% yield; ¹H NMR (400 MHz, CD₃OD) δ (ppm) 5.62–5.52 (m, 1H), 5.08–4.98 (m, 3H), 4.66–4.62 (m, 2H), 2.69–2.55 (m, 4H), 1.95–1.90 (m, 2H), 1.81–1.76 (m, 2H), 1.24–1.16 (m, 2H); ¹³C NMR (100 MHz, CD₃OD) δ (ppm) 212.85, 209.95, 143.00, 129.37, 129.34, 126.87, 89.95, 74.97, 70.05, 40.00, 37.04, 36.41, 36.35, 29.46, 27.94, 25.55, 18.09; IR (KBr) v (cm⁻¹) 3285, 2957, 2872, 2112, 1955, 1725, 1691, 1459, 1332, 1250, 1203,

1147, 1096, 1052, 964, 932, 634, 590, 526, 435; HRMS (EI) for [C₂₁H₂₆O₂]⁺: calcd. 310.1927, found: 310.1933.

2-Ethyl-2-(hexa-4,5-dien-1-yl)-5,5-dimethylcyclohexane-1,3-dione (1g)

Pale yellow oil. 119.1 mg, 4.8% yield; ¹H NMR (400 MHz, CD₃OD) δ (ppm) 5.09–5.05 (m, 1H), 4.66–4.62 (m, 2H), 2.67–2.56 (m, 4H), 1.97–1.92 (m, 2H), 1.83–1.72 (m, 4H), 1.26–1.19 (m, 2H), 1.19–0.96 (m, 6H), 0.78–0.75 (m, 3H);

¹³C NMR (100 MHz, CD₃OD) δ (ppm) 211.72, 209.96, 90.13, 74.93, 70.18, 52.15, 34.24, 31.46, 29.53, 28.87, 28.60, 25.21, 9.42; IR (KBr) ν (cm⁻¹) 3026, 2933, 2857, 1955, 1722, 1693, 1496, 1454, 1264, 1208, 1163, 1083, 1030, 847, 750, 700, 555, 457; HRMS (EI) for [C₁₆H₂₄O₂]⁺⁺: calcd. 248.1771, found: 248.1776.

2-(Hexa-4,5-dien-1-yl)-5,5-dimethyl-2-propylcyclohexane-1,3-dione (1h)

Pale yellow oil. 427.4 mg, 16.3% yield; ¹H NMR (400 MHz, CD₃OD) δ (ppm) 5.11–5.03 (m, 1H), 4.66–4.62 (m, 2H), 2.67–2.56 (m, 4H), 1.99–1.91 (m, 2H), 1.78–1.67 (m, 4H), 1.27–1.19 (m, 2H), 1.15–1.07 (m, 2H), 0.98 (s, 3H), 0.96 (s, 3H), 0.90-0.86 (m, 3H); ¹³C NMR (100 MHz, CD₃OD) δ (ppm) 211.81, 209.98, 90.12, 74.91, 69.98, 52.16, 38.17, 34.83, 31.48, 29.51, 28.64, 25.25, 18.91, 14.77; IR (KBr) ν (cm⁻¹) 2927, 2373, 2320, 1955, 1890,

1772, 1695, 1636, 1457, 1437, 1418, 1373, 1338, 1251, 1020, 843, 457, 419; HRMS (EI) for [C₁₇H₂₆O₂] ⁺⁺: calcd. 262.1927, found: 262.1933.

2-(Hexa-4,5-dien-1-yl)-2-isobutyl-5,5-dimethylcyclohexane-1,3-dione (1i)

Pale yellow oil. 250.8 mg, 12.7% yield; ¹H NMR (400 MHz, CD₃OD) δ (ppm) 5.09–5.05 (m, 1H), 4.65–4.60 (m, 2H), 2.86–2.82 (m, 2H), 2.45–2.41 (m, 2H), 2.00–1.93 (m, 2H), 1.81–1.77 (m, 2H), 1.71–1.65 (m, 2H), 1.64–1.60 (m, 1H), 1.25–1.16 (m, 2H), 1.09 (s, 3H), 0.88–0.85 (m, 9H); ¹³C NMR (100 MHz, CD₃OD) δ (ppm) 212.05, 210.02, 90.23, 74.75, 70.25, 52.38, 47.32, 33.06, 31.60, 29.85, 27.60, 25.94, 25.64, 24.76; IR (KBr) v (cm⁻¹) 2957, 2313,

2210, 1965, 1844, 1792, 1655, 1556, 1497, 1472, 1436, 1387, 1338, 1252, 1020, 845, 557, 410; HRMS (EI) for [C18H28O₂]⁺⁺: calcd. 276.2084, found: 276.2089.

2-(Hexa-4,5-dien-1-yl)-5,5-dimethyl-2-(3-phenylpropyl)cyclohexane-1,3-dione (1k)

Pale yellow oil. 882.7 mg, 26.1% yield; ¹H NMR (400 MHz, CD₃OD) δ (ppm) 7.27–7.22 (m, 2H), 7.17–7.12 (m, 3H), 5.07–5.03 (m, 1H), 4.65–4.61 (m, 2H), 2.61–2.50 (m, 6H), 1.95–1.91 (m, 2H), 1.78–1.71 (m, 4H), 1.44–1.39 (m, 2H), 1.22–1.17 (m, 2H), 0.95–0.92 (m, 6H); ¹³C NMR (100 MHz, CD₃OD) δ (ppm) 211.65, 209.95, 143.11, 129.40, 129.34, 126.87, 90.09, 74.96, 69.87, 52.08, 36.97, 35.08, 34.89, 31.45, 29.43, 28.76, 27.50, 25.15; IR (KBr) v (cm⁻¹)

3282, 2956, 2873, 2312, 1955, 1725, 1711, 1439, 1372, 1253, 1213, 1167, 1076, 1022, 924, 832, 656, 591, 520, 425; HRMS (EI) for [C₂₃H₃₀O₂]⁺: calcd. 338.2240, found: 338.2246.

