Iron-mediated oxidative C-H coupling of arenes and alkenes directed by sulfur: a novel route to dihydrobenzofurans

Craig W. Cavanagh,^a Miles H. Aukland,^a Quentin Laurent,^a Alan Hennessy^b and David J. Procter^a*
^aSchool of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
^bSyngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK.

E-mail: david.j.procter@manchester.ac.uk

Contents

General Information	S1
Fe(III)-Mediated C-H Coupling of Arylsulfides and Terminal Alkenes	S2
Additional Substrates That Failed to Undergo C-H Coupling with 1-octene	S11
Pd-Catalysed Deallylation/Cyclisation	
Pd-catalysed Cross-Coupling	S15
Raney Ni Desulfurisation	S19
Ni-catalysed Kumada-Corriu coupling	S20
Spectra	S24

General Information

Glassware for inert atmosphere reactions was oven-dried and cooled under a flow of nitrogen. THF was distilled over sodium wire and benzophenone; CH_2Cl_2 was distilled over calcium hydride. All other solvents and reagents were purchased from commercial sources and used as supplied. ¹H-NMR spectra were obtained at room temperature on a 400 or 500 MHz Bruker spectrometer. ¹³C-NMR spectra were obtained at 100 or 125 MHz. All NMR spectra were processed using *ACDLabs*© NMR software. All chemical shift values are reported in parts per million (ppm) relative to the solvent signal and were determined in CDCl₃, with coupling constant (*J*) values reported in Hz. The notation of signals is: Proton: δ chemical shift in ppm (carbon assignment). If assignment is ambiguous, for example in the case of overlapping signals, a range of shifts is reported. Routine TLC analysis was carried out on aluminium sheets coated with silica gel. Plates were viewed with a 254 nm ultraviolet lamp and dipped in aqueous potassium permanganate/*p*-anisaldehyde, or phosphomolybdic acid solution. Low resolution and high-resolution mass spectra were obtained using either positive and/or negative electrospray ionisation (ES), or atmospheric-pressure chemical ionisation (APCI) techniques. IR spectra were recorded on an ATR FTIR spectrometer using neat samples.

For the synthesis of compounds not included below, please see our preliminary report:

C. W. Cavanagh, M. H. Aukland, A. Hennessy, D. J. Procter, Chem. Commun. 2015, 51, 9272-9275

Fe(III)-Mediated C-H Coupling of Arylsulfides and Terminal Alkenes

General Procedure A

A solution of FeCl₃ (1.4 mmol) in MeNO₂ (2 mL) was added dropwise over 1 h to a stirred solution of the corresponding sulfide (0.34 mmol) and alkene (1.7 mmol) in CH₂Cl₂ (2 mL) at room temperature. The mixture was then left to stir for 1 h. The reaction mixture was then quenched with H₂O (4 ml), diluted with CH₂Cl₂ (2 mL) and 2,2'-bipyridine (127 mg, 1.4 mmol) was added. The organic layer was then washed with H₂O (2 × 4 ml) and the combined aqueous was extracted with CH₂Cl₂ (3 × 4 mL). The combined organic extracts were dried with Na₂SO₄, filtered and solvent removed *in vacuo*. The crude mixture was then passed through a silica plug with CHCl₃ eluent.

(2-(2-Chloro-3-phenylpropyl)-3,5-dimethoxyphenyl)(phenyl)sulfide 2h

As described in general procedure A, **1a** (50 mg, 0.2 mmol), allylbenzene (135 μ L, 1 mmol) and FeCl₃ (131 mg, 0.8 mmol), after purification by column chromatography (30 % CHCl₃ in hexanes) gave **XX** (30.1 mg, 0.09 mmol, 46%) as a colourless oil; $\delta_{\rm H}$ (500 MHz, CDCl₃) 3.02 (1 H, dd, J 14.8, 8.8 Hz, ArCH₂CHCl), 3.08 (1 H, dd, J 14.5, 4.7 Hz, ArCH₂CHCl), 3.29 (1 H, dd, J 13.6, 6.6 Hz, ArCH₂CHCl), 3.39 (1 H, dd, J 13.9, 7.6 Hz, ArCH₂CHCl), 3.69 (3 H, s, OCH₃), 3.81 (3 H, s, OCH₃), 4.45 - 4.52 (1 H, m, CHCl), 6.41 (1 H, d, J 2.5 Hz, aryl H), 6.45 (1 H, d, J 2.5 Hz, aryl H), 7.15 - 7.31 (10 H, m); $\delta_{\rm C}$ (125 MHz, CDCl₃) 36.1 (ArCH₂CHCl), 44.3 (ArCH₂CHCl), 55.3 (OCH₃), 55.6 (OCH₃), 63.1 (CHCl), 98.4 (aryl *C*-H), 109.0 (aryl *C*-H), 121.0 (aryl *C*), 126.5 (aryl *C*-H), 126.6 (aryl *C*-H), 128.2 (aryl *C*-H), 129.1 (aryl *C*-H), 129.2 (aryl *C*-H), 130.0 (aryl *C*-H), 136.3 (aryl *C*), 136.6 (aryl *C*), 138.7 (aryl *C*), 159.1 (aryl *C*), 159.4 (aryl *C*); v_{max} (thin film/cm⁻¹) 1046 (vs), 1154 (s), 1198 (s), 1296 (m), 1437 (m), 1454 (s), 1477 (s), 1571 (vs), 1596 (vs), 2835 (w), 2935 (w), 2957 (w), 3000 (w), 3025 (w); MS (APCI) *m/z* 399 (M+H); HRMS C₂₃H₂₄O₂ClS (M+H) Expected 399.1180, Found 399.1169.

