Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

for

Asymmetric approach to bicyclo[2.2.1]heptane-1carboxylates via a formal [4+2] cycloaddition reaction enabled by organocatalysis

Jian-Guo Fu,^{‡,a} Yi-Fan Shan,^{‡,a} Wang-Bin Sun,^a Guo-Qiang Lin,^a and Bing-Feng Sun^{*,a} <u>bfsun@sioc.ac.cn</u>

Table of contents

General Information	S2
General Procedure for the Perparation of Nitroolefin	S2
General Procedure for Tandem Michael Addition	S4
Spectral Data	

General Information

All non-aqueous reactions were run under a positive pressure of nitrogen. Anhydrous solvents were obtained using standard drying techniques. Commercial grade reagents were used without further purification unless stated otherwise. Flash chromatography was performed on 300-400 mesh silica gel with the indicated solvent systems. ¹H NMR were recorded on a Bruker 400 (400 MHz) spectrometer and chemical shifts are reported in ppm down field from TMS, using TMS (0.00 ppm) or residual chloroform (7.26 ppm) as an internal standard. Data are reported as: (s = singlet, br = broad, d = doublet, t = triplet, q = quartet, quint = quintuplet, hept =heptalet, m = multiplet; J = coupling constant in Hz, integration.). ¹³C NMR spectra were recorded on a Bruker 400 (100 MHz) spectrometer, using proton decoupling unless otherwise noted. Chemical shifts are reported in ppm down field from TMS, using the central resonance of CDCl₃ (77.00 ppm) as the internal standard. $[\alpha]^{D}$ values were given in 10⁻¹ deg cm² g⁻¹. HRMS were recorded by using either FTMS-7 or IonSpec 4.7 spectrometers.

General Procedure for the Perparation of Nitroolefin

All nitroolefins were prepared according to the literature procedures¹.

(E)-(2-nitrovinyl)cyclopropane

68% yield as whiteless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.14 (d, J = -NO₂ 13.3 Hz, 1H), 6.78 (dd, J_1 = 13.0 Hz, J_2 = 11.0 Hz, 1H), 1.65-1.60 (m, 2w 1H), 1.17-1.12 (m, 2H), 0.82-0.78 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 148.8, 137.3, 11.5, 9.7; **IR** (thin film): 3108, 3013, 1640, 1514, 1374, 1347, 1195, 1060, 939, 865 cm⁻¹; LRMS (ESI): 136 (M+Na) +; HRMS (MALDI): calcd for $C_5H_7N_1O_2Na$ (M+Na)⁺: 136.0369, found: 136.0370.

(E)-2-methyl-5-(4-nitrobut-3-en-1-yl)furan

30% yield as yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.24 (m, 1H), 6.99 (br d, J = 13.3 Hz, 1H), 5.91-5.90 (m, 1H), 5.86-5.85 (m, 1H), 2.82-2.79 (m, 2H), 2.63-2.57 (m, 2H), 2.25 (s,

¹ J. C Anderson, A. J.Blake, M. Mills and P. D. Ratcliffe, Org. Lett. 2008, **10**, 4141 - 4143.

3H); ¹³C NMR (100 MHz, CDCl₃): δ 151.2, 151.2, 106.7, 106.1, 27.2, 26.4, 13.5; **IR** (thin film): 3447, 3105, 2924, 1684, 1650, 1611, 1554, 1523, 1352, 1023, 960, 789 cm⁻¹; **LRMS** (EI): 181 (M) ⁺; **HRMS** (EI): calcd for C₉H₁₁N₁O₃ (M) ⁺: 181.0739, found: 181.0735.

(E)-2-(4-nitrobut-3-en-1-yl)thiophene

^{NO2} 32% yield as yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.24 (m, 1H), 7.16 (dd, $J_1 = 5.0$ Hz, $J_2 = 1.0$ Hz, 1H), 6.98 (br dt, $J_1 = 13.3$ Hz, $J_2 = 1.3$ Hz, 1H), 6.94 (dd, $J_1 = 5.0$ Hz, $J_2 = 3.5$ Hz, 1H), 6.82 (dd, $J_1 = 3.6$ Hz, $J_2 = 1.0$ Hz, 1H), 3.07 (t, J = 7.3 Hz, 2H), 2.65 (qd, $J_1 = 7.4$ Hz, $J_2 = 1.4$ Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 142.0, 140.6, 140.4, 127.1, 125.1, 124.0, 30.4, 28.1; **IR** (thin film): 3106, 2922, 2854, 1648, 1523, 1440, 1351, 952, 849, 702 cm⁻¹; **LRMS** (ESI): 206 (M+Na) ⁺; **HRMS** (ESI): calcd for C₈H₉N₁O₂S₁Na (M+Na)⁺: 206.0246, found: 206.0247.

(E)-5-chloro-1-nitropent-1-ene

^{Cl} NO₂ ^{2v} NO₂ ^{2v} 2v 20% yield as yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.22 (m, 1H), 7.03 (d, J = 13.6 Hz, 1H), 3.59 (t, J = 6.3 Hz, 2H), 2.48 (q, J = 7.3 Hz, 2H), 2.04-1.99 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 140.6, 140.4, 43.6, 30.3, 25.6; **IR** (thin film): 3106, 2961, 2870, 1651, 1526, 1445, 1356, 959, 731 cm⁻¹; **LRMS** (EI): 114 (M-Cl)⁺; **HRMS** (EI): calcd for C₅H₈N₁O₂ (M-Cl)⁺: 114.0555, found: 114.0553.

General Procedure for Tandem Michael Addition

To a solution of enone **1** (0.20 mmol, 1.0 equiv) and the nitroolefin **2** (0.24 mmol, 1.2 equiv) in CH₂Cl₂ (1.0 mL) at -40°C was added **C** (4.0 mg, 0.01 mmol). The resulting mixture was stirred at that temperature until enone **1** is consumed as indicated by TLC. Then, DBU (15 μ L, 0.5 equiv) was added and the mixture was allowed to stir at that temperature until completion as indicated by TLC. The reaction mixture was loaded

onto a plug of silica gel and eluted with ethyl acetate to remove the catalyst. The eluent was concentrated in *vacuo* to give the crude mixture, which was used for the crude ¹H NMR to determine the diastereoselectivity before purified by flash chromatography on silica gel to give **3**.