2.2 Preparation of 1e, 1j

To a well-stirred solution of cyclohexane-1,3-diones 1 (10 mmol), copper powder (50 mol%) in 5% KOH (200 mL) was added allyl bromide (12 mmol), under argon atmosphere at room temperature. The resulting solution was stirred for 12 hours. Then the reaction mixture was extracted with ethyl acetate (200 mL \times 3). The combined organic phases were washed with brine, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was used in the next step without any further purification. Then followed the general procedure for preparation of **1a-1k** to afford the desired product **1e**, **1j**.

2-Allyl-2-(hexa-4,5-dien-1-yl)cyclohexane-1,3-dione (1e)

Pale yellow oil. 290.4 mg, 12.4% yield; ¹H NMR (400 MHz, CD₃OD) δ (ppm) 5.62–5.52 (m, 1H), 5.08–4.98 (m, 3H), 4.66–4.62 (m, 2H), 2.69–2.55 (m, 4H), 1.95–1.90 (m, 2H), 1.81–1.76 (m, 2H), 1.24–1.16 (m, 2H); ¹³C NMR (100 MHz, CD₃OD) δ (ppm) 212.36, 209.92, 134.27, 119.22, 89.92, 75.02, 69.78, 41.30, 40.29, 36.49, 29.44, 25.51, 17.89; IR (KBr) ν (cm⁻¹) 2929,1955, 1723, 1694, 1639, 1439, 1322, 1258, 1210, 1102, 1033, 999, 922, 846, 556;

HRMS (EI) for [C₁₅H₂₂O₂]⁺: calcd. 234.1458, found: 234.1459.

2-Allyl-2-(hexa-4,5-dien-1-yl)-5,5-dimethylcyclohexane-1,3-dione (1j)

Pale yellow oil. 260.2 mg, 10% yield; ¹H NMR (400 MHz, CD₃OD) δ (ppm) 5.61–5.56 (m, 1H), 5.09–4.99 (m, 3H), 4.66–4.62 (m, 2H), 2.67–2.56 (m, 4H), 2.51–2.49 (m, 2H), 1.98–1.92 (m, 2H), 1.80–1.75 (m, 2H), 1.29–1.19 (m, 2H), 0.99–0.94 (m, 6H); ¹³C NMR (100 MHz, CD₃OD) δ (ppm) 211.16, 209.99, 134.31, 119.34, 90.05, 74.95, 52.32, 39.27, 35.11, 31.61, 29.38, 28.89, 28.63, 25.04; IR (KBr) ν (cm⁻¹) 2955, 2870, 2395,1955, 1725, 1427, 1371, 1329, 1251,

1217, 1178, 1078, 1000, 921, 845, 588, 437; HRMS (EI) for [C₁₇H₂₄O₂]⁺: calcd. 260.1771, found: 260.1776.

3. SCOPE OF THE SUBSTRATES IN TABLE 2

GENERAL PROCEDURE:

A dried Schlenk flask was charged with CuCl (0.01mmol, 5 mol%), *t*-BuONa (0.012 mmol, 6 mol%), PPh₃ (0.024 mmol, 12 mol%), and freshly distilled dry toluene (1 mL) under argon atmosphere. The reaction mixture was stirred at room temperature for 0.5 h. Then bis(pinacolato)diboron **2** (1 mmol, 5.0 equiv) was added and the mixture was allowed to stir for another 0.5 h under argon atmosphere at room temperature. A solution of allenes **1** (0.2 mmol) in freshly distilled toluene (1 mL) and MeOH (16 μ L, 2.0 equiv) was then added to the Schlenk flask. The mixture was allowed to stir for 120 h at room temperature under argon atmosphere. The resulting mixture was filtered and concentrated *in vacuo*. Then sodium perborate tetrahydrate (1 mmol, 5.0 equiv), THF (0.5mL) and H₂O (0.5 mL) was added and the mixture was allowed to stir for 3 h at room temperature. Then quenched with saturated aqueous NaCl (2 mL), extracted with ethyl acetate (4 mL × 3). The combined organic phases were dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel (300-400 mesh) column chromatography to afford the desired product **3**.

(4aR,5R,8aR)-rel-5-Acetyl-4a-hydroxy-8a-methyloctahydronaphthalen-1(2H)-on

e (3a)

Colorless oil, 43.1 mg, 96% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 4.28 (s, 1H), 2.64–2.55 (m, 2H), 2.28–2.14 (m, 5H), 1.94–1.86 (m, 2H), 1.78–1.70 (m, 1H), 1.67–1.64 (m, 1H), 1.59–1.48 (m, 4H), 1.24 (s, 1H), 1.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 215.67, 213.65, 75.16, 54.45, 52.69, 36.57, 32.01, 31.47, 29.16, 25.58, 22.35, 22.07, 19.87; IR (KBr) ν (cm⁻¹) 3467, 2958, 2878, 1695,

1653, 1636, 1558, 1540, 1507, 1458, 1395, 1337, 1229, 1172, 1018, 969, 823, 603, 543; HRMS (ESI) for [C13H19O₃][⊖]: calcd. 223.1340, found: 223.1338.

(4a*R*,5*R*,8a*R*)-rel-5-Acetyl-8a-ethyl-4a-hydroxyoctahydronaphthalen-1(2*H*)-one (3b)

Colorless oil. 43.8 mg, 92% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 4.28 (s, 1H), 2.66–2.61 (m, 1H), 2.49–2.39 (m, 1H), 2.34–2.23 (m, 1H), 2.20–2.15 (m, 4H), 1.99–1.87 (m, 2H), 1.82–1.70 (m, 2H), 1.67–1.62 (m, 3H), 1.53–1.48 (m, 1H), 1.36–1.27 (m, 3H), 0.66 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 215.89, 212.85, 75.92, 58.24, 53.06, 37.65, 31.73, 31.57, 29.79, 26.78, 25.42, 25.22, 20.16, 7.43; IR (KBr) ν (cm⁻¹) 3473, 2926, 2853,

2360, 1692, 1463, 1335, 1299, 1228, 1188, 1089, 1068, 1002, 968, 906, 863, 822, 668, 578; HRMS (EI) for [C14H22O₃]⁺: calcd. 238.1563, found: 238.1568.

