Supporting information

Overproduction and identification of butyrolactones SCB1-8 in the antibiotic production superhost *Streptomyces* M1152

John D. Sidda, Vincent Poon, Lijiang Song, Weishan Wang, Keqian Yang and Christophe Corre*

CONTENTS:

1. Experimental Culture conditions Liquid chromatography-mass spectrometry analyses

2. LC-MS data

2.1 High resolution mass spectrometry data for SCB1-8 2.2 Low resolution mass spectrometry data for SCB1-8

3. NMR data for SCB1

1. Experimental

Culture conditions

AlaMM liquid medium (50 mL) was inoculated with 20 μ L spores of *Streptomyces coelicolor* M1152 and incubated (30 °C, 180 rpm). After 24 h, a solution of sterile filtered precursor (d₅-propionic acid, d₇-butyric acid, d₈-DL-valine, d₁₀-L-leucine or d₁₀-L-isoleucine) was added to give a final concentration of 1 mM. This feeding procedure was repeated at 12 h intervals until a total incubation time of 5 days, after which the metabolites were extracted from these cultures and analysed.

Metabolites were extracted with 1:1 volume of ethyl acetate, dried with $MgSO_4$ and ethyl acetate removed by under reduced pressure. The remaining residue was resuspended in 50:50 HPLC water/methanol.

2. LC-MS data

20 μ L of prepared extracts were injected through a reverse phase column (Zorbax C₁₈, size 46 x 150 mm, particle size 5 μ m) connected to an Agilent 1100 HPLC. The outflow was routed to a Bruker High Capacity Trap (HCT) + ion trap mass spectrometer with an electrospray source, operating in positive ion mode. A 5 min isocratic elution (95:5 solventA/solvent B) was followed by gradient elution to 0:100 solvent A/solvent B over 25 min. Solvents A and B were water (0.1 % HCOOH) and methanol (0.1 % HCOOH), respectively.

The high-resolution data were obtained by performing UPLC-MS through a reverse phase column (Zorbax Eclipse Plus C₁₈, size 2.1 x 100 mm, particle size 1.8 μ m) connected to a Dionex 3000RS UHPLC coupled to Bruker Ultra High Resolution (UHR) Q-TOF MS MaXis mass spectrometer with an electrospray source. Sodium formate (10 mM) was used for internal calibration and a m/z = 50 to 3000 scan range used. A 5 min isocratic elution (95:5 solventA/solvent B) was followed by gradient elution to 0:100 solvent A/solvent B over 15.3 min. Solvents A and B were water (0.1 % HCOOH) and acetonitrile (0.1 % HCOOH), respectively.

2. LC-MS data

Figure S1. High resolution mass spectra of SCBs 1-8 present in culture extract of *S. coelicolor* M1152 grown for five days

Table S1. UHR-MS assignments for molecular ions and fragments observed for SCBs 1-8 extracted from *S. coelicolor* M1152 after being grown in AlaMM for five days

retention time / min	compound	Molecular formula	Observed m/z	Calculated m/z	error / ppm	assignment
14.3	SCB 8 (8)	C ₁₁ H ₂₀ NaO ₄	239.1258	239.1254	1.9	$[M+Na]^+$
		$C_{11}H_{21}O_4$	217.1444	217.1434	4.6	$[M+H]^+$
		$C_{11}H_{19}O_3$	199.1335	199.1329	3.1	$[M-H_2O+H]^+$
		$C_{11}H_{17}O_2$	181.1227	181.1223	3.4	$[M-2H_2O+H]^+$
15.2	SCB 4 (4)	$C_{12}H_{22}NaO_4$	253.1411	253.1410	0.4	$[M+Na]^+$
		$C_{12}H_{23}O_4$	231.1594	231.1591	1.5	$[M+H]^+$
		$C_{12}H_{21}O_3$	213.1487	213.1485	1.1	$[M-H_2O+H]^+$
		$C_{12}H_{19}O_2$	195.1377	195.1380	1.2	$[M-2H_2O+H]^+$
15.3	SCB 5 (5)	$C_{12}H_{22}NaO_4$	253.1421	253.1410	4.2	$[M+Na]^+$
		$C_{12}H_{23}O_4$	231.1600	231.1591	3.8	$[M+H]^+$
		$C_{12}H_{21}O_3$	213.1495	213.1485	4.7	$[M-H_2O+H]^+$
		$C_{12}H_{19}O_2$	195.1385	195.1380	2.6	$[M-2H_2O+H]^+$
15.5	SCB 6 (6)	$C_{12}H_{22}NaO_4$	253.1418	253.1410	3.1	$[M+Na]^+$
		$C_{12}H_{23}O_4$	231.1593	231.1591	1.0	$[M+H]^+$
		$C_{12}H_{21}O_3$	213.1496	213.1485	4.9	$[M-H_2O+H]^+$
		$C_{12}H_{19}O_2$	195.1388	195.1380	4.4	$[M-2H_2O+H]^+$
16.4	SCB 1 (1)	$C_{13}H_{24}NaO_4$	267.1571	267.1567	1.7	$[M+Na]^+$
		$C_{13}H_{25}O_4$	245.1753	245.1747	2.3	$[M+H]^+$
		$C_{13}H_{23}O_3$	227.1644	227.1642	1.1	$[M-H_2O+H]^+$
		$C_{13}H_{21}O_2$	209.1541	209.1536	2.2	$[M-2H_2O+H]^+$
16.5	SCB 2 (2)	$C_{13}H_{24}NaO_4$	267.1568	267.1567	0.5	$[M+Na]^+$
		$C_{13}H_{25}O_4$	245.1749	245.1747	0.6	$[M+H]^+$
		$C_{13}H_{23}O_3$	227.1643	227.1642	0.6	$[M-H_2O+H]^+$
		$C_{13}H_{21}O_2$	209.1540	209.1536	1.7	$[M-2H_2O+H]^+$
17.3	SCB 3 (3)	C ₁₄ H ₂₆ NaO ₄	281.1730	281.1723	2.5	$[M+Na]^+$
		$C_{14}H_{27}O_4$	259.1912	259.1904	3.0	$[M+H]^+$
		$C_{14}H_{25}O_{3}$	241.1801	241.1798	1.1	$[M-H_2O+H]^+$
		$C_{14}H_{23}O_2$	223.1699	223.1693	2.8	$[M-2H_2O+H]^+$
	SCB 7 (7)	C ₁₄ H ₂₆ NaO ₄	281.1731	281.1723	2.7	$[M+Na]^+$
17.5		$C_{14}H_{27}O_4$	259.1919	259.1904	5.9	$[M+H]^+$
		$C_{14}H_{25}O_3$	241.1800	241.1798	0.9	$[M-H_2O+H]^+$
		$C_{14}H_{23}O_2$	223.1696	223.1693	1.7	$[M-2H_2O+H]^+$