As described in general procedure A, **1j** (1.00 g, 3.35 mmol), 1-hexene (2.1 mL, 16.8 mmol) and FeCl₃ (2.16 g, 13.4 mmol), after purification by column chromatography (30% CHCl₃ in hexanes) gave **2s** (700 mg, 0.10 mmol, 50%) as a colourless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.88 (3 H, t, *J* 7.2 Hz, CH₃), 1.20 - 1.42 (3 H, m, CH₂), 1.51 - 1.64 (1 H, m, CH₂), 1.70 - 1.78 (2 H, m, CH₂), 3.26 (1 H, dd, *J* 13.7, 7.0 Hz, ArCH₂CHCl), 3.36 (1 H, dd, *J* 13.7, 7.6 Hz, ArCH₂CHCl), 4.24 - 4.34 (1 H, m, CHCl), 4.37 (2 H, dt, *J* 5.4, 1.3 Hz, OCH₂), 4.53 (2 H, dt, *J* 4.9, 1.6 Hz, OCH₂), 5.23 (1 H, dq, *J* 10.4, 1.3 Hz, CH=CH₂), 5.27-5.34 (2 H, m, CH=CH₂), 5.45 (1 H, dq, *J* 17.2, 1.6 Hz, CH=CH₂), 5.95 (1 H, ddt, *J* 17.3, 10.6, 5.4, 5.4 Hz, CH=CH₂), 6.06 (1 H, ddt, *J* 17.2, 10.4, 5.1, 5.1 Hz, CH=CH₂), 6.39 - 6.44 (2 H, m, aryl H), 7.19 - 7.32 (5 H, m, aryl H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.0 (CH₃), 22.2 (CH₂), 28.9 (CH₂), 36.4 (ArCH₂CHCl), 37.5 (CH₂), 63.3 (CHCl), 68.8 (OCH₂), 68.9 (OCH₂), 99.8 (aryl C-H), 109.6 (aryl C-H), 117.3 (CH=CH₂), 118.1 (CH=CH₂), 121.4 (aryl C), 126.7 (aryl C-H), 129.1 (aryl C-H), 130.3 (aryl C-H), 132.8 (CH=CH₂ x 2), 136.2 (aryl C), 136.8 (aryl C), 157.9 (aryl C), 158.1 (aryl C); v_{max} (thin film/cm⁻¹) 928 (m), 1024 (s), 1045 (s), 1142 (s), 1176 (s), 1276 (w), 1412 (m), 1456 (m), 1477 (m), 1570 (s), 1595 (s), 2860 (w), 2929 (w), 2956 (w), 3080 (w); MS (ES⁺) *m/z* 417 (M+H⁺); HRMS C₂₄H₃₀ClO₂S (M+H⁺) Expected 417.1650, Found 417.1649.

(3,5-bis(Allyloxy)-2-(5-bromo-2-chloropentyl)phenyl)(phenyl)sulfide 2t

As described in general procedure A, **1j** (95 mg, 0.32 mmol), 5-bromo-1-pentene (250 mg, 1.7 mmol) and FeCl₃ (217 mg, 1.4 mmol), after purification by column chromatography (30% CHCl₃ in hexanes) gave **2t** (59.6 mg, 0.08 mmol, 39%) as a colourless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.70 - 1.93 (3 H, m, CH₂), 2.03 - 2.17 (1 H, m, CH₂), 3.20 (1 H, dd, *J* 13.9, 7.6 Hz, ArCH₂CHCl), 3.25 - 3.36 (3 H, m, ArCH₂CHCl + CH₂Br), 4.17 - 4.26 (1 H, m, CHCl), 4.29 (2 H, dt, *J* 5.4, 1.3 Hz, OCH₂), 4.46 (2 H, dt, *J* 5.0, 1.5 Hz, OCH₂), 5.15 (1 H, dq, *J* 10.6, 1.3 Hz, CH=CH₂), 5.18 - 5.27 (2 H, m, CH=CH₂), 5.36 (1

H, dq, *J* 17.2, 1.5 Hz, CH=C*H*₂), 5.81 - 5.92 (1 H, m, C*H*=CH₂) 5.93 - 6.04 (1 H, m, C*H*=CH₂), 6.32 - 6.35 (2 H, m, aryl H), 7.12 - 7.25 (5 H, m, aryl H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 29.8 (*C*H₂), 33.2 (*C*H₂Br), 35.9 (*C*H₂), 36.2 (Ar*C*H₂CHCl), 61.8 (*C*HCl), 68.9 (O*C*H₂), 69.0 (O*C*H₂), 99.9 (aryl *C*-H), 109.8 (aryl *C*-H), 117.8 (CH=CH₂), 118.0 (CH=CH₂), 120.8 (aryl *C*), 126.8 (aryl *C*-H), 129.2 (aryl *C*-H), 130.3 (aryl *C*-H), 132.7 (*C*H=CH₂), 132.8 (*C*H=CH₂), 135.9 (aryl *C*), 136.8 (aryl *C*), 157.9 (aryl *C*), 158.2 (aryl *C*); v_{max} (thin film/cm⁻¹) 927.0 (m), 1023 (s), 1044 (s), 1275 (m), 1417 (m), 1439 (m), 1455 (m), 1476 (m), 1569 (s), 1595 9s), 2863 (w), 2916 (w), 2959 (w), 3075 (w); MS (APCI) *m/z* 481 (M+H⁺); HRMS C₂₃H₂₇ClBrO₂S (M+H⁺) Expected 481.0598, Found 481.0612.

5-Nitro-1-pentene¹

5-Bromo-1-pentene (2.5 g, 17.0 mmol) was added to a solution of sodium nitrite (1.29 g, 18.7 mmol) in DMF (34 mL) and stirred at rt for 2 h. The reaction was quenched with H₂O (30 mL) and extracted with Et₂O (3×30 mL). The combined organic extracts were washed with LiCl (10% in H₂O, 2×30 mL), dried with MgSO₄, filtered and solvent removed *in vacuo*. The crude product was purified by column chromatography on silica gel with 10% CHCl₃ in hexanes eluent to give 5-nitro-1-pentene (0.50 g, 4.9 mmol, 26%) as a yellow oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.07 - 2.22 (4 H, m, CH₂), 4.40 (2 H, t, *J* 6.7 Hz, CH₂NO₂), 5.04 - 5.13 (2 H, m, CH₂=CH), 5.77 (1 H, ddt, *J* 17.0, 10.4, 6.5 Hz, CH₂=CHCH₂); $\delta_{\rm C}$ (125 MHz, CDCl₃) 26.3 (CH₂), 30.1 (CH₂CH₂CH=CH₂), 74.7 (CH₂NO₂), 116.8 (CH=CH₂), 135.7 (CH=CH₂).