ethyl (1S,2R,3S,4S)-3-nitro-6-oxo-2-phenylbicyclo[2.2.1]heptane-1-carboxylate

51.0 mg, 84% yield as whiteless oily mixture; dr = 3.2/1; (major) ¹H NMR (400 MHz, CDCl₃): δ 7.33-7.28 (m, 3H), 7.16 (d, J = 7.2 Hz, 2H), 4.85 (br d, J = 4.5 Hz, 1H), 4.49 (br d, J = 4.5 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.35 (br d, J = 4.3 Hz, 1H), 2.70 (m, 1H), 2.62 (dd, $J_1 = 18.4$ Hz, $J_2 = 5.0$ Hz, 1H), 2.39-2.33 (m, 2H), 1.22 (t, J = 7.1 Hz, 3H); LRMS (ESI): 326 (M+Na) ⁺; HRMS (DART): calcd for C₁₆H₁₈N₁O₅ (M+H) ⁺: 304.1179,

found: 304.1180; (major) 94% ee, (minor) 57% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 90/10, 1.0 mL/min, 214 nm, 25 °C).

ethyl (1S,2R,3S,4S)-3-nitro-6-oxo-2-(p-tolyl)bicyclo[2.2.1]heptane-1-carboxylate

50.0 mg, 78% yield as whiteless oily mixture; dr = 3.1/1; (major) ¹H NMR (400 MHz, CDCl₃): δ 7.11 (d, J = 8.1 Hz, 2H), 7.03 (d, J = 8.1 Hz, 2H), 4.83 (br d, J = 4.5 Hz, 1H), 4.44 (br d, J = 4.5 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.33 (br d, J = 4.5 Hz, 1H), 2.69 (m, 1H), 2.61 (dd, $J_1 = 18.3$ Hz, $J_2 = 5.0$ Hz, 1H), 2.38-2.32 (m, 2H),

2.31 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H); **LRMS** (ESI): 340 (M+Na)⁺; **HRMS** (DART): calcd for C₁₇H₂₀N₁O₅ (M+H)⁺: 318.1336, found: 318.1336; (major) 95% ee, (minor) 66% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 90/10, 1.0 mL/min, 214 nm, 25 °C).

ethyl (18,2R,38,48)-2-(4-methoxyphenyl)-3-nitro-6-oxobicyclo[2.2.1]heptane-1carboxylate

49.0 mg, 74% yield as whiteless oily mixture; dr = 2.0/1; (major) **H NMR** (400 MHz, CDCl₃): δ 7.07 (d, J = 8.5 Hz, 2H), 6.83 (d, J = 8.5 Hz, 2H), 4.81 (br d, J = 4.5 Hz, 1H), 4.43 (br d, J = 4.7Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.78 (s, 3H), 3.33 (br d, J = 4.3Hz, 1H), 2.69 (m, 1H), 2.61 (dd, $J_1 = 18.6$ Hz, $J_2 = 5.0$ Hz, 1H), 2.36-2.31 (m, 2H), 1.23 (t, J = 7.1 Hz, 3H); **LRMS** (ESI): 356 (M+Na) ⁺; **HRMS** (DART): calcd for $C_{17}H_{20}N_1O_6$ (M+H) ⁺: 334.1285, found: 334.1285; (major) 92% ee, (minor) 66% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 90/10, 1.0 mL/min, 214 nm, 25 °C).

ethyl (18,2R,38,48)-2-(2-methoxyphenyl)-3-nitro-6-oxobicyclo[2.2.1]heptane-1carboxylate

50.0 mg, 75% yield as whiteless oily mixture; dr = 2.6/1; (major) ¹H NMR (400 MHz, CDCl₃): δ 7.22 (d, J = 8.5 Hz, 1H), 6.88 (t, J = 7.0

Hz, 2H), 6.83 (d, J = 8.3 Hz, 1H), 4.95 (br d, J = 5.0 Hz, 1H), 4.59 (br d, J = 5.0 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.70 (s, 3H), 3.18 (br d, J = 4.8 Hz, 1H), 2.77 (m, 1H), 2.48 (dd, $J_1 = 18.3$ Hz, $J_2 = 5.2$ Hz, 1H), 2.28-2.22 (m, 2H), 1.21 (t, J = 7.1 Hz, 3H); **LRMS** (ESI): 316 (M+Na) ⁺; **HRMS** (DART): calcd for C₁₄H₁₆N₁O₆ (M+H) ⁺: 294.0972, found: 294.0973; (major) 94% ee, (minor) 73% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 90/10, 1.0 mL/min, 214 nm, 25 °C).

ethyl (18,2R,38,48)-2-(4-bromophenyl)-3-nitro-6-oxobicyclo[2.2.1]heptane-1carboxylate

^{Br} CO_2Et O_2N O_2N O_2N

1H), 2.32 (dd, J_1 = 18.6 Hz, J_2 = 4.5 Hz, 1H), 1.23 (t, J = 7.1 Hz, 3H); **LRMS** (ESI): 404 (M+Na) ⁺; **HRMS** (DART): calcd for C₁₆H₁₇N₁O₅Br₁ (M+H) ⁺: 382.0285, found: 382.0283; (major) 97% ee, (minor) 71% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 90/10, 1.0 mL/min, 214 nm, 25 °C).

ethyl (18,28,38,48)-2-(2-bromophenyl)-3-nitro-6-oxobicyclo[2.2.1]heptane-1carboxylate

61.0 mg, 80% yield as whiteless oily mixture; dr = 4.0/1; (major) ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, J = 8.0 Hz, 1H), 7.29-7.25 (m, 1H), 7.15 (t, J = 7.8 Hz, 1H), 6.86 (d, J = 7.8 Hz, 1H), 5.09 (br d, J = 5.0 Hz, 1H), 4.71 (br d, J = 5.3 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.30 (br d, J = 4.5 Hz, 1H), 2.80 (m, 1H), 2.66 (dd, $J_I = 18.5$ Hz, $J_2 = 5.0$ Hz, 1H), 2.44-2.34 (m, 2H), 1.14 (t, J = 7.1 Hz, 3H); LRMS (ESI): 404 (M+Na) ⁺; HRMS (DART): calcd for C₁₆H₁₇N₁O₅Br₁ (M+H) ⁺: 382.0285, found: 382.0286; (major) 98% ee, (minor) 95% ee; enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (*n*-hexane/*i*-propanol = 90/10, 1.0 mL/min, 214 nm, 25 °C).

ethyl (18,2R,38,48)-2-(3-chlorophenyl)-3-nitro-6-oxobicyclo[2.2.1]heptane-1carboxylate

57.0 mg, 84% yield as whiteless oily mixture; dr = 4.7/1; (major) ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.24 (m, 2H), 7.19 (s, 1H), 7.02 (d, J = 7.3 Hz, 1H), 4.80 (br d, J = 4.8 Hz, 1H), 4.45 (br d, J = 4.5 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.37 (br d, J = 4.5 Hz, 1H), 2.67 (m, 1H), 2.63 (dd, $J_1 = 18.4$ Hz, $J_2 = 5.1$ Hz, 1H), 2.38-2.32 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H); **LRMS** (ESI): 360 (M+Na) ⁺; **HRMS** (DART): calcd for C₁₆H₁₇N₁O₅Cl₁ (M+H) ⁺: 338.0790, found: 338.0790; (major) 98% ee, (minor) 72% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 90/10, 1.0 mL/min, 214 nm, 25 °C).