(4a*R*,5*R*,8a*R*)-rel-5-Acetyl-4a-hydroxy-8a-propyloctahydronaphthalen-1(2*H*)-one (3c)

Colorless oil. 46.9 mg, 93% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 4.30 (s, 1H), 2.65–2.60 (m, 1H), 2.50–2.39 (m, 1H), 2.36–2.22 (m, 2H), 2.20 (s, 3H), 2.19–2.14 (m, 1H), 1.95–1.88 (m, 1H), 1.87–1.80 (m, 1H), 1.78–1.69 (m, 2H), 1.66–1.61 (m, 4H), 1.54–1.49 (m, 1H), 1.41–1.32 (m, 1H), 1.29–1.18 (m, 2H), 0.87 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 215.89, 212.94, 75.92, 58.09, 52.96, 37.70, 36.52, 31.74, 31.57, 25.95, 25.38, 21.98,

20.21, 16.35, 14.87; IR (KBr) v (cm⁻¹) 3465, 2925, 2851, 2360, 1692, 1463, 1387, 1335, 1229, 1210, 1188,1171, 1142, 1018, 968, 823, 688, 543; HRMS (ESI) for [C15H24O₃Na]^{\oplus}: calcd. 275.1618, found: 275.1620.

(4a*R*,5*R*,8a*S*)-rel-5-Acetyl-4a-hydroxy-8a-isobutyloctahydronaphthalen-1(2*H*)-on e (3d)

Colorless oil. 51.6 mg, 97% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 4.30 (s, 1H), 2.67–2.61 (m, 2H), 2.30–2.18 (m, 6H), 1.93–1.70 (m, 4H), 1.64–1.50 (m, 6H), 1.46–1.37 (m, 1H), 0.89 (d, J = 6.8 Hz, 3H), 0.77 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 215.85, 214.08, 76.14, 57.96, 52.78, 42.60, 37.84, 31.65, 31.55, 26.17, 25.78, 25.28, 23.57, 21.81, 20.37; IR (KBr) v (cm⁻¹) 3469, 2955, 270, 1722, 1693, 1572, 1564, 1536, 1461, 1365, 1335,

1188, 1095, 1004, 973, 793, 601; HRMS (EI) for $[C_{16}H_{26}O_3]^{++}$: calcd. 266.1876, found: 266.1878.

(4a*R*,5*R*,8a*S*)-rel-5-Acetyl-8a-allyl-4a-hydroxyoctahydronaphthalen-1(2*H*)-one (3e)

Colorless oil. 51.3 mg, 94% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 5.53–5.44 (m, 1H), 5.05–4.99 (m, 2H), 4.34 (s, 1H), 2.67–2.61 (m, 2H), 2.51–2.42 (m, 2H), 2.32–2.24 (m, 2H), 2.20 (br, s, 3H), 2.13–2.09 (m, 1H), 1.96–1.89 (m, 1H), 1.78–1.71 (m, 1H), 1.71–1.61 (m, 3H), 1.59–1.50 (m, 2H), 1.46–1.38 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 215.71, 211.85, 132.74, 118.21, 75.66, 58.01, 52.78, 38.93, 37.83, 31.52, 26.43, 25.44,

21.88, 20.16; IR (KBr) v (cm⁻¹) 3204, 3075, 2925, 2872, 2377, 1690, 1639, 1460, 1335, 1314, 1206, 1187, 1169, 1095, 916, 815, 766, 652, 602; HRMS (ESI) for [C15H22O₃Na]^{\oplus}: calcd. 273.1461, found: 273.1463.

(4a*R*,5*R*,8a*S*)-rel-5-Acetyl-4a-hydroxy-8a-(3-phenylpropyl)octahydro-naphthalen -1(2*H*)-one (3f)

Colorless oil. 43.1 mg, 96% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.27–7.23 (m, 2H), 7.18–7.10 (m, 3H), 4.30 (s, 1H), 2.67–2.58 (m, 2H), 2.53–2.45 (m, 1H), 2.26–2.13 (m, 7H), 1.91–1.68 (m, 4H), 1.66–1.58 (m, 4H), 1.56–1.46 (m, 2H), 1.41–1.30 (m, 1H), 1.11–1.05 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 215.81, 212.77, 141.94, 128.48, 128.38, 125.91, 76.78, 75.89, 57.95, 52.93, 37.51, 36.22, 33.35, 31.69, 31.53, 25.89, 25.34, 24.77,

21.93, 20.11; IR (KBr) v (cm⁻¹) 3464, 3060, 2953, 2359, 1693, 1454, 1430, 1337, 1189, 1104, 1088, 906, 812, 749, 700, 603, 543, 492; HRMS (EI) for [C₂₁H₂₈O₃]⁺: calcd. 328.2033, found: 328.2034.

(4a*R*,5*R*,8a*R*)-rel-5-Acetyl-8a-ethyl-4a-hydroxy-3,3-dimethyloctahydro-naphthal en-1(2*H*)-one (3g)

Colorless oil. 47.4 mg, 89% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 4.65 (s, 1H), 2.73–2.70 (m, 1H), 2.46–2.42 (m, 1H), 2.29–2.25 (m, 1H), 2.18 (br, s, 3H), 2.06–2.02 (m, 1H), 2.01–1.91 (m, 1H), 1.81–1.63 (m, 6H), 1.32–1.25 (m, 2H), 1.09 (s, 3H), 1.03 (s, 3H), 0.67 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 215.77, 213.41, 109.90, 75.59, 56.63, 55.44, 50.72, 45.54, 34.77, 31.29, 30.05, 27.89, 25.66, 22.39, 7.34; IR (KBr) ν (cm⁻¹) 3566, 2924,

2853, 2349, 1991, 1749, 1698, 1615, 1464, 1387, 1337, 1296, 1179, 1018, 945, 777, 663, 592; HRMS (EI) for [C₁₆H₂₆O₃]⁺: calcd. 266.1876, found: 266.1878.