(3,5-bis(Allyloxy)-2-(2-chloro-5-nitropentyl)phenyl)(phenyl)sulfide 2u

As described in general procedure A, **1j** (95 mg, 0.32 mmol), 5-nitro-1-pentene (193 mg, 1.7 mmol) and FeCl₃ (217 mg, 1.4 mmol), after purification by column chromatography (50% CHCl₃ in hexanes) gave **2u** (42.3 mg, 0.10 mmol, 30%) as a yellow oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.72 - 1.87 (2 H, m, *CH*₂), 2.01 - 2.15 (1 H, m, *CH*₂), 2.27 - 2.41 (1 H, m, *CH*₂), 3.28 (1 H, dd, *J* 13.6, 7.8 Hz, ArCH₂CHCl), 3.38 (1 H, dd, *J* 13.6, 6.6 Hz, ArCH₂CHCl), 4.25 - 4.40 (5 H, m, *CH*₂NO₂ + *CH*Cl + OCH₂), 4.54 (2 H, dt, *J* 5.0, 1.4 Hz, OCH₂), 5.24 (1 H, dq, *J* 10.5, 1.3 Hz, CH=CH₂), 5.27 - 5.36 (2 H, m, CH=CH₂), 5.44 (1

¹ J. A. Burkhard, B. H. Tchitchanov, E. M. Carreira, Angew. Chem. Int. Ed. 2011, 50, 5379 - 5382

H, dq, *J* 17.2, 1.6 Hz, CH=C*H*₂), 5.95 (1 H, ddt, *J* 17.2, 10.5, 5.4 Hz, C*H*=CH₂), 6.06 (1 H, ddt, *J* 17.2, 10.5, 5.1 Hz, C*H*=CH₂), 6.42 (2 H, s, aryl H), 7.21 - 7.34 (5 H, m, aryl H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 24.6 (CH₂), 33.7 (CH₂), 36.2 (ArCH₂CHCl), 61.3 (CHCl), 68.9 (OCH₂), 69.0 (OCH₂), 75.0 (CH₂NO₂), 99.9 (aryl C-H), 109.8 (aryl C-H), 117.6 (CH=CH₂), 118.1 (CH=CH₂), 120.3 (aryl C), 126.9 (aryl C-H), 129.2 (aryl C-H), 130.3 (aryl C-H), 132.7 (CH=CH₂), 132.8 (CH=CH₂), 135.7 (aryl C), 136.8 (aryl C), 157.9 (aryl C), 158.4 (aryl C); v_{max} (thin film/cm⁻¹) 1138 (s), 1169 (s), 1417 (m), 1551 (vs), 1569 (s), 1595 (s), 2864 (w), 2920 (w), 3075 (w); MS (APCI) *m/z* 448 (M+H⁺); HRMS C₂₃H₂₇NO₄ClS (M+H⁺) Expected 448.1344, Found 448.1339.

(3,5-bis(allyloxy)-2-(2-chlorohept-6-en-1-yl)phenyl)(phenyl)sulfide 2v

As described in general procedure A, 1j (95 mg, 0.32 mmol), 1,6-heptadiene (162 mg, 1.7 mmol) and FeCl₃ (217 mg, 1.4 mmol), after purification by column chromatography (20% CHCl₃ in hexanes) gave 2v (70.5 mg, 0.17 mmol, 52%) as a colourless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.31 - 1.44 (1 H, m, CH₂), 1.56 - 1.72 (3 H, m, CH₂), 1.88 - 2.01 (2 H, m, CH₂CH=CH₂), 3.18 (1 H, dd, J 13.9, 7.3 Hz, ArCH₂CHCl), 3.27 (1 H, dd, J 13.9, 7.3 Hz, ArCH₂CHCl), 4.17 – 4.25 (1 H, m, CHCl), 4.28 (2 H, dt, J 5.3, 1.3 Hz, OCH₂), 4.44 (2 H, dt, J 4.8, 1.5 Hz, OCH₂), 4.82 - 4.93 (2 H, m, CH=CH₂), 5.14 (1 H, dq, J 10.6, 1.3 Hz, OCH₂CH=CH₂), 5.17 - 5.25 (2 H, m, OCH₂CH=CH₂), 5.35 (1 H, dq, J 17.2, 1.5 Hz, OCH₂CH=CH₂), 5.68 (1 H, ddt, J 17.0, 10.2, 6.7 Hz, CH=CH₂), 5.86 (1 H, ddt, J 17.2, 10.3, 5.5 Hz, OCH₂CH=CH₂), 5.96 (1 H, ddt, J 17.3, 10.5, 5.0 Hz, OCH₂CH=CH₂), 6.31 - 6.34 (2 H, m, aryl H), 7.10 - 7.23 (5 H, m, aryl H); δ_C (100 MHz, CDCl₃) 25.9 (CH₂), 33.1 (CH₂CH=CH₂), 36.4 (ArCH₂CHCl), 37.1 (CH₂), 62.9 (CHCl), 68.8 (OCH₂), 69.0 (OCH₂), 99.8 (aryl C-H), 109.7 (aryl C-H), 114.6 (CH=CH₂), 117.3 (OCH₂CH=CH₂), 118.0 (OCH₂CH=CH₂), 121.2 (aryl C), 126.7 (aryl C-H), 129.1 (aryl C-H), 130.3 (aryl C-H), 132.8 (OCH₂CH=CH₂), 132.9 (OCH₂CH=CH₂), 136.1 (aryl C), 136.9 (aryl C), 138.4 (CH=CH₂), 157.9 (aryl C), 158.2 (aryl C); v_{max} (thin film/cm⁻¹) 919 (m), 1024 (m), 1045 (m), 1141 (s), 1172 (s), 1275 (m), 1417 9m), 1439 (m), 1477 (m), 1569 (s), 1595 (s), 2859 (w), 2927 (w), 3075 (w); MS (APCI) m/z 429 (M+H⁺); HRMS C₂₅H₃₀ClO₂S (M+H⁺) Expected 429.1650, Found 429.1657.