ethyl (1S,2R,3S,4S)-2-(4-fluorophenyl)-3-nitro-6-oxobicyclo[2.2.1]heptane-1carboxylate

55.0 mg, 86% yield as whiteless oily mixture; dr = 2.8/1; (major) **H NMR** (400 MHz, CDCl₃): δ 7.14 (dd, $J_1 = 8.5$ Hz, $J_2 = 5.2$ Hz, 2H), 7.00 (t, J = 8.5 Hz, 2H), 4.78 (br d, J = 4.5 Hz, 1H), 4.46 (br d, J = 4.5 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.36 (br d, J = 4.2 Hz, 1H), 2.68 (m, 1H), 2.63 (dd, $J_1 = 18.9$ Hz, $J_2 = 5.3$ Hz, 1H), 2.40-

2.30 (m, 2H), 1.22 (t, J = 7.1 Hz, 3H); **LRMS** (ESI): 344 (M+Na)⁺; **HRMS** (DART): calcd for C₁₆H₁₇N₁O₅F₁ (M+H)⁺: 322.1085, found: 322.1086; (major) 96% ee, (minor) 69% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 90/10, 1.0 mL/min, 214 nm, 25 °C).

57.0 mg, 82% yield as whiteless oily mixture; dr = 4.2/1; (major) ¹H NMR (400 MHz, CDCl₃): δ 8.17-8.15 (m, 1H), 8.08 (s, 1H), 7.53-7.52 (m, 2H), 4.84 (br d, J = 4.8 Hz, 1H), 4.57 (br d, J = 4.8Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.45 (br d, J = 4.1 Hz, 1H),

2.72-2.67 (m, 2H), 2.44 (m, 1H), 2.62 (dd, $J_I = 14.5$ Hz, $J_2 = 4.2$ Hz, 1H), 1.23 (t, J = 7.1 Hz, 3H); **LRMS** (ESI): 371 (M+Na) ⁺; **HRMS** (DART): calcd for C₁₆H₁₇N₂O₇ (M+H) ⁺: 349.1030, found: 349.1031; (major) 99% ee, (minor) 87% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 90/10, 1.0 mL/min, 214 nm, 25 °C).

ethyl (1S,2R,3S,4S)-3-nitro-6-oxo-2-(4-(trifluoromethyl)phenyl)bicyclo[2.2.1] heptane-1-carboxylate

59.0 mg, 80% yield as whiteless oily mixture; dr = 4.2/1; (major) ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 4.81 (br d, J = 4.5 Hz, 1H), 4.53 (br d, J = 4.6 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.40 (br d, J = 4.5 Hz, 1H), 2.69 (m, 1H), 2.66 (dd, $J_I = 18.9$ Hz, $J_2 = 5.1$ Hz, 1H), 2.41-2.32 (m, 2H), 1.23 (t, J = 7.1 Hz, 3H); **LRMS** (ESI): 394 (M+Na) ⁺; **HRMS** (DART): calcd for C₁₇H₁₇N₁O₅F₃ (M+H) ⁺: 372.1053, found: 372.1054; (major) 97% ee, (minor) 65% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 90/10, 1.0 mL/min, 214 nm, 25 °C).

ethyl (18,2R,38,48)-2-(furan-2-yl)-3-nitro-6-oxobicyclo[2.2.1]heptane-1carboxylate

O₂N

CO₂Et 43.0 mg, 73% yield as whiteless oily mixture; dr = 1.3/1; (major) ¹H NMR (400 MHz, CDCl₃): δ 7.30 (br s, 1H), 6.34-6.26 (m, 2H), 5.02 (br d, J = 3.8 Hz, 1H), 4.57 (br d, J = 4.1 Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 3.37 (br d, J = 4.5 Hz, 1H), 2.57-2.52 (m, 1H), 2.55 (dd, $J_I = 18.3$

Hz, $J_2 = 5.5$ Hz, 1H), 2.45-2.25 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H); **LRMS** (ESI): 404 (M+Na) ⁺; **HRMS** (DART): calcd for C₁₆H₁₇N₁O₅Br₁ (M+H) ⁺: 382.0285, found: 382.0283; (major) 92% ee, (minor) 70% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 90/10, 1.0 mL/min, 214 nm, 25 °C).

ethyl (1S,2R,3S,4S)-2-(naphthalen-2-yl)-3-nitro-6-oxobicyclo[2.2.1]heptane-1carboxylate

65.0 mg, 77% yield as whiteless oily mixture; dr = 1.9/1; (major) **H NMR** (400 MHz, CDCl₃): δ 7.83-7.78 (m, 3H), 7.64 (s, 1H), 7.51-7.46 (m, 2H), 7.25 (d, J = 8.2 Hz, 1H), 4.97 (br d, J = 4.5 Hz, 1H), 4.66 (br d, J = 4.5 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.40 (br d, J = 3.8 Hz, 1H), 2.76 (m, 1H), 2.66 (dd, $J_1 = 18.5$ Hz, $J_2 = 5.2$ Hz, 1H), 2.50-2.38 (m, 2H), 1.21 (t, J = 7.1 Hz, 3H); **LRMS** (ESI): 376 (M+Na) +; **HRMS** (DART): calcd for C₂₀H₂₀N₁O₅ (M+H) +: 354.1336, found: 354.1336; (major) 81% ee, (minor) 35% ee; enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (*n*-hexane/*i*-propanol = 95/5, 1.0 mL/min, 214 nm, 25 °C).

ethyl (1S,2R,3S,4S)-3-nitro-6-oxo-2-propylbicyclo[2.2.1]heptane-1-carboxylate

 $O_2 N$

2.0 Hz, 1H), 2.46 (dd, J_1 = 18.3 Hz, J_2 = 5.0 Hz, 1H), 2.24 (d, J = 11.3 Hz, 1H), 2.06 (dd, J_1 = 18.3 Hz, J_2 = 4.5 Hz, 1H), 1.94-1.85 (m, 1H), 1.54-1.36 (m, 2H), 1.30 (t, J = 7.1 Hz, 3H), 1.08-0.98 (m, 1H), 0.93 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 205.6, 168.3, 92.0, 66.1, 61.5, 45.8, 41.7, 40.3, 40.0, 33.5, 21.1, 14.1, 13.6; **IR** (thin film): 2962, 2932, 2874, 1764, 1729, 1549, 1466, 1370, 1272, 1228, 1186, 1070, 1016, 979, 768 cm⁻¹; **LRMS** (ESI): 292 (M+Na) ⁺; **HRMS** (MALDI): calcd for C₁₃H₁₉N₁O₅Na (M+Na) ⁺: 292.1155, found: 292.1160; 98% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 98/2, 1.0 mL/min, 214 nm, 25 °C).