(4a*R*,5*R*,8a*R*)-rel-5-Acetyl-4a-hydroxy-3,3-dimethyl-8a-propyloctahydro-naphth alen-1(2*H*)-one (3h)

2369, 1868, 1699, 1578, 1506, 1489, 1471, 1419, 1397, 1337, 1292, 1180, 1074, 1021, 892, 813, 776, 592; HRMS (EI) for [C17H28O3]⁺⁺: calcd. 280.2033, found: 280.2031.

Colorless oil. 48.8 mg, 83% yield; ¹H NMR (400 MHz, CD₃OD) δ (ppm) 2.76–2.67 (m, 2H), 2.23–2.14 (m, 5H), 2.04–1.96 (m, 1H), 1.91–1.75 (m, 2H), 1.74–1.60 (m, 4H), 1.55–1.29 (m, 3H), 1.10 (s, 3H), 1.05 (s, 3H), 0.92 (d, J = 6.4 Hz, 3H), 0.80 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CD₃OD) δ (ppm) 216.84, 216.69, 77.02, 57.38, 52.16, 46.22, 44.79, 35.32, 32.55, 30.52, 30.08, 28.20, 26.53, 26.03, 24.93, 23.40 ; IR (KBr) v (cm⁻¹) 3466, 2957, 2930,

2871, 2369, 2322, 1868, 1699, 1569, 1471, 1397, 1337, 1292, 1220, 1180, 997, 892, 776, 592; HRMS (EI) for [C₁₈H₃₀O₃]⁺: calcd. 294.2189, found: 294.2191.

(4a*R*,5*R*,8a*S*)-rel-5-Acetyl-8a-Allyl-4a-Hydroxy-3,3-Dimethyloctahydro-naphthal en-1(2*H*)-one (3j)

Colorless oil. 51.2 mg, 92% yield; ¹H NMR (400 MHz, CD₃OD) δ (ppm) 5.56–5.43 (m, 1H), 5.12–4.97 (m, 2H), 2.79–2.64 (m, 2H), 2.60–2.51 (m, 1H), 2.47–2.36 (m, 1H), 2.27–2.17 (m, 4H), 2.15–2.06 (m, 1H), 2.03–1.96 (m, 1H), 1.75–1.66 (m, 3H), 1.65–1.54 (m, 2H), 1.42–1.22 (m, 1H), 1.11 (s, 3H), 1.06 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ (ppm) 216.78, 214.40, 134.16, 118.65, 76.64, 57.91, 57.48 52.19, 46.34, 41.48, 35.15, 32.52, 30.41, 28.47, 26.70,

23.41; IR (KBr) v (cm⁻¹) 3467, 3076, 2923, 2850, 2349, 1694, 1633, 1462, 1397, 1335, 1298, 1179, 1023, 997, 917, 811, 776, 591, 562; HRMS (EI) for [C₁₇H₂₆O₃]⁺: calcd. 278.1876, found: 278.1878.

(4a*R*,5*R*,8a*S*)-rel-5-Acetyl-4a-Hydroxy-3,3-Dimethyl-8a-(3-Phenylpropyl)octa-hy dronaphthalen-1(2*H*)-one (3k)

31.26, 30.28, 26.58, 25.77, 24.87, 22.52 ; IR (KBr) v (cm⁻¹) 3467, 2922, 2850, 2360, 2341, 1712, 1690, 1644, 1552, 1462, 1424, 1370, 1249, 1156, 1083, 948, 748, 699, 668, 586; HRMS (EI) for [C₂₃H₃₂O₃]⁺⁺: calcd. 356.2346, found: 356.2343.

4. SCOPE OF THE SUBSTRATES IN TABLE 3

GENERAL PROCEDURE:

3k

A dried Schlenk flask was charged with CuCl (0.01 mmol, 5 mol%), *t*-BuONa (0.012 mmol, 6 mol%), (\pm)-BINAP (0.012 mmol, 6 mol%), and freshly distilled dry toluene (1 mL) under argon atmosphere. The reaction mixture was stirred at room temperature for 0.5 h. Then bis(neopentyl glycolato)diboron **4** (0.4 mmol, 2.0 equiv) was added and the mixture was allowed to stir for another 0.5 h under argon atmosphere at room temperature. A solution of allenes **1** (0.2 mmol) in freshly distilled toluene (1 mL) and MeOH (16 μ L, 2.0 equiv) was then added to the Schlenk flask. The mixture was allowed to stir for 48 h at room temperature under argon atmosphere. The resulting mixture was quenched with H₂O (2 mL) then extracted with ethyl acetate (4 mL × 3). The combined organic phases were dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel (300–400 mesh) column chromatography to afford the desired product **5**.

(3a*S*,6a*R*,10a*R*)-rel-2-Hydroxy-6a-methyl-3-methyleneoctahydro-2H-naphtho[1,8 a-d][1,2]oxaborol-7(8*H*)-one (5a)

646, 582; HRMS (EI) for $[C_{13}H_{19}^{10}BO_3]$ + : calcd. 233.1464, found: 233.1467.