As described in general procedure A, 1j (103 mg, 0.34 mmol), 9-phenyl-1-nonene (346 mg, 1.7 mmol) and FeCl₃ (218 mg, 1.4 mmol), after purification by column chromatography (30% CHCl₃ in hexanes) gave **2w** (78 mg, 0.14 mmol, 42%) as a colourless oil; $\delta_{\rm H}$ (500 MHz, CDCl₃) 1.23 - 1.41 (7 H, m, CH₂), 1.57 - 1.65 (3 H, m, CH₂), 1.71 - 1.78 (2 H, m, CH₂), 2.59 - 2.64 (2 H, m, ArCH₂CH₂), 3.28 (1 H, dd, J 13.7, 6.9 Hz, ArCH₂CHCl), 3.37 (1 H, dd, J 13.7, 7.6 Hz, ArCH₂CHCl), 4.26 - 4.34 (1 H, m, CHCl), 4.39 (2 H, dt, J 5.4, 1.4 Hz, OCH₂), 4.54 (2 H, dt, J 5.1, 1.5 Hz, OCH₂), 5.24 (1 H, dq, J 10.4, 1.5 Hz, CH=CH₂), 5.26 - 5.33 (2 H, m, CH=CH₂), 5.45 (1 H, dq, J 17.3, 1.4 Hz, CH=CH₂), 5.96 (1 H, ddt, J 17.3, 10.6, 5.4 Hz, CH=CH₂), 6.06 (1 H, ddt, J 17.2, 10.4, 5.1 Hz, $CH=CH_2$), 6.42 - 6.45 (2 H, m, aryl H), 7.16 - 7.27 (5 H, m, aryl H), 7.27 - 7.32 (5 H, m, aryl H); δ_C (125 MHz, CDCl₃) 26.7 (CH₂), 29.0 (CH₂), 29.2 (CH₂), 29.3 (CH₂), 31.5 (CH₂), 36.0 (CH₂), 36.4 (CH₂), 37.8 (CH₂), 63.2 (CHCl), 68.9 (OCH₂), 69.0 (OCH₂), 100.0 (aryl C-H), 109.8 (aryl C-H), 117.3 (CH=CH₂), 118.0 (CH=CH₂), 121.4 (aryl C), 125.6 (aryl C-H), 126.7 (aryl C-H), 128.2 (aryl C-H), 128.4 (aryl C-H), 129.1 (aryl C-H), 130.3 (aryl C-H), 132.9 (CH=CH₂), 132.9 (CH=CH₂), 136.2 (aryl C), 136.9 (aryl C), 142.9 (aryl C), 158.0 (aryl C), 158.2 (aryl C); v_{max} (thin film/cm⁻¹) 925 (m), 1024 (s), 1045 (s), 1106 (w), 1145 (s), 1175 (s), 1215 (s), 1275 (w), 1380 (vw), 1416 (m), 1476 (s), 1495 (m), 1569 (vs), 1648 (vw), 2854 (m), 2926 (m), 3024 (w), 3082 (w); MS (APCI) m/z 535 $(M+H^+)$; HRMS C₃₃H₄₀ClO₂S $(M+H^+)$ Expected 535.2432, Found 535.2423.

(E)-(2-(4,4-Dimethylhepta-2,6-dien-1-yl)-3,5-dimethoxyphenyl)(phenyl)sulfide **2y**

As described in general procedure A, **1a** (50 mg, 0.2 mmol), 4,4-dimethylhepta-1,6-diene (127 mg, 1 mmol) and FeCl₃ (131 mg, 0.8 mmol), after purification by column chromatography (30 % CHCl₃ in hexanes) gave **2y** (15.3 mg, 0.04 mmol, 21%) as a colourless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.89 (6 H, s,

C(CH₃)₂), 1.95 (2 H, d, *J* 7.3 Hz, CH₂CH=CH₂), 3.50 (2 H, dd, *J* 6.1, 1.0 Hz, ArCH₂CH=CH), 3.69 (3 H, s, OCH₃), 3.81 (3 H, s, OCH₃), 4.90 - 4.97 (2 H, m, CH=CH₂), 5.29 (1 H, dt, *J* 15.6, 6.1 Hz, ArCH₂CH=CH), 5.40 (1 H, dt, *J* 15.6, 1.0 Hz, ArCH₂CH=CH), 5.72 (1 H, ddt, *J* 16.6, 10.6, 7.3 Hz, CH=CH₂), 6.41 (1 H, d, *J* 2.3 Hz, aryl H), 6.43 (1 H, d, *J* 2.5 Hz, aryl H), 7.16 - 7.30 (5 H, m, aryl H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 26.9 (C(CH₃)₂), 30.5 (ArCH₂CH=CH), 35.6 (alkyl C_q), 47.5 (CH₂CH=CH₂), 55.3 (OCH₃), 55.7 (OCH₃), 98.5 (aryl *C*-H), 108.7 (aryl *C*-H), 116.2 (CH=CH₂), 123.4 (ArCH₂CH=CH), 124.1 (aryl *C*), 126.4 (aryl *C*-H), 129.0 (aryl *C*-H), 130.0 (aryl *C*-H), 135.5 (aryl *C*), 136.1 (CH=CH₂), 136.8 (aryl *C*), 140.4 (ArCH₂CH=CH), 158.7 (aryl *C*), 158.8 (aryl *C*); v_{max} (thin film/cm⁻¹) 1050 (s), 1150 (m), 1274 (w), 1295 (w), 1409 (m), 1436 (m), 1477 (m), 1571 (s), 1596 (s), 2834 (w), 2935 (m), 2957 (m), 3000 (w), 3072 (w); MS (ES⁺) *m/z* 369 (M+H); HRMS C₂₃H₂₉O₂S (M+H) Expected 369.1883, Found 369.1881.