ethyl (1S,2S,3R,4R)-2-butyl-3-nitro-6-oxobicyclo[2.2.1]heptane-1-carboxylate

50.7 mg, 90% yield as whiteless oil; dr = 17/1; $[a]_D^{26} 36.3$ (c = 2.235, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 4.30 (br d, J = 3.0 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 3.20 (br d, J = 4.8 Hz, 1H), 3.12 (br dt, $J_I = 9.0$ Hz, $J_2 = 3.0$ Hz, 1H), 2.54 (ddd, $J_I = 11.3$ Hz, $J_2 = 4.3$ Hz, $J_3 = 2.0$ Hz, 1H), 3.12 (dd, $J_I = 18.3$ Hz, $J_2 = 5.3$ Hz, 1H), 2.24 (d, J = 11.3 Hz, 1H), 2.05 (dd, $J_I = 18.3$ Hz, $J_2 = 4.5$ Hz, 1H), 1.99-1.90 (m, 1H), 1.42-1.26 (m, 4H), 1.28 (t, J = 7.1 Hz, 3H), 1.06-0.96 (m, 1H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 205.6, 168.3, 92.0, 66.2, 61.5, 46.0, 41.8, 40.3, 40.0, 31.1, 29.9, 22.2, 14.1, 13.8; IR (thin film): 2960, 2872, 1762, 1728, 1550, 1468, 1370, 1273, 1227, 1186, 1070, 768 cm⁻¹; LRMS (ESI): 306 (M+Na) +; HRMS (MALDI): calcd for C₁₄H₂₁N₁O₅Na (M+Na) +: 306.1312, found: 306.1316; 99% ee; enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (*n*-hexane/*i*-propanol = 98/2, 1.0 mL/min, 214 nm, 25 °C).

ethyl (1S,2R,3S,4S)-2-isobutyl-3-nitro-6-oxobicyclo[2.2.1]heptane-1-carboxylate

3.12 (dd, J_I = 18.3 Hz, J_2 = 5.3 Hz, 1H), 2.46 (dd, J_I = 18.3 Hz, J_2 = 5.0 Hz, 1H), 2.24 (d, J = 11.3 Hz, 1H), 2.07 (dd, J_I = 18.3 Hz, J_2 = 4.5 Hz, 1H), 1.73-1.64 (m, 2H), 1.30 (t, J = 7.1 Hz, 3H), 1.00 (t, J = 10.5 Hz, 1H), 0.92 (d, J = 5.3 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 205.7, 168.3, 92.4, 66.2, 43.8, 41.7, 40.6, 40.6, 39.8, 26.4, 23.7, 20.9, 14.1; **IR** (thin film): 2960, 2931, 2872, 1763, 1729, 1551, 1467, 1370, 1325, 1270, 1325, 1270, 1185, 1072, 1015, 768 cm⁻¹; **LRMS** (ESI): 306 (M+Na) +; **HRMS** (MALDI): calcd for C₁₄H₂₁N₁O₅Na (M+Na) +: 306.1312, found: 306.1318; 98% ee; enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (*n*-hexane/*i*-propanol = 99/1, 1.0 mL/min, 214 nm, 25 °C).

ethyl(1S,2R,3S,4S)-3-nitro-6-oxo-2-phenethylbicyclo[2.2.1]heptane-1-carboxylate 58.0 mg, 88% yield as whiteless oil; dr > 20/1; $[\alpha]_D^{27}$ 14.8 (c = 2.92, Ph CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.25 (m, 2H), 7.20-7.18 (m, 1H), 7.17-7.13 (m, 2H), 4.33 (br d, J = 2.5 Hz, 1H), 4.21 (q,

J = 7.1 Hz, 2H), 3.18 (br d, *J* = 4.8 Hz, 1H), 3.13 (br dt, J_I = 11.8 Hz, J_2 = 3.0 Hz, 1H), 2.84-2.77 (m, 1H), 2.74-2.67 (m, 1H), 2.50 (ddd, J_I = 11.3 Hz, J_2 = 4.3 Hz, J_3 = 2.0 Hz, 1H), 2.44 (dd, J_I = 18.3 Hz, J_2 = 5.2 Hz, 1H), 2.36-2.27 (m, 1H), 2.22 (d, *J* = 11.3 Hz, 1H), 2.05 (dd, J_I = 18.3 Hz, J_2 = 4.3 Hz, 1H), 1.41-1.31 (m, 1H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 205.6, 168.2, 140.2, 128.6, 128.3, 126.3, 92.0, 66.2, 51.6, 45.5, 41.7, 40.4, 39.9, 33.9, 33.0, 14.1; **IR** (thin film): 3027, 2983, 2926, 1763, 1728, 1549, 1496, 1455, 1370, 1325, 1271, 1187, 1143, 1072, 751, 702 cm⁻¹; **LRMS** (ESI): 354 (M+Na) +; **HRMS** (MALDI): calcd for C₁₈H₂₁N₁O₅Na (M+Na) +: 354.1312, found: 354.1316; 99% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 7/3, 1.0 mL/min, 214 nm, 25 °C).

ethyl (18,2R,38,48)-2-(2-(5-methylfuran-2-yl)ethyl)-3-nitro-6-oxobicyclo [2.2.1] heptane-1-carboxylate

56.0 mg, 84% yield as yellow oil; dr > 20/1; $[a]_D^{27}$ 24.3 (c = 2.74, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 5.86 (d, J = 2.5 Hz, 1H), 5.82 (d, J = 2.5 Hz, 1H), 4.28 (br d, J = 2.5 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.19-3.17 (m, 2H), 2.80-2.67 (m, 2H),

2.50 (ddd, $J_1 = 11.6$ Hz, $J_2 = 4.3$ Hz, $J_3 = 1.8$ Hz, 1H), 2.46 (dd, $J_1 = 18.6$ Hz, $J_2 = 5.3$ Hz, 1H), 2.35-2.27 (m, 1H), 2.23 (d, J = 11.6 Hz, 1H), 2.23 (s, 3H), 2.07 (dd, $J_1 = 18.3$ Hz, $J_2 = 4.3$ Hz, 1H), 1.40-1.32 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 205.5, 168.2, 151.8, 150.8, 106.5, 106.0, 91.8, 66.3, 61.6, 45.3, 41.7, 40.3, 39.7, 30.0, 26.4, 14.1, 13.4; **IR** (thin film): 2982, 2924, 1764, 1727, 1551, 1451, 1371, 1324, 1272, 1228, 1186, 1079, 1021, 787 cm⁻¹; **LRMS** (ESI): 358 (M+Na) +; **HRMS** (MALDI): calcd for C₁₇H₂₁N₁O₆Na (M+Na) +: 358.1261, found: 358.1267; 99% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 9/1, 1.0 mL/min, 214 nm, 25 °C).