(3a*S*,6a*R*,10a*R*)-rel-6a-Ethyl-2-hydroxy-3-methyleneoctahydro-2H-naphtho[1,8a-d][1,2]oxaborol-7(8*H*)-one (5b)

Colorless oil. 47.5 mg, 96% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 5.62 (br, s, 1H), 5.51 (br, s, 1H), 4.38 (br, s, 1H), 2.56–2.51 (m, 1H), 2.43–2.39 (m, 2H), 2.38–2.13 (m, 2H), 1.99–1.89 (m, 1H), 1.88–1.80 (m, 1H), 1.78–1.70 (m, 1H), 1.69–1.58 (m, 2H), 1.51–1.35 (m, 4H), 1.00–0.91 (m, 1H), 0.67 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 212.28, 121.37, 86.82, 56.91, 49.07, 38.13, 34.61, 28.81, 27.48, 24.43, 19.49, 18.73, 7.81; IR (KBr) *v* (cm⁻¹)

3361, 2935, 2877, 2360, 2341, 1693, 1461, 1317, 1291, 1228, 1144, 1018, 943, 824, 668, 544; HRMS (EI) for [C14H21¹⁰BO₃]⁺⁺: calcd. 247.1620, found: 247.1623.

(3a*S*,6a*R*,10a*R*)-rel-2-Hydroxy-3-methylene-6a-propyloctahydro-2H-naphtho[1,8 a-d][1,2]oxaborol-7(8*H*)-one (5c)

Colorless oil. 49.6 mg, 95% yield; ¹H NMR (400 MHz, CD₃OD) δ (ppm) 5.54 (br, s, 1H), 5.46 (br, s, 1H), 2.59–2.44 (m, 2H), 2.32–2.12 (m, 2H), 1.98–1.82 (m, 2H), 1.74–1.59 (m, 3H), 1.52–1.29 (m, 4H), 1.27–1.13 (m, 1H), 1.06–0.93 (m, 1H), 0.92–0.88 (m, 3H), 0.87–0.79 (m, 2H); ¹³C NMR (100 MHz, CD₃OD) δ (ppm) 214.65, 121.02, 87.60, 58.06, 56.49, 50.28, 39.08, 38.25, 35.57, 29.82, 26.38, 20.43, 17.72, 15.06; IR (KBr) ν (cm⁻¹) 3334, 2926,

2870, 2375, 1701, 1455, 1402, 1286, 1186, 1144, 1074, 994, 829, 744, 672, 543; HRMS (EI) for [C₁₅H₂₃¹⁰BO₃]⁺⁺: calcd. 261.1777, found: 261.1778.

(3a*R*,6a*S*,10a*R*)-rel-2-Hydroxy-6a-isobutyl-3-methyleneoctahydro-2H-naphtho[1, 8a-d][1,2]oxaborol-7(8*H*)-one (5d)

(cm⁻¹) 3371, 2925, 2869, 2375, 1848, 1699, 1455, 1286, 1198, 1144, 1029, 928, 891, 774, 672, 599; HRMS (EI) for [C₁₆H₂₅¹⁰BO₃]⁺⁺: calcd. 275.1933, found: 275.1935.

(3a*R*,6a*S*,10a*R*)-rel-6a-Allyl-2-hydroxy-3-methyleneoctahydro-2H-naphtho[1,8ad][1,2]oxaborol-7(8*H*)-one (5e)

White solid. 50.2 mg, 97% yield, Mp 97–103 °C. ¹H NMR (400 MHz, CD₃OD) δ (ppm) 5.65–5.51 (m, 2H), 5.50–5.42 (m, 1H), 2.76–2.66 (m, 1H), 2.61–2.42 (m, 3H), 2.33–2.22 (m, 2H), 2.17–2.07 (m, 1H), 1.95–1.84 (m, 1H), 1.80–1.25 (m, 8H), 1.07–1.01 (m, 1H); ¹³C NMR (100 MHz, CD₃OD) δ (ppm) 213.71, 134.80, 121.05, 117.94, 87.37, 58.14, 50.37, 40.49, 39.25, 35.69, 29.52, 26.96, 20.45, 19.66; IR (KBr) ν (cm⁻¹) 3391, 2927, 2869, 2850, 2361, 2342, 1699,

1632, 1496, 1367, 1244, 1197, 1072, 998, 933, 882, 776, 673, 567; HRMS (EI) for $[C_{15}H_{21}^{10}BO_{3}]$ ⁺: calcd. 259.1620, found: 259.1621.

(3a*R*,6a*S*,10a*R*)-rel-2-Hydroxy-3-methylene-6a-(3-phenylpropyl)octahydro-2H-n aphtho[1,8a-d][1,2]oxaborol-7(8*H*)-one (5f)

Colorless oil. 63.4 mg, 94% yield; ¹H NMR (400 MHz, CD₃OD) δ (ppm) 7.29–7.21 (m, 2H), 7.19–7.10 (m, 3H), 5.52 (br, s, 1H), 5.43 (br, s, 1H), 2.64–2.48 (m, 3H), 2.38–2.26 (m, 1H), 2.24–2.08 (m, 3H), 1.99–1.87 (m, 1H), 1.86–1.71 (m, 2H), 1.69–1.57 (m, 2H), 1.56–1.44 (m, 2H), 1.42–1.28 (m, 2H), 1.19–1.08 (m, 1H), 1.01–0.86 (m, 2H); ¹³C NMR (100 MHz, CD₃OD) δ (ppm) 214.75, 143.36, 129.49, 129.31, 126.84, 121.02, 87.62, 57.90, 50.31, 38.93,

37.10, 35.55, 34.89, 29.53, 26.45, 26.28, 20.39, 19.76; IR (KBr) v (cm⁻¹) 3392, 3060, 2930, 2870, 2360, 2341, 1701, 1602, 1495, 1343, 1291, 1198, 1029, 933, 881, 747, 668, 551, 454; HRMS (EI) for $[C_{21}H_{27}^{10}BO_3]^{++}$: calcd. 337.2090, found: 337.2093.