(E)-(2-(3-(1-Allylcyclohexyl)allyl)-3,5-dimethoxyphenyl)(phenyl)sulfide 2z

As described in general procedure A, **1a** (50 mg, 0.2 mmol), 1,1-diallylcyclohexane (168 mg, 1 mmol) and FeCl₃ (131 mg, 0.8 mmol), after purification by column chromatography (30 % CHCl₃ in hexanes) gave **2z** (19.1 mg, 0.04 mmol, 23%) as a colourless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.15 - 1.31 (4 H, m, CH₂), 1.33 - 1.48 (6 H, m, CH₂), 1.97 (2 H, d, *J* 7.3 Hz, CH₂CH=CH₂), 3.53 (2 H, d, *J* 5.3 Hz, ArCH₂CH=CH), 3.69 (3 H, s, OCH₃), 3.81 (3 H, s, OCH₃), 4.89 - 4.96 (2 H, m, CH=CH₂), 5.22 (1 H, d, *J* 15.9 Hz, ArCH₂CH=CH), 5.29 (1 H, dt, *J* 15.9, 5.3 Hz, ArCH₂CH=CH), 5.63 – 5.76 (1 H, m, CH=CH₂), 6.41 (1 H, d, *J* 2.5 Hz, aryl H), 6.42 (1 H, d, *J* 2.5 Hz, aryl H), 7.16 - 7.22 (1 H, m, aryl H), 7.24 - 7.29 (4 H, m); $\delta_{\rm C}$ (100 MHz, CDCl₃) 22.1 (CH₂), 26.5 (CH₂), 30.7 (ArCH₂CH=CH), 35.8 (CH₂), 38.7 (alkyl *C*_q), 46.5 (CH₂CH=CH₂), 55.3 (OCH₃), 55.6 (OCH₃), 98.4 (aryl C-H), 108.5 (aryl C-H), 116.0 (CH=CH₂), 123.9 (aryl C), 125.7 (ArCH₂CH=CH), 126.4 (aryl C-H), 129.0 (aryl C-H), 130.1 (aryl C-H), 135.5 (aryl C), 135.8 (CH=CH₂), 136.7 (aryl C), 138.4 (ArCH₂CH=CH), 158.7 (aryl C), 158.8 (aryl C); v_{max} (thin film/cm⁻¹) 1050 (s), 1144 (m), 1204 (s), 1275 (w), 1295 (w), 1460 (m), 1572 (s), 1597 (s), 2852 (m), 2925 (vs), 3000 (w), 3071 (w); MS (ES⁺) *m/z* 409 (M+H); HRMS C₂₆H₃₃O₂S (M+H) Expected 409.2196.

(E)-(3,5-Dimethoxy-2-(oct-1-en-1-yl)phenyl)(phenyl)sulfide 3f

NaNH₂ (8.3 mg, 0.21 mmol) was added in one portion to a solution of **2a** (35.3 mg, 0.09 mmol) in THF (1.0 mL). The solution was stirred under reflux for 18 h, then cooled to room temperature and quenched with H2O (2 mL) and diluted with EtOAc (5 mL). The organic phase was washed with H2O $(3 \times 2 \text{ mL})$, dried over MgSO4, filtered and solvent removed in vacuo. The crude mixture was purified by column chromatography (30% CHCl₃ in hexanes) to give **3f** (27.2 mg, 0.08 mmol, 85%) as a colourless oil; δH (500 MHz, CDCl3) 0.89 (3 H, t, J 6.6 Hz, CH3), 1.23 - 1.37 (6 H, m, CH2), 1.37 - 1.45 (2 H, m, CH2), 2.19 (2 H, qd, J 6.9, 1.3 Hz, CH=CHCH2CH2), 3.66 (3 H, s, OCH3), 3.83 (3 H, s, OCH3), 6.27 (1 H, dt, J 16.1, 6.9 Hz, ArCH=CHCH2), 6.35 (1 H, d, J 2.5 Hz, aryl H), 6.39 (1 H, d, J 2.5 Hz, aryl H), 6.53 (1 H, dt, J 16.1, 1.3 Hz, ArCH=CHCH2), 7.21 - 7.33 (5 H, m, aryl H); δC (125 MHz, CDCl3) 14.2 (CH3), 22.7 (CH2), 28.9 (CH2), 29.4 (CH2), 31.8 (CH2), 34.1 (CH=CHCH2CH2), 55.3 (OCH3), 55.6 (OCH3), 98.0 (aryl C-H), 107.8 (aryl C-H), 121.0 (aryl C), 122.7 (ArCH=CHCH2), 126.9 (aryl C-H), 129.1 (aryl C-H), 131.1 (aryl C-H), 135.7 (aryl C), 136.1 (aryl C), 136.6 (ArCH=CHCH2), 158.6 (aryl C), 158.7 (aryl C); v_{max} (thin film/cm⁻¹) 1046 (s), 1153 (s), 1200 (m), 1210 (m), 1298 (m), 1407 (w), 1434 (w), 1459 (m), 1563 (s), 1593 (s), 2854 (w), 2925 (m), 2954 (w), 3000 (w); MS (ES⁺) m/z 357.3 (M+H); HRMS $C_{22}H_{29}O_2S$ (M+H) Expected 357.1883, Found 357.1887.