ethyl (18,2R,38,48)-3-nitro-6-oxo-2-(2-(thiophen-2-yl)ethyl)bicyclo[2.2.1]heptane -1-carboxylate

O₂N

^{CO₂Et 60.4 mg, 90% yield as whiteless oil; dr = 20/1; $[\alpha]_D^{24} 22.4$ (c = 2.99, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.13 (dd, $J_I = 5.0$ Hz, $J_2 = 0.8$ Hz, 1H), 6.89 (dd, $J_I = 5.0$ Hz, $J_2 = 3.5$ Hz, 1H), 6.77 (br d, J = 2.7 Hz, 1H), 4.33 (br d, J = 2.7 Hz, 1H), 4.23 (q, J = 7.1}

Hz, 2H), 3.20 (br d, J = 4.5 Hz, 1H), 3.16 (br dt, $J_I = 12.1$ Hz, $J_2 = 3.0$ Hz, 1H), 3.04-2.95 (m, 2H), 2.51 (ddd, $J_I = 11.3$ Hz, $J_2 = 4.2$ Hz, $J_3 = 2.0$ Hz, 1H), 2.46 (dd, $J_I =$ 18.3 Hz, $J_2 = 5.1$ Hz, 1H), 2.42-2.36 (m, 1H), 2.24 (d, J = 11.3 Hz, 1H), 2.07 (dd, $J_I =$ 18.3 Hz, $J_2 = 4.3$ Hz, 1H), 1.46-1.40 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 205.5, 168.1, 142.8, 126.9, 125.0, 123.7, 91.7, 66.2, 61.6, 45.3, 41.7, 40.2, 39.9, 33.4, 28.1, 14.1; **IR** (thin film): 2982, 2924, 2855, 1763, 1727, 1549, 1370, 1272, 1187, 1143, 1076, 1034, 850, 702 cm⁻¹; **LRMS** (ESI): 360 (M+Na) +; **HRMS** (MALDI): calcd for C₁₆H₁₉N₁O₅SNa (M+Na) +: 360.0876, found: 360.0872; 99% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*hexane/*i*-propanol = 7/3, 1.0 mL/min, 214 nm, 25 °C).

ethyl (18,2R,38,48)-3-nitro-2-((E)-non-3-en-1-yl)-6-oxobicyclo[2.2.1]heptane-1carboxylate

4.3 Hz, $J_3 = 2.0$ Hz, 1H), 2.45 (dd, $J_1 = 18.3$ Hz, $J_2 = 5.2$ Hz, 1H), 2.23 (d, J = 11.3 Hz, 1H), 2.18-2.12 (m, 1H), 2.10-2.00 (m, 3H), 1.98-1.91 (m, 2H), 1.35-1.21 (m, 6H), 1.30 (t, J = 7.1 Hz, 3H), 1.12-1.07 (m, 1H), 0.88 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 205.6, 168.3, 132.6, 127.6, 92.0, 66.2, 61.5, 45.2, 41.8, 40.5, 39.8, 32.5, 31.4, 31.2, 30.7, 29.0, 22.5, 14.1, 14.0; **IR** (thin film): 2926, 2856, 1728, 1550, 1466, 1370, 1325, 1270, 1185, 973, 767, 736 cm⁻¹; **LRMS** (ESI): 374 (M+Na) ⁺; **HRMS** (MALDI): calcd for C₁₉H₂₉N₁O₅Na (M+Na)⁺: 374.1938, found: 374.1942; 99% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 9/1, 1.0 mL/min, 214 nm, 25 °C).

ethyl (18,2R,3S,4S)-2-(2-(benzyloxy)ethyl)-3-nitro-6-oxobicyclo[2.2.1]heptane-1carboxylate

^{CO₂Et CO₂Et 59.8 mg, 83% yield as whiteless oil; dr > 20/1; $[\alpha]_D^{27} 37.4$ (c = 2.99, ^{BnO} ^O₂N ^{3t} CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.23 (m, 5H), 4.62 (br d, J = 2.7 Hz, 1H), 4.42 (d, J = 11.8 Hz, 1H), 4.37 (d, J = 11.8Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 3.65-3.60 (m, 1H), 3.54 (td, $J_I = 1.8$}

9.0 Hz, $J_2 = 4.0$ Hz, 1H), 3.36 (br d, J = 11.8 Hz, 1H), 3.14 (br d, J = 4.5 Hz, 1H), 2.43 (ddd, $J_1 = 11.3$ Hz, $J_2 = 4.3$ Hz, $J_3 = 2.0$ Hz, 1H), 2.42 (dd, $J_1 = 18.3$ Hz, $J_2 = 5.3$ Hz, 1H), 2.27-2.20 (m, 1H), 2.19 (d, J = 11.3 Hz, 1H), 2.07 (dd, $J_1 = 18.3$ Hz, $J_2 = 4.5$ Hz, 1H), 1.40-1.32 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 205.9, 168.4, 137.8, 128.4, 128.0, 127.8, 92.2, 73.4, 69.1, 66.3, 61.5, 44.2, 41.9, 40.8, 39.2, 30.7, 14.1; **IR** (thin film): 3031, 2982, 2922, 2864, 2800, 1763, 1728, 1552, 1455, 1371, 1325, 1274, 1184, 1100, 1070, 1016, 737, 700 cm⁻¹; **LRMS** (ESI): 384

(M+Na) ⁺; **HRMS** (MALDI): calcd for $C_{19}H_{23}N_1O_6Na$ (M+Na) ⁺: 344.1418, found: 384.1421; 98% ee; enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (*n*-hexane/*i*-propanol = 98/2, 1.0 mL/min, 214 nm, 25 °C).

ethyl (18,2R,3S,4S)-2-((benzyloxy)methyl)-3-nitro-6-oxobicyclo[2.2.1]heptane-1carboxylate

61.2 mg, 88% yield as whiteless oil; dr = 20/1; $[\alpha]_D^{27} - 0.86$ (c = 2.65, BnO $\sim 0_2 N$ $\sim 0_2$