(3a*R*,6a*R*,10a*R*)-rel-6a-Ethyl-2-hydroxy-9,9-dimethyl-3-methyleneoctahydro-2Hnaphtho[1,8a-d][1,2]oxaborol-7(8*H*)-one (5g)

1229, 1172, 1144, 1090, 945, 828, 669, 544; HRMS (EI) for $[C_{16}H_{25}^{10}BO_3]^{+}$: calcd.275.1933, found: 275.1935.

(3a*S*,6a*R*,10a*R*)-rel-2-Hydroxy-9,9-dimethyl-3-methylene-6a-propyloctahydro-2 H-naphtho[1,8a-d][1,2]oxaborol-7(8*H*)-one (5h)

Colorless oil. 54.4 mg, 94% yield; ¹H NMR (400 MHz, CD₃OD) δ (ppm) 5.54 (t, J = 2.8 Hz, 1H), 5.43-5.34 (br, s, 1H), 2.64–2.54 (m, 1H), 2.45–2.28 (m, 2H), 2.12–2.02 (m, 1H), 1.86–1.65 (m, 4H), 1.64–1.50 (m, 2H), 1.49–1.31 (m, 4H), 1.15–1.08 (m, 4H), 1.01 (s, 3H), 0.88–0.81 (m, 3H); ¹³C NMR (100 MHz, CD₃OD) δ (ppm) 211.89, 124.11, 73.03, 69.56, 52.15, 38.08, 36.05, 35.49, 31.50, 30.89, 28.77, 25.36, 21.62, 18.93, 14.78; IR (KBr) v (cm⁻¹) 3334,

2930, 2871, 2855, 2376, 2349, 1701, 1457, 1401, 1287, 1189, 1039, 930, 892, 805, 745, 665, 564; HRMS (EI) for [C₁₇H₂₇¹⁰BO₃]⁺⁺: calcd. 289.2090, found: 289.2094.

(3a*R*,6a*S*,10a*R*)-rel-2-Hydroxy-6a-isobutyl-9,9-dimethyl-3-methyleneoctahydro-2 H-naphtho[1,8a-d][1,2]oxaborol-7(8*H*)-one (5i)

Colorless oil. 53.4 mg, 88% yield; ¹H NMR (400 MHz, CD₃OD) δ (ppm) 5.54 (t, J = 2.4 Hz, 1H), 5.46–5.35 (m, 1H), 2.76–2.67 (m, 1H), 2.65–2.55 (m, 1H), 2.18–2.08 (m, 1H), 1.85–1.74 (m, 3H), 1.70–1.51 (m, 6H), 1.47–1.40 (m, 2H), 1.14 (s, 3H), 0.98 (s, 3H), 0.95–0.84 (m, 3H), 0.83–0.78 (m, 3H); ¹³C NMR (100 MHz, CD₃OD) δ (ppm) 210.73, 125.89, 71.57, 68.83, 68.09, 50.93, 45.45, 36.64, 32.62, 30.15, 28.48, 26.36, 24.53, 23.39, 20.17; IR (KBr) v (cm⁻¹) 3357, 2927,

2870, 2852, 2350, 2307, 1990, 1784, 1700, 1456, 1401, 1240, 1187, 1230, 929, 892, 774, 734, 645, 598; HRMS (EI) for $[C_{18}H_{29}{}^{10}BO_3]$ ⁺: calcd. 303.2246, found: 303.2251.

(3a*R*,6a*S*,10a*R*)-rel-6a-Allyl-2-hydroxy-9,9-dimethyl-3-methyleneoctahydro-2H-n aphtho[1,8a-d][1,2]oxaborol-7(8*H*)-one (5j)

(KBr) v (cm⁻¹) 3371, 2925, 2862, 2382, 2350, 2017, 1869, 1844, 1771, 1647, 1540, 1436, 1396, 1286, 1086, 912, 800, 674, 663, 587; HRMS (EI) for $[C_{17}H_{25}^{10}BO_3]^{+}$: calcd. 287.1933, found: 287.1934.

(3a*R*,6a*S*,10a*R*)-rel-2-Hydroxy-9,9-dimethyl-3-methylene-6a-(3-phenyl propyl)octahydro-2H-naphtho[1,8a-d][1,2]oxaborol-7(8*H*)-one (5k)

White solid. 66.5 mg, 91% yield, Mp 106–111 °C. ¹H NMR (400 MHz, CD₃OD) δ (ppm) 7.24–7.20 (m, 2H), 7.14–7.08 (m, 3H), 5.45–5.40 (m, 1H), 5.30–5.24 (m, 1H), 2.62–2.47 (m, 3H), 2.31–2.26 (m, 1H), 2.10–2.04 (m, 1H), 1.86–1.77 (m, 1H), 1.73–1.64 (m, 3H), 1.59–1.45 (m, 3H), 1.44–1.33 (m, 5H), 1.07 (s, 3H), 0.99 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ (ppm) 216.92, 143.36, 129.54, 129.27, 129.71, 118.18, 89.08, 56.55, 53.13, 51.26, 37.29, 34.68, 31.77,

30.75, 30.67, 29.52, 27.00, 25.81, 18.42; IR (KBr) v (cm⁻¹) 3391, 3061, 3022, 2928, 2867, 2359, 2340, 1701, 1604, 1497, 1402, 1345, 1242, 1195, 1091, 935, 899, 882, 749, 667, 551, 435; HRMS (EI) for $[C_{23}H_{31}^{10}BO_3]$ ⁺: calcd. 365.2403, found: 365.2401.