2-Hexyl-4,6-dimethoxy-1-phenyl-2,3-dihydro-1H-benzo[b]thiophen-1-ium trifluoromethanesulfonate **3h**

AgOTf (62.5 mg, 0.24 mmol) was added to a solution of **2a** (104 mg, 0.24 mmol) in DCE (2.40 mL) under N₂ and the resulting suspension stirred at 80 °C for 18 h. H₂O (2.50 mL) was then added and the organic layer washed with H₂O (2 × 2.50 ml). The combined aqueous layers were then extracted with CH₂Cl₂ (3 × 2.50 mL), the combined organic extracts dried with Na₂SO₄, filtered and the solvent removed *in vacuo*. The crude product was purified by column chromatography on silica gel (20% MeOH in CH₂Cl₂) to give **3h** (117 mg, 0.21 mmol, 87%), as a colourless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃)

0.81 - 0.93 (6 H, m, $1 \times CH_2CH_3$ from isomer A and $1 \times CH_2CH_3$ from isomer B), 1.15 - 1.38 (13 H, m, $3 \times CH_2$ from isomer A and $2 \times CH_2$ from isomer B), 1.43 - 1.55 (3 H, m, $1 \times CH_2$ from isomer A and $1 \times CH_2$ from isomer B), 1.56 - 1.64 (1 H, m, $1 \times CH_2$ from isomer B), 1.73 - 1.84 (1 H, m, $1 \times CH_2$ from isomer B) ArCH₂CHCH₂ from isomer A), 1.93 - 2.04 (1 H, m, $1 \times \text{ArCH}_2\text{CHCH}_2$ from isomer B), 2.21 - 2.32 (1 H, m, $1 \times \text{ArCH}_2\text{CHCH}_2$ from isomer B), 3.01 (1 H, dd, J 16.7, 10.2 Hz, ArCH₂CHCH₂ from isomer A), 3.27 - 3.35 (1 H, m, ArCH₂CHCH₂ from isomer B), 3.66 - 3.76 (2 H, m, 1 × ArCH₂CHCH₂ from isomer A and $1 \times ArCH_2CHCH_2$ from isomer B), 3.84 (3 H, s, OCH₃), 3.84 (3 H, s, OCH₃), 3.92 -3.95 (6 H, m, OCH₃), 4.51 - 4.59 (1 H, m, ArCH₂CHCH₂ from isomer B), 4.88 - 4.99 (1 H, m, ArCH₂CHCH₂ from isomer A), 6.70 - 6.76 (2 H, m, $1 \times aryl H$ from isomer A and $1 \times aryl H$ from isomer B), 6.97 (1 H, d, J 2.0 Hz, aryl H from isomer B), 7.01 (1 H, d, J 2.0 Hz, aryl H from isomer A), 7.39 - 7.44 (2 H, m, aryl H), 7.59 - 7.65 (6 H, m, aryl H), 7.67 - 7.70 (1 H, m, aryl H from isomer B), 7.70 - 7.76 (1 H, m, aryl H from isomer A); δ_C (100 MHz, CDCl₃) 13.9 (CH₂CH₃ from isomer A), 14.0 (CH₂CH₃ from isomer B), 22.4 (CH₂), 22.4 (CH₂), 27.6 (CH₂), 27.7 (CH₂), 28.7 (CH₂), 28.7 (CH₂), 29.5 (CH₂), 31.3 (CH₂), 31.4 (CH₂), 33.2 (CH₂), 34.4 (ArCH₂CHCH₂ from isomer A), 34.9 (ArCH₂CHCH₂ from isomer B), 56.1 (OCH₃), 56.4 (OCH₃), 56.4 (OCH₃), 65.1 (ArCH₂CHCH₂ from isomer A), 71.0 (ArCH₂CHCH₂ from isomer B), 102.6 (aryl C-H), 102.8 (aryl C-H), 104.3 (aryl C-H), 104.5 (aryl C–H), 120.8 (aryl C), 126.1 (aryl C), 126.2 (aryl C), 126.5 (aryl C), 126.8 (aryl C), 127.0 (aryl C), 130.0 (aryl C-H), 131.1 (aryl C-H), 131.2 (aryl C-H), 131.3 (aryl C-H), 134.4 (aryl C-H), 134.6 (aryl C-H), 157.1 (aryl C), 157.6 (aryl C), 163.1 (aryl C), 163.3 (aryl C); v_{max} (thin film/cm⁻¹): 1029 (s), 1140 (m), 1204 (w), 1223 (s), 1259 (s), 1437 (w), 1447 (w), 1495 (w), 1577 (w), 1607 (w), 2857 (w), 2929 (w), 2953 (w), 3091 (w); MS (ES⁺) m/z 357 (M); HRMS C₂₂H₂₉O₂S (M) Expected 357.1883, Found 357.1884.

2–Hexyl–4,6–dimethoxy–1–(3–methoxyphenyl)–2,3–dihydro–1H–benzo[b]thiophen–1–ium trifluoromethanesulfonate **3i**

AgOTf (63.8 mg, 0.24 mmol) was added to a solution of **2r** (102 mg, 0.24 mmol) in DCE (2.40 mL) under N₂ and the resulting suspension stirred at 80 °C for 18 h. H₂O (2.50 mL) was then added and the organic layer washed with H₂O (2 × 2.50 ml). The combined aqueous layers were then extracted with CH₂Cl₂ (3 × 2.50 mL) and the combined organic extracts dried with Na₂SO₄, filtered and the solvent removed *in vacuo*. The crude product was purified by column chromatography on silica gel (20% MeOH in CH₂Cl₂) to give **3i** (102 mg, 0.21 mmol, 89%), as a colourless oil; $\delta_{\rm H}$ (500 MHz,