10.3 Hz, $J_2 = 3.0$ Hz, 1H), 3.30 (br d, J = 3.5 Hz, 1H), 3.21 (br d, J = 4.8 Hz, 1H), 2.38 (ddd, $J_1 = 11.3$ Hz, $J_2 = 4.2$ Hz, $J_3 = 2.0$ Hz, 1H), 2.33 (dd, $J_1 = 18.1$ Hz, $J_2 = 5.2$ Hz, 1H), 2.20-2.15 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 205.1, 168.7, 137.4, 128.5, 127.9, 127.9, 87.6, 73.5, 66.7, 64.6, 61.5, 47.5, 40.8, 40.2, 39.1, 14.1; **IR** (thin film): 3031, 2982, 2929, 2870, 1763, 1732, 1549, 1497, 1455, 1370, 1316, 1276, 1186, 1118, 1073, 1035, 740, 700 cm⁻¹; **LRMS** (ESI): 370 (M+Na) +; **HRMS** (MALDI): calcd for C₁₈H₂₁N₁O₆Na (M+Na) +: 370.1261, found: 370.1267; 98% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 9/1, 1.0 mL/min, 214 nm, 25 °C).

ethyl (18,2R,38,48)-2-(3-chloropropyl)-3-nitro-6-oxobicyclo[2.2.1]heptane-1carboxylate

53.7 mg, 89% yield as whiteless oil; dr > 20/1; $[\alpha]_D^{27}$ 37.3 (c = CO₂Et 2.685, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 4.31 (br d, J = 2.7CI Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 3.61-3.56 (m, 1H), 3.53-3.47 (m, O_2N 3v 1H), 3.27 (br d, J = 4.7 Hz, 1H), 3.09 (br dt, $J_1 = 11.6$ Hz, $J_2 = 3.0$ Hz, 1H), 2.49 (dd, $J_1 = 18.3$ Hz, $J_2 = 5.2$ Hz, 1H), 2.49 (ddd, $J_1 = 11.6$ Hz, $J_2 = 4.2$ Hz, $J_3 = 2.0$ Hz, 1H), 2.27 (d, J = 11.6 Hz, 1H), 2.11-2.05 (m, 2H), 1.96-1.89 (m, 2H), 1.30 (t, J = 7.1 Hz, 3H), 1.32-1.24 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 205.4, 168.2, 91.7, 66.2, 61.7, 45.6, 44.1, 41.6, 40.1, 40.0, 30.8, 28.9, 14.1; **IR** (thin film): 2983, 2934, 2872, 1763, 1728, 1549, 1371, 1318, 1276, 1188, 1142, 1066, 1016, 769 cm⁻¹; LRMS (ESI): 326 (M+Na) ⁺; HRMS (MALDI): calcd for C₁₃H₁₈N₁O₅ClNa (M+Na)⁺: 326.0766, found: 326.0774; 99% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 9/1, 1.0 mL/min, 214 nm, 25 °C).

ethyl (18,2R,38,48)-2-cyclopropyl-3-nitro-6-oxobicyclo[2.2.1]heptane-1carboxylate

O₂N^{*}

^{CO₂Et} 38.5 mg, 73% yield as whiteless oil; dr = 10/1; $[\alpha]_D^{27}$ 4.15 (c = 1.925, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 4.40 (br d, J = 2.3 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 3.22 (br d, J = 4.5 Hz, 1H), 2.70 (br dd, $J_I = 8.3$ Hz, $J_2 = 3.8$ Hz, 1H), 2.49 (dd, $J_I = 18.3$ Hz, $J_2 = 5.2$ Hz, 1H), 2.52-

2.46 (m, 1H), 2.25 (d, J = 12.3 Hz, 1H), 2.13 (dd, $J_1 = 18.3$ Hz, $J_2 = 4.2$ Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H), 0.68-0.62 (m, 2H), 0.60-0.52 (m, 2H), 0.37-0.34 (m, 1H); ¹³C **NMR** (100 MHz, CDCl₃): δ 205.5, 168.2, 91.4, 66.3, 61.5, 50.5, 41.9, 41.0, 39.7, 14.1, 11.8, 5.8, 2.8 ; **IR** (thin film): 3086, 2984, 2937, 1732, 1549, 1467, 1371, 1325, 1277, 1234, 1192, 976, 763 cm⁻¹; **LRMS** (ESI): 290 (M+Na)⁺; **HRMS** (MALDI): calcd for

 $C_{13}H_{17}N_1O_5Na$ (M+Na) ⁺: 290.0999, found: 290.1001; 95% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 9/1, 1.0 mL/min, 214 nm, 25 °C).

ethyl (1S,2R,3S,4S)-2-isopropyl-3-nitro-6-oxobicyclo[2.2.1]heptane-1-carboxylate

27.5 mg, 69% yield as whiteless oil; dr = 10/1; ¹H NMR (400 MHz, CO₂Et CDCl₃): δ 4.39 (br d, J = 2.5 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 3.19 (br d, J = 4.6 Hz, 1H), 3.16 (dd, $J_1 = 11.1$ Hz, $J_2 = 3.8$ Hz, 1H), 2.60 (ddd, $J_1 = 11.3$ Hz, $J_2 = 4.3$ Hz, $J_3 = 2.0$ Hz, 1H), 2.47 (dd, $J_1 = 18.5$ Hz, $J_2 = 3.8$ Hz, 1H), 2.47 (dd, $J_1 = 18.5$ Hz, $J_2 = 4.3$ Hz, $J_3 = 2.0$ Hz, 1H), 2.47 (dd, $J_1 = 18.5$ Hz, $J_2 = 4.3$ Hz, $J_3 = 2.0$ Hz, 1H), 2.47 (dd, $J_1 = 18.5$ Hz, $J_2 = 4.3$ Hz, $J_3 = 2.0$ Hz, 1H), 2.47 (dd, $J_1 = 18.5$ Hz, $J_2 = 10.5$ Hz, $J_3 = 2.0$ Hz, 1H), 2.47 (dd, $J_1 = 18.5$ Hz, $J_2 = 10.5$ Hz, $J_2 = 10.5$ Hz, $J_2 = 10.5$ Hz, $J_2 = 10.5$ Hz, $J_3 = 2.0$ Hz, 1H), $J_1 = 10.5$ Hz, $J_2 = 10.5$ Hz, $J_2 = 10.5$ Hz, $J_2 = 10.5$ Hz, $J_3 = 10.5$ Hz, $J_4 = 10.5$ Hz,

O₂N

5.2 Hz, 1H), 2.17 (d, J = 11.1 Hz, 1H), 2.09 (dd, $J_I = 18.5$ Hz, $J_2 = 4.5$ Hz, 1H), 1.46-1.44 (m, 1H), 1.31 (t, J = 7.1 Hz, 3H), 1.03 (d, J = 6.5 Hz, 3H), 0.93 (d, J = 5.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 204.7, 168.8, 91.7, 64.4, 61.4, 52.7, 42.5, 42.2, 40.5, 31.8, 21.1, 20.8, 14.1; **IR** (thin film): 2967, 2878, 1768, 1728, 1550, 1466, 1372, 1333, 1273, 1192, 1069, 1019, 761 cm⁻¹; **LRMS** (ESI): 292 (M+Na)⁺; **HRMS** (ESI): calcd for C₁₃H₁₉N₁O₅Na (M+Na)⁺: 292.1155, found: 292.1154; 46% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 8/2, 0.7 mL/min, 214 nm, 25 °C).