(3a*R*,6a*R*,9a*R*)-rel-2-hydroxy-6a-methyl-3-methyleneoctahydroindeno[4,3a-d][1, 2]oxaborol-7(2*H*)-one (5m)

Colorless oil. 41.6 mg, 95% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 5.71 (t, J = 2.4 Hz, 1H), 5.59–5.48 (m, 1H), 4.90 (br, s, 1H), 2.63–2.47 (m, 2H), 2.39–2.28 (m, 1H), 2.19–2.03 (m, 2H), 1.82–1.72 (m, 1H), 1.69–1.54 (m, 2H), 1.49–1.39 (m, 1H), 1.36–1.27 (m, 2H), 0.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 221.17, 120.69, 89.07, 53.52, 52.78, 48.82, 34.80, 31.59, 29.78, 25.88, 17.79, 14.21; IR (KBr) v (cm⁻¹) 3361, 2932, 2857, 1847, 1664,

1637, 1593, 1477, 1382, 1009, 957, 867, 655, 573; HRMS (EI) for [C₁₂H₁₇¹⁰BO₃]⁺: calcd. 219.1307, found: 219.1311.

5 Initial Evaluation of Various Chiral Ligands

5.1 Evaluation of Various Chiral Ligands for Cu-catalyzed asymmetric cyclization of allene diketone 1a using B₂(pin)₂ (2) as boron source.

Entry	ligand	yield(%) ^a	d.r. ^b	ee (%) ^c
1	L10	77	>20:1	<10
2	L11	75	>20:1	33
3	L12	64	>20:1	<10
4 ^d	L13	45	>20:1	<10
5	L14	95	>20:1	<10
6	L15	60	>20:1	<10
7	L16	80	>20:1	<10
8	L17	98	>20:1	<10
9	L18	79	>20:1	<10
10	L19	93	>20:1	32
11	L20	76	>20:1	<10
12	L21	97	>20:1	<10
13	L22	68	>20:1	27
14 ^d	L23	98	>20:1	<10
15	L24	80	>20:1	20
16	L25	85	>20:1	53

a: Yield of isolated and purified product **3a**.

b: Determined by ¹H NMR

c: Determined by HPLC analysis using a chiral stationary phase

d: 12% mmol Ligand was used

- L10, L18, L21, L22: purchased from Sigma-Aldrich and used as received.
- L12, L14, L16, L17, L19, L20, L23, L24: purchased from Strem Chemicals Inc. and used as received.
- L11, L15, L25: purchased from TCI and used as received.
- **L13**: made by ourselves according to literatures^[2]

^[2] M. A. Schafroth, D. Sarlah, S. Krautwald and E. M. Carreira, J. Am. Chem. Soc., 2012, 134, 20276. (L13)

HPLC: Phenomenex Lux 5u Cellulose-2 (PC-2) Column in series with Chiracel OD-H Column (250 mm); detected at 214 nm; n-hexane / i-propanol = 99.5/0.5; flow = 0.5 ml/min; Retention time: 23.5 min (major), 28.9 min (minor).

5.2 Chiral Ligands((S)-DTBM-Segphos) for Cu-catalyzed asymmetric cyclization of allene diketone 1a using B₂(nep)₂ (4) as boron source.

The procedure was followed the general procedure for scope of the substrates in table 2

HPLC: Phenomenex Lux 5u Cellulose-2 (PC-2) Column in series with Chiracel OD-H Column (250 mm); detected at 214 nm; n-hexane / i-propanol = 99/1; flow = 0.7 ml/min; Retention time: 11.4 min (major), 16.9 min (minor).

6. TRANSFORMATIONS OF THE CYCLIZATION PRODUCTS 5b

(4aR,5R,8aR)-rel-8a-Ethyl-4a-hydroxy-5-(1-phenylvinyl)octahydronaphthalen-1(2H)-one (6b) ^[3]. Into a 5 mL microwave reactor containing DME/H₂O (2 mL, 3:1 v/v) were added **5b** (24.8 mg, 0.1 mmol), 3-methoxyphenyl iodide (24.5 mg, 0.12 mmol), K2CO3 (27.6 mg, 0.2 mmol) and [Pd(PPh3)4] (5.8 mg, 0.005 mmol). The mixture was de-gassed with Ar for 10 min. The reactor was then capped and placed in the microwave oven. The temperature was ramped to 150 $^{\circ}$ C over 15 min, and kept at 150 °C for 15 min. After the reaction mixture was cooled to 25 °C, EtOAc/H₂O was added, and the organic layer was separated. The aqueous layer was extracted with EtOAc (2 mL \times 3). The combined organic phases were washed with brine, and dried over anhydrous MgSO₄. The residue was purified by column chromatography resulting in **6b** as a colorless oil (28.3 mg, 95% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.35-7.17 (m, 5H), 5.28-5.23 (m, 2H), 2.62-2.52 (m, 1H), 2.33-2.15 (m, 2H), 2.12-2.03 (m, 1H), 2.01-1.87 (m, 3H), 1.75-1.66 (m, 2H), 1.65-1.55 (m, 3H), 1.35–1.23 (m, 3H), 1.02–0.89 (m, 1H), 0.63 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 213.33, 151.87, 144.75, 128.53, 127.40, 126.47, 115.87, 77.37, 58.88, 47.45, 37.41, 31.42, 28.02, 25.72, 22.57, 19.10, 14.19, 7.62; IR (KBr) v (cm⁻¹) 3524, 2954, 2927, 2877, 2855, 1701, 1621, 1492, 1463, 1144, 1017, 977, 906, 823, 762, 717, 702, 552, 428; HRMS (TOF-EI) for [C₂₀H₂₆O₂]⁺: calcd. 298.1933, found 298.1930.