 $CDCl_3$) 0.80 - 0.91 (6 H, m, 1 × CH_2CH_3 from isomer A and 1 × CH_2CH_3 from isomer B), 1.17 - 1.63 (16 H, m, $4 \times CH_2$ from isomer A and $4 \times CH_2$ from isomer B), 1.76 - 1.87 (2 H, m, ArCH₂CHCH₂ from isomer A), 1.92 - 2.02 (1 H, m, ArCH₂CHCH₂ from isomer B), 2.22 - 2.34 (1 H, m, ArCH₂CHCH₂ from isomer B), 3.02 (1 H, m, ArCH₂CHCH₂ from isomer A), 3.28 (1 H, m, ArCH₂CHCH₂ from isomer B), 3.65 - 3.72 (2 H, m, $1 \times$ ArCH₂CHCH₂ from isomer A and $1 \times$ ArCH₂CHCH₂ from isomer B), 3.83 (3 H, s, OCH₃), 3.84 (3 H, s, OCH₃), 3.87 (3 H, s, OCH₃), 3.91 (3 H, s, OCH₃), 3.92 (3 H, s, OCH₃), 3.93 (3 H, s, OCH₃), 4.56 (1 H, dd, J 7.5, 3.1 Hz, ArCH₂CHCH₂ from isomer B), 4.89 (1 H, t, J 8.9 Hz, ArCH₂CHCH₂ from isomer A), 6.72 (2 H, s, aryl H), 6.85 (1 H, d, J 7.8 Hz, aryl H), 6.93 - 6.96 (1 H, m, aryl H), 6.98 (1 H, d, J 1.8 Hz, aryl H), 7.06 (1 H, s, aryl H), 7.18 (1 H, dd, J 8.3, 2.2 Hz, aryl H), 7.22 (2 H, dd, J 8.3, 2.2 Hz, aryl H), 7.37 (1 H, t, J 2.0 Hz, aryl H), 7.48 (2 H, dt, J 16.6, 8.2 Hz, aryl H); δ_C (125 MHz, CDCl₃) 13.9 (CH₂CH₃ from isomer A), 13.9 (CH₂CH₃ from isomer B), 22.3 (CH₂), 22.4 (CH₂), 27.6 (CH₂), 27.7 (CH₂), 28.7 (CH₂), 28.7 (CH₂), 29.4 (CH₂), 31.3 (CH₂), 31.4 (CH₂), 33.1 (CH₂), 34.5 (ArCH₂CHCH₂ from isomer A), 34.7 (ArCH₂CHCH₂ from isomer B), 56.1 (OCH₃), 56.2 (OCH₃), 56.3 (OCH₃), 56.4 (OCH₃), 65.1 (ArCH₂CHCH₂ from isomer A), 70.9 (ArCH₂CHCH₂ from isomer B), 102.6 (aryl C–H), 102.7 (aryl C-H), 104.2 (aryl C-H), 104.4 (aryl C-H), 115.2 (aryl C-H), 116.7 (aryl C-H), 119.5 (aryl C-H), 120.4 (aryl C-H), 120.9 (aryl C-H), 121.6 (aryl C-H), 122.1 (aryl C), 122.5 (aryl C-H), 126.1 (aryl C), 126.4 (aryl C), 126.7 (aryl C), 126.9 (aryl C), 127.0 (aryl C), 131.9 (aryl C-H), 157.1 (aryl C), 157.6 (aryl C), 161.1 (aryl C), 161.3 (aryl C), 163.0 (aryl C), 163.2 (aryl C); v_{max} (thin film/cm⁻¹): 990 (w), 1028 (s), 1095 (w), 1140 (s), 1204 (w), 1223 (s), 1255 (s), 1317 (w), 1436 (w), 1465 (w), 1483 (w), 1575 (w), 1595 (w), 2856 (w), 2929 (w), 3092 (w); MS (ES^+) m/z 387 (M); HRMS C₂₃H₃₂O₃S (M) Expected 387.1976, Found 387.1994.

Additional Substrates That Failed to Undergo C-H Coupling with 1-octene

A) Heterocyclic sulfide substrate

B) Substrates designed to probe the dependence of sulfur

Pd-Catalysed Deallylation/Cyclisation

General Procedure B

Morpholine (2.2 equiv.) was added to a stirred mixture of the corresponding allyloxy-sulfide (1 equiv.), $Pd(PPh_3)_4$ (0.1 equiv.) and $NaBH_4$ (2.4 equiv.) in THF (0.1 M) at room temperature and stirred for 16 h. The reaction was then cooled to 0 °C and 1 N HCl (10 mL) was added slowly. The aqueous layer was extracted with CH_2Cl_2 (3 × 10 mL) and the combined organic extracts were then washed with brine (10 mL), dried over MgSO₄, filtered and the solvent removed *in vacuo*. The crude product was purified by column chromatography on silica gel to give the corresponding dihydrobenzofuran product.

2-Butyl-4-(phenylsulfanyl)-2,3-dihydrobenzofuran-6-ol 4a

As described in general procedure B, **2s** (50 mg, 0.12 mmol), morpholine (23 µL, 0.26 mmol), Pd(PPh₃)₄ (13.9 mg, 0.01 mmol) and NaBH₄ (10.9 mg, 0.29 mmol), after purification by column chromatography (10% EtOAc in hexanes), gave **4a** (30.1 mg, 0.10 mmol, 84%) as a pale yellow oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.90 (3 H, t, *J* 6.8 Hz, CH₃), 1.29 - 1.49 (4 H, m, CH₂), 1.58 - 1.71 (1 H, m, CH(O)CH₂CH₂), 1.72 - 1.86 (1 H, m, CH(O)CH₂CH₂), 2.65 (1 H, dd, *J* 15.4, 7.7 Hz, ArCH₂CH(O)), 3.08 (1 H, dd, *J* 15.4, 8.9 Hz, ArCH₂CH(O)), 4.73 - 4.89 (2 H, m, CH(O) + ArOH), 6.14 (1 H, d, *J* 2.3 Hz, aryl H), 7.24 - 7.37 (5 H, m, aryl H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.0 (CH₃), 22.6 (CH₂), 27.3 (CH₂), 34.2 (ArCH₂CH(O)), 35.8 (CH(O)CH₂CH₂), 84.5 (CH(O)), 96.4 (aryl C-H), 108.6 (aryl C-H), 120.2 (aryl C), 127.2 (aryl C-H), 129.2 (aryl C-H), 131.2 (aryl C-H), 132.3 (aryl C), 134.0 (aryl C), 156.3 (aryl C), 160.9 (aryl C); v_{max} (thin film/cm⁻¹) 994 (s), 1111 (s), 1216 (m), 1354 (w), 1439 (s), 1477 (s), 1591 (s), 1609 (s), 2848 (m), 2916 (m), 2955 (m), 3404 (s, br, O-H stretch); MS (ES⁺) *m/z* 301 (M+H⁺); HRMS C₁₈H₂₁O₂S (M+H⁺) Expected 301.1257, Found 301.1255.