Figure S2. High resolution mass spectra of SCB8 (8) extracted from *S. coelicolor* M1152 grown on AlaMM (top panel) and AlaMM when d₇-butyric acid was added to the media (bottom panel)

Figure S3. High resolution mass spectra of SCB5 (5) extracted from *S. coelicolor* M1152 grown on AlaMM (top panel) and AlaMM when d_{10} -leucine was added to the media (bottom panel)

Figure S4. High resolution mass spectra of SCB6 (6) extracted from *S. coelicolor* M1152 grown on AlaMM (top panel) and AlaMM when d_5 -propionic acid was added to the media (bottom panel)

Figure S5. High resolution mass spectra of SCB1 (1) extracted from *S. coelicolor* M1152 grown on AlaMM (top panel) and AlaMM when d_8 -valine was added to the media (bottom panel)

Figure S6. High resolution mass spectra of SCB2 (2) extracted from *S. coelicolor* M1152 grown on AlaMM (top panel) and AlaMM when d₇-butyric acid was added to the media (bottom panel)

Figure S7. High resolution mass spectra of SCB3 (**3**) extracted from *S. coelicolor* M1152 grown on AlaMM (top panel) and AlaMM when d_{10} -isoleucine was added to the media (bottom panel)

Figure S8. High resolution mass spectra of SCB7 (7) extracted from *S. coelicolor* M1152 grown on AlaMM (top panel) and AlaMM when d_5 -propionic acid was added to the media (bottom panel)

Table S2. UHR-MS assignments for molecular ions and fragments observed for metabolites **1-8** when fed with different precursor molecules (corresponding to the spectra shown in Figures S1-S8)