ethyl (18,2R,3R,48)-2-isobutyl-4-methyl-3-nitro-6-oxobicyclo[2.2.1]heptane-1carboxylate

46.0 mg, 78% yield as whiteless oil; dr = 6/1; $[a]_D^{24}$ 33.2 (c = 2.245, CO₂Et CHCl₃); ¹**H NMR** (400 MHz, CDCl₃): δ 4.28 (br d, *J* = 4.5 Hz, 1H), 4.25 O₂N (q, J = 7.1 Hz, 2H), 3.30 (br dt, $J_1 = 12.6$ Hz, $J_2 = 3.3$ Hz, 1H), 2.72 (dd, 3ob $J_1 = 11.3$ Hz, $J_2 = 4.5$ Hz, 1H), 2.30 (d, J = 18.4 Hz, 1H), 2.12-2.04 (m, 2H), 1.68 $(ddd, J_1 = 13.3 \text{ Hz}, J_2 = 10.3 \text{ Hz}, J_3 = 3.0 \text{ Hz}, 1\text{H}), 1.56-1.51 \text{ (m, 1H)}, 1.30 \text{ (t, } J = 7.1 \text{ Hz})$ Hz, 3H), 1.23 (s, 3H), 1.00 (td, J_1 = 13.3 Hz, J_2 = 3.7 Hz, 1H), 0.90 (d, J = 6.8 Hz, 3H), 0.86 (d, J = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 205.7, 168.1, 97.2, 66.6, 61.4, 49.2, 47.0, 45.1, 44.1, 40.0, 26.6, 23.6, 20.9, 16.8, 14.1; **IR** (thin film): 2961, 2936, 2874, 1765, 1730, 1552, 1466, 1369, 1271, 1220, 1181, 1066, 1019, 771 cm⁻¹; LRMS (ESI): 320 (M+Na) +; HRMS (MALDI): calcd for C₁₅H₂₃N₁O₅Na (M+Na)⁺: 320.1468, found: 320.1468; 84% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 95/5, 1.0 mL/min, 214 nm, 25 °C).

ethyl (18,2R,3R,48)-4-methyl-3-nitro-6-oxo-2-phenethylbicyclo[2.2.1]heptane-1carboxylate

^{CO2Et} 50.0 mg, 73% yield as a white solid; dr = 6.5/1; $[\alpha]_D^{24}$ 20.7 (c = 2.435, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.24 (m, 2H), ^{Ne} 3pb 4.21 (q, J = 7.1 Hz, 2H), 3.17 (br dt, $J_I = 12.3$ Hz, $J_2 = 3.5$ Hz, 1H),

2.75-2.71 (m, 1H), 2.70 (dd, $J_1 = 11.3$ Hz, $J_2 = 4.5$ Hz, 1H), 2.62-2.54 (m, 1H), 2.35-2.29 (m, 1H), 2.30 (d, J = 18.3 Hz, 1H), 2.10 (dd, $J_1 = 18.3$ Hz, $J_2 = 4.5$ Hz, 1H), 2.04 (dd, $J_1 = 11.0$ Hz, $J_2 = 1.0$ Hz, 1H), 1.39-1.31 (m, 1H), 1.26 (t, J = 7.1 Hz, 3H), 1.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 205.5, 168.0, 139.8, 128.6, 128.3, 126.4, 96.8, 66.6, 61.5, 49.1, 47.0, 46.4, 44.0, 33.8, 32.4, 16.8, 14.1; **IR** (thin film): 2960, 2928, 1760, 1716, 1551, 1457, 1369, 1313, 1180, 1079, 763 cm⁻¹; **LRMS** (ESI): 368 (M+Na) ⁺; **HRMS** (MALDI): calcd for C₁₉H₂₃N₁O₅Na (M+Na) ⁺: 368.1468, found:

368.1466; 84% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 8/2, 1.0 mL/min, 214 nm, 25 °C).

ethyl (18,2R,3R,48)-4-methyl-2-(2-(5-methylfuran-2-yl)ethyl)-3-nitro-6oxobicyclo [2.2.1] heptane-1-carboxylate

CO₂Et O_2N MeS5.6 mg, 80% yield as whiteless oil; dr = 13/1; $[\alpha]_D^{25} 34.5$ (c = 2.615, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 5.83-5.81 (m, 2H), 4.30 (br d, J = 3.5 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.21 (br dt, $J_I = 12.3$ Hz, $J_2 = 3.5$ Hz, 1H), 2.71 (dd, $J_I = 11.0$ Hz, J_2

= 4.5 Hz, 1H), 2.67-2.59 (m, 2H), 2.30 (d, J = 18.3 Hz, 1H), 2.32-2.26 (m, 1H), 2.22 (s, 3H), 2.10 (dd, $J_1 = 18.3$ Hz, $J_2 = 4.5$ Hz, 1H), 2.04 (d, J = 11.3 Hz, 1H), 1.35-1.26 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H), 1.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 205.6, 168.0, 151.4, 151.0, 106.6, 106.0, 96.6, 66.6, 61.5, 49.1, 46.9, 46.3, 43.9, 29.7, 26.3, 16.8, 14.1, 13.4; **IR** (thin film): 2965, 2924, 1763, 1728, 1553, 1463, 1369, 1320, 1270, 1220, 1181, 1075, 1021, 785 cm⁻¹; **LRMS** (ESI): 372 (M+Na) +; **HRMS** (MALDI): calcd for C₁₈H₂₃N₁O₆Na (M+Na) +: 372.1418, found: 372.1423; 95% ee; enantiomeric excess was determined by HPLC with a Chiralcel PC-2 column (*n*-hexane/*i*-propanol = 9/1, 1.0 mL/min, 214 nm, 25 °C).

ethyl (18,2R,3R,48)-4-methyl-3-nitro-6-oxo-2-(2-(thiophen-2-yl)ethyl)bicyclo [2.2.1]heptane-1-carboxylate