(3aR,6aR,10aR)-rel-6a-Ethyl-3-methyleneoctahydro-2H-naphtho[8a,1-b]furan-2, 7(8H)-dione (7b)^[3]. A dried Schlenk flask was charged with 5b (24.8 mg, 0.1 mmol), DMSO (2 mL). MeOH (1 mL) and Pd(OAc)₂ (22.5 mg, 0.1 mmol), then the reaction mixture was evacuated and filled with CO three times. The reaction mixture was stirred at 25 $^{\circ}$ C for 3 h until the brown catalyst turned to a black precipitate. The

^[3] Q. J. Zhou, K. Worm and R. E. Dolle, J. Org. Chem. 2004, 69, 5147-5149

mixture was poured into an Erlenmeyer flask containing 15 mL of H₂O, which was then extracted with EtOAc (3 × 10 mL). The organic phases were combined and washed with H₂O, brine, and dried over MgSO₄. The solvent was removed *in vacuo* and the residue was purified by column chromatography (hexane/EtOAc = 10/1) to give a white solid **7b** (23.8 mg, 96% yield). Mp 124–129 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.23 (d, *J* = 2.0 Hz, 1H), 5.54 (d, *J* = 2.0 Hz, 1H), 2.87–2.84 (m, 1H), 2.49–2.31 (m, 3H), 2.28 (dt, *J* = 14.0 Hz, 4.8 Hz, 1H), 2.01–1.93 (m, 2H), 1.82–1.70 (m, 2H), 1.67–1.54 (m, 2H), 1.53–1.47 (m, 3H), 0.99–0.90 (m, 1H), 0.69 (t, *J* = 7.6 Hz, 3H); ¹³CNMR (100 MHz, CDCl₃) δ (ppm) 210.30, 169.44, 140.50, 121.23, 87.76, 56.19, 43.79, 37.76, 33.39, 27.42, 27.26, 23.15, 18.90, 17.16, 7.68; IR (KBr) *v* (cm⁻¹) 3473, 2940, 2848, 1763, 1706, 1644, 1463, 1289, 1260, 1230, 1186, 1134, 1042, 1008, 942, 828; HRMS (TOF-EI) for [C15H20O₃]⁺ : calcd. 248.1412, found: 248.1406.

(4aR,5R,8aR)-rel-5-Acetyl-8a-ethyl-4a-hydroxyoctahydronaphthalen-1(2H)-one

(3b). A dried Schlenk flask was charged with 5b (24.8 mg, 0.1 mmol), Sodium perborate tetrahydrate (77 mg, 0.5 mmol), THF (0.5 mL) and H₂O (0.5 mL) was added and the mixture was allowed to stir for 3h at room temperature. Then quenched with saturated aqueous NaCl (2 mL), extracted with ethyl acetate (4 mL × 3). The combined organic phases were dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel (300–400 mesh) column chromatography to afford the desired product **3b** as colorless oil (21.7 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 4.28 (s, 1H), 2.66–2.61 (m, 1H), 2.49–2.39 (m, 1H), 2.34–2.23 (m, 1H), 2.20–2.15 (m, 4H), 1.99–1.87 (m, 2H), 1.82–1.70 (m, 2H), 1.67–1.62 (m, 3H), 1.53–1.48 (m, 1H), 1.36–1.27 (m, 3H), 0.66 (t, *J* = 8.0 Hz, 3H).

7. Relative Configuration Confirmation

7.1 Relative Configuration Confirmation of 3K

The relative configuration of 3k

Crystal data and structure refinement for 3k.

Identification code	3k	
Empirical formula	C23 H32 O3	
Formula weight	356.49	
Temperature	296(2) K	
Wavelength	1.54178 A	
Crystal system, space group	Triclinic, P-1	
Unit cell dimensions	a = 8.0136(16) A alpha = 70.38(3) deg.	
	b = 10.278(2) A beta = 86.42(3) deg.	
	c = 13.463(3) A gamma = 78.55(3) deg.	
Volume	1023.7(4) A^3	
Z, Calculated density	2, 1.157 Mg/m^3	
Absorption coefficient	0.586 mm^-1	
F(000)	388	
Crystal size	0.31 x 0.20 x 0.16 mm	
Theta range for data collection	4.65 to 65.93 deg.	
Limiting indices	-9<=h<=9, -12<=k<=12, -14<=l<=15	
Reflections collected / unique	5726 / 3136 [R(int) = 0.0163]	
Completeness to theta $= 65.93$	88.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7529 and 0.6742	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	3136 / 0 / 236	
Goodness-of-fit on F^2	1.053	
Final R indices [I>2sigma(I)]	R1 = 0.0441, $wR2 = 0.1229$	
R indices (all data)	R1 = 0.0459, wR2 = 0.1250	
Extinction coefficient	0.0152(14)	
Largest diff. peak and hole	0.178 and -0.174 e.A^-3	

7.2 Relative Configuration Confirmation of 5e

The relative configuration of $\mathbf{5e}$

Crystal data and structure refinement for 5e.

Identification code	5e	
Empirical formula	C15 H21 B O3	
Formula weight	260.13	
Temperature	296(2) K	
Wavelength	1.54178 A	
Crystal system, space group	Monoclinic, P 21/c	
Unit cell dimensions	a = 10.555(2) A alpha = 90 deg.	
	b = 7.2517(15) A beta = 101.90(3) deg.	
	c = 18.652(4) A gamma = 90 deg.	
Volume	1397.0(5) A^3	
Z, Calculated density	4, 1.237 Mg/m^3	
Absorption coefficient	0.663 mm^-1	
F(000)	560	
Crystal size	0.32 x 0.21 x 0.15 mm	
Theta range for data collection	4.85 to 67.57 deg.	
Limiting indices	-12<=h<=12, -7<=k<=8, -20<=l<=22	
Reflections collected / unique	6044 / 2375 [R(int) = 0.0213]	
Completeness to theta $= 67.57$	94.2 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7529 and 0.6526	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	2375 / 0 / 173	
Goodness-of-fit on F^2	1.052	
Final R indices [I>2sigma(I)]	R1 = 0.0398, $wR2 = 0.1055$	
R indices (all data)	R1 = 0.0405, wR2 = 0.1061	
Extinction coefficient	0.0100(8)	
Largest diff. peak and hole	0.184 and -0.171 e.A^-3	

8. ¹H NMR, ¹³C NMR COPIES

S30

S43

n

S90

S92

S94