retention	compound	Molecular formula	Observed m/z	Calculated m/z	error / ppm	assignment
14.3	d ₇ -SCB 8 (8)	CuHuD-NaO4	246 1695	246 1693	0.6	[M+Na] ⁺
		$C_{11}H_{14}D_7O_4$	224.1879	224.1874	2.5	$[M+H]^+$
		$C_{11}H_{12}D_7O_3$	206.1769	206.1768	0.7	$[M-H_2O+H]^+$
		$C_{11}H_{10}D_7O_2$	188.1654	188.1662	4.7	$[M-2H_2O+H]^+$
15.2	SCB4 (4)	intensity of peaks	too low to genera	te molecular formu	lae – see low re	solution data
15.3	d ₉ -SCB 5 (5)	C ₁₂ H ₁₃ D ₉ NaO ₄	262.1982	262.1975	2.5	$[M+Na]^+$
		$C_{12}H_{14}D_9O_4$	240.2166	240.2156	4.3	$[M+H]^+$
		$C_{12}H_{12}D_9O_3$	222.2054	222.2050	1.7	$[M-H_2O+H]^+$
		$C_{12}H_{10}D_9O_2$	204.0199	204.1944	7.0	$[M-2H_2O+H]^+$
15.5	d ₅ -SCB 6 (6)	C ₁₂ H ₁₇ D ₅ NaO ₄	258.1726	258.1724	0.7	$[M+Na]^+$
		$C_{12}H_{18}D_5O_4$	236.1915	236.1905	4.3	$[M+H]^+$
		$C_{12}H_{16}D_5O_3$	218.1800	218.1799	0.3	$[M-H_2O+H]^+$
		$C_{12}H_{14}D_5O_2$	200.1687	200.1693	3.2	$[M-2H_2O+H]^+$
15.5	d ₃ -SCB6 (6)	C ₁₂ H ₁₉ D ₃ NaO ₄	256.1602	256.1599	1.3	$[M+Na]^+$
		$C_{12}H_{20}D_3O_4$	234.1789	234.1779	4.0	$[M+H]^+$
		$C_{12}H_{18}D_3O_3$	216.1680	216.1674	3.0	$[M-H_2O+H]^+$
		$C_{12}H_{16}D_3O_2$	198.1574	198.1568	3.0	$[M-2H_2O+H]^+$
16.4	d ₇ -SCB 1 (1)	C ₁₃ H ₁₇ D ₇ NaO ₄	274.2010	274.2006	1.6	$[M+Na]^+$
		$C_{13}H_{18}D_7O_4$	252.2194	252.2187	2.7	$[M+H]^+$
		$C_{13}H_{16}D_7O_3$	234.2085	234.2081	1.7	$[M-H_2O+H]^+$
		$C_{13}H_{14}D_7O_2$	216.1978	216.1975	1.1	$[M-2H_2O+H]^+$
16.5	d ₇ -SCB 2 (2)	C ₁₃ H ₁₇ D ₇ NaO ₄	274.2012	274.2006	2.1	$[M+Na]^+$
		$C_{13}H_{18}D_7O_4$	252.2187	252.2187	0.1	$[M+H]^+$
		$C_{13}H_{16}D_7O_3$	234.2079	234.2081	0.7	$[M-H_2O+H]^+$
		$C_{13}H_{14}D_7O_2$	216.1981	216.1975	2.4	$[M-2H_2O+H]^+$
17.3	d ₉ -SCB 3 (3)	C ₁₄ H ₁₇ D ₉ NaO ₄	290.2284	290.2288	1.4	$[M+Na]^+$
		$C_{14}H_{18}D_9O_4$	268.2468	268.2469	0.1	$[M+H]^+$
		$C_{14}H_{16}D_9O_3$	250.2357	250.2363	2.3	$[M-H_2O+H]^+$
		$C_{14}H_{14}D_9O_2$	232.2255	232.2257	1.0	$[M-2H_2O+H]^+$
17.5	d ₅ -SCB 7 (7)	$C_{14}H_{21}D_5NaO_4$	286.2038	286.2037	0.1	$[M+Na]^+$
		$\mathrm{C}_{14}\mathrm{H}_{22}\mathrm{D}_{5}\mathrm{O}_{4}$	intensity of peaks too low to generate molecular formulae			
		$C_{14}H_{20}D_5O_3$	246.2108	246.2112	1.8	$[M-H_2O+H]^+$
		$\mathrm{C}_{14}\mathrm{H}_{18}\mathrm{D}_{5}\mathrm{O}_{2}$	228.2009	228.2006	1.2	$[M-2H_2O+H]^+$
17.5	d ₃ -SCB 7 (7)	$C_{14}H_{23}D_3NaO_4$	284.1918	284.1912	2.2	$[M+Na]^+$
		$\mathbf{C}_{14}\mathbf{H}_{24}\mathbf{D}_{3}\mathbf{O}_{4}$	262.2102	262.2092	3.7	$[M+H]^{+}$
		$\mathbf{C}_{14}\mathbf{H}_{22}\mathbf{D}_{3}\mathbf{O}_{3}$	244.1999	244.1987	5.0	$[M-H_2O+H]^+$
		$C_{14}H_{20}D_{3}O_{2}$	226.1877	226.1881	1.9	$[M-2H_2O+H]^+$
			l			

2.2 Low resolution mass spectrometry data for SCB1-8 (1-8)

Figure S9. Low resolution mass spectra for metabolites **1-8** (SCB1-8) present in culture extract of *S. coelicolor* M1152 grown for five days.

Figure S10. Low resolution mass spectra for metabolites **1-8** (SCBs 1-8) present in culture extract of *S. coelicolor* M1152 grown for five days in AlaMM enriched with d_5 -proionic acid (SCBs 6 and 7); d_7 -butyric acid (SCBs 2 and 8); d_8 -valine (SCB 1); d_{10} -leucine (SCB 5) and d_{10} -isoleucine (SCBs 3 and 4)

Figure S11. ¹H-NMR spectrum (700 MHz, CDCl₃) for SCB1 isolated from *S. coelicolor* M1152.

Figure S12. COSY spectrum for SCB1 isolated from *S. coelicolor* M1152; selected correlations observed in the COSY spectrum are highlighted by dashed lines.