51.8 mg, 74% yield as a white solid; dr = 8/1; $[\alpha]_D^{25}$ 29.0 (c = CO₂Et 2.515, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.13 (dd, $J_1 = 5.0$ O₂N Hz, $J_2 = 0.8$ Hz, 1H), 6.88 (dd, $J_1 = 5.0$ Hz, $J_2 = 3.5$ Hz, 1H), 6.72 Ме 3rb (br d, J = 3.1 Hz, 1H), 4.33 (br d, J = 3.2 Hz, 1H), 4.23 (q, J = 7.1Hz, 2H), 3.22 (br dt, $J_1 = 12.0$ Hz, $J_2 = 3.5$ Hz, 1H), 2.97-2.91 (m, 1H), 2.88-2.82 (m, 1H), 2.71 (dd, $J_1 = 11.3$ Hz, $J_2 = 4.6$ Hz, 1H), 2.38-2.33 (m, 1H), 2.32 (d, J = 18.3 Hz, 1H), 2.11 (dd, J_1 = 18.3 Hz, J_2 = 4.5 Hz, 1H), 2.05 (dd, J_1 = 11.1 Hz, J_2 = 0.7 Hz, 1H), 1.46-1.39 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H), 1.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 205.5, 168.0, 142.3, 126.9, 125.1, 123.8, 96.6, 66.6, 61.6, 49.1, 47.0, 46.2, 44.0, 32.9, 28.1, 16.8, 14.1; **IR** (thin film): 2967, 2932, 1763, 1728, 1552, 1463, 1368, 1320, 1269, 1221, 1180, 1072, 735, 702 cm⁻¹; LRMS (ESI): 374 (M+Na) +; HRMS (MALDI): calcd for C₁₇H₂₁N₁O₅SNa (M+Na) ⁺: 374.1033, found: 374.1035; 88% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (nhexane/*i*-propanol = 8/2, 1.0 mL/min, 214 nm, 25 °C).

ethyl (1S,2R,3R,4S)-4-methyl-3-nitro-2-((E)-non-3-en-1-yl)-6-oxobicyclo[2.2.1] heptane-1-carboxylate

^{C₅H₁₁ ^{C₆H₁₁ ^{C₆}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>

2.73 (dd, J_1 = 11.1 Hz, J_2 = 4.3 Hz, 1H), 2.30 (d, J = 18.3 Hz, 1H), 2.12-1.90 (m, 7H), 1.31 (t, J = 7.1 Hz, 3H), 1.35-1.23 (m, 6H), 1.23 (s, 3H), 1.12-1.04 (m, 1H), 0.88 (m, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 205.7, 168.1, 132.8, 127.3, 96.7, 66.5, 61.4, 49.1, 46.9, 46.3, 44.0, 32.5, 31.4, 30.7, 30.7, 29.0, 22.5, 16.8, 14.1, 14.0; **IR** (thin film): 2926, 2856, 1763, 1733, 1553, 1464, 1369, 1313, 1271, 1071, 972, 740 cm⁻¹; **LRMS** (ESI): 388 (M+Na) ⁺; **HRMS** (MALDI): calcd for $C_{20}H_{31}N_1O_5Na$ (M+Na) ⁺: 388.2094, found: 388.2095; 83% ee; enantiomeric excess was determined by HPLC with a Chiralcel PC-2 column (*n*-hexane/*i*-propanol = 95/5, 1.0 mL/min, 214 nm, 25 °C).

ethyl (1S,2R,3R,4S)-2-(2-(benzyloxy)ethyl)-4-methyl-3-nitro-6-oxobicyclo [2.2.1] heptane-1-carboxylate

57.3 mg, 76% yield as whiteless oil; dr = 8/1; $[a]_{D}^{25}$ 30.1 (c = 2.865, CO₂Et CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.24 (m, 5H), 4.51 BnO (br d, J = 3.3 Hz, 1H), 4.41 (d, J = 11.8 Hz, 1H), 4.35 (d, J = 11.8 O_2N^{1} Ŵе Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 3.57-3.52 (m, 1H), 3.43 (td, $J_1 =$ 3tb 8.1 Hz, $J_2 = 4.0$ Hz, 1H), 3.37 (ddd, $J_1 = 11.8$ Hz, $J_2 = 3.5$ Hz, $J_3 = 2.8$ Hz, 1H), 2.62 $(dd, J_1 = 11.0 Hz, J_2 = 4.5 Hz, 1H), 2.27 (d, J = 18.3 Hz, 1H), 2.19 (m, 1H), 2.08 (dd, J_1 = 18.3 Hz, 1H), 2.19 (m, 1$ $J_1 = 18.3 \text{ Hz}, J_2 = 4.5 \text{ Hz}, 1\text{H}$, 2.02 (br d, J = 11.0 Hz, 1H), 1.40-1.31 (m, 1H), 1.27 (t, J = 7.1 Hz, 3H), 1.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 206.0, 168.2, 137.7, 128.4, 128.1, 127.8, 96.9, 73.4, 68.9, 66.6, 61.5, 49.2, 46.8, 45.7, 43.6, 30.6, 17.0, 14.1; **IR** (thin film): 2964, 2918, 2860, 1761, 1728, 1552, 1456, 1369, 1323, 1266, 1180, 1096, 1070, 742 cm⁻¹; LRMS (ESI): 398 (M+Na) +; HRMS (MALDI): calcd for C₂₀H₂₅N₁O₆Na (M+Na) ⁺: 398.1574, found: 398.1578; 75% ee; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-propanol = 7/3, 1.0 mL/min, 214 nm, 25 °C).

ethyl (18,2R,3R,48)-2-(3-chloropropyl)-4-methyl-3-nitro-6-oxobicyclo[2.2.1] heptane-1-carboxylate

50.3 mg, 79% yield as whiteless oil; dr > 20/1; $[a]_D^{21}$ 254.1 (c = CO₂Et CI 2.515, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃): δ 4.31 (br d, J = 3.6 $O_2 N$ Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 3.54-3.50 (m, 1H), 3.48-3.44 (m, Мe 3vb 1H), 3.18 (br dt, J_1 = 12.1 Hz, J_2 = 3.8 Hz, 1H), 2.74 (dd, J_1 = 11.0 Hz, $J_2 = 4.5$ Hz, 1H), 2.33 (d, J = 18.3 Hz, 1H), 2.12 (dd, $J_1 = 18.3$ Hz, $J_2 = 4.5$ Hz, 1H), 2.08 (br d, J = 11.0 Hz, 1H), 2.08-2.03 (m, 1H), 1.83-1.75 (m, 2H), 1.30 (t, J =7.1 Hz, 3H), 1.25 (s, 3H), 1.25-1.19 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 205.3, 168.0, 96.7, 66.5, 61.6, 49.2, 47.0, 46.7, 44.2, 43.9, 30.8, 28.4, 16.7, 14.1; IR (thin film): 2965, 2935, 1762, 1728, 1552, 1463, 1369, 1315, 1272, 1222, 1182, 769 cm⁻¹; **LRMS** (ESI): 340 (M+Na)⁺; **HRMS** (MALDI): calcd for $C_{14}H_{20}N_1O_5CINa$ (M+Na)⁺: 340.0922, found: 340.0921; 92% ee; enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (*n*-hexane/*i*-propanol = 98/2, 1.0 mL/min, 214 nm, 25 °C).

Spectral Data