2-(3-Bromopropyl)-4-(phenylsulfanyl)-2,3-dihydrobenzofuran-6-ol 4b

As described in general procedure B, **2t** (60.7 mg, 0.12 mmol), morpholine (24 μ L, 0.26 mmol), Pd(PPh₃)₄ (14.9 mg, 0.012 mmol) and NaBH₄ (11.8 mg, 0.29 mmol), after purification by column chromatography (10% EtOAc in hexanes), gave **4b** (36.3 mg, 0.09 mmol, 79%) as a colourless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.78 - 2.14 (4 H, m, CH₂), 2.66 (1 H, dd, *J* 15.6, 7.3 Hz, ArCH₂CH(O)), 3.11 (1 H, dd, *J* 15.6, 9.1 Hz, ArCH₂CH(O)), 3.40 - 3.52 (2 H, m, CH₂Br), 4.76 (1 H, s, ArOH), 4.82 (1 H, dtd, *J* 9.1, 7.3, 7.3, 5.3 Hz, CH(O)), 6.16 (1 H, d, *J* 2.0 Hz, aryl H), 6.19 (1 H, d, *J* 2.0 Hz, aryl H), 7.25 - 7.37 (5 H, m, aryl H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 28.6 (CH₂), 33.4 (CH₂Br), 34.3 (ArCH₂CH(O)), 34.6 (CH₂), 83.3 (CH(O)), 96.5 (aryl *C*-H), 108.9 (aryl *C*-H), 119.8 (aryl *C*), 127.4 (aryl *C*-H), 129.3 (aryl *C*-H), 131.3 (aryl *C*-H), 132.5 (aryl *C*), 133.9 (aryl *C*), 156.4 (aryl *C*), 160.7 (aryl *C*); v_{max} (thin film/cm⁻¹) 992 (s), 1113 (s), 1253 (w), 1437 (s), 1476 (m), 1591 (m), 1607 (m), 2849 (w), 2939 (w), 3396 (m, br, O-H stretch); MS (APCI) *m/z* 365 (M+H⁺); HRMS C₁₇H₁₈O₂BrS (M+H⁺) Expected 365.0205, Found 365.0188.

2-(3-Nitropropyl)-4-(phenylsulfanyl)-2,3-dihydrobenzofuran-6-ol 4c

As described in general procedure B, **2u** (41.8 mg, 0.09 mmol), morpholine (20 μ L, 0.20 mmol), Pd(PPh₃)₄ (10.3 mg, 0.009 mmol) and NaBH₄ (8.6 mg, 0.22 mmol), after purification by column chromatography (20% EtOAc in hexanes), gave **4c** (25.2 mg, 0.07 mmol, 82%) as a yellow oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.71 - 1.87 (2 H, m, CH₂), 2.09 - 2.29 (2 H, m, CH₂), 2.64 (1 H, dd, *J* 15.6, 7.3 Hz, ArCH₂CH(O)), 3.12 (1 H, dd, *J* 15.6, 9.0 Hz, ArCH₂CH(O)), 4.39 - 4.53 (2 H, m, CH(O) + ArOH), 4.69 - 4.79 (2 H, m, CH₂NO₂), 6.17 (1 H, d, *J* 2.3 Hz, aryl H), 6.19 (1 H, d, *J* 2.3 Hz, aryl H), 7.28 - 7.37 (5 H, m, aryl H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 23.5 (CH₂), 32.6 (CH₂), 34.3 (ArCH₂CH(O)), 75.2 (CH₂NO₂), 83.0 (CH(O)), 96.6 (aryl C-H), 109.0 (aryl C-H), 119.4 (aryl C), 127.4 (aryl C-H), 129.3

(aryl *C*-H), 131.4 (aryl *C*-H), 132.7 (aryl *C*), 133.8 (aryl *C*), 156.6 (aryl *C*), 160.5 (aryl *C*); v_{max} (thin film/cm⁻¹) 993 (s), 1117 (s), 1221 (m), 1377 (m), 1437 (s), 1477 (s), 1549 (s), 1609 (s), 2852 (m), 2934 (m), 3060 (m), 3419 (s, br, O-H stretch); MS (APCI) *m/z* 332 (M+H⁺); HRMS C₁₇H₁₈O₄NS (M+H⁺) Expected 332.0951, Found 332.0936.

2-(7-Phenylheptyl)-4-(phenylthio)-2,3-dihydrobenzofuran-6-ol 4d

As described in General Procedure B, **2w** (52.0 mg, 0.10 mmol), morpholine (18 μ L, 0.21 mmol), Pd(PPh₃)₄ (12.1 mg, 0.011 mmol) and NaBH₄ (9.0 mg, 0.24 mmol), after purification by column chromatography (10% EtOAc in hexanes), gave **4d** (33.1 mg, 0.08 mmol, 81%) as a colourless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.22 – 1.44 (8 H, m, CH₂), 1.48 – 1.62 (3 H, m, CH₂), 1.65 – 1.78 (1 H, m, CH(O)CH₂CH₂), 2.50 – 2.62 (3 H, m, ArCH₂CH(O) & ArCH₂CH₂), 3.01 (1 H, dd, *J* 15.4, 8.9 Hz, ArCH₂CH(O)), 4.62 – 4.77 (2 H, m, ArCH₂CH(O) & OH), 6.06 (1 H, d, *J* 2.3 Hz, aryl H), 6.10 (1 H, d, *J* 2.3 Hz, aryl H), 7.09 – 7.15 (3 H, m, aryl H), 7.17 – 7.30 (7 H, m, aryl H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 25.2 (CH₂), 29.2 (CH₂), 29.3 (CH₂), 29.4 (CH₂), 31.5 (CH₂), 34.3 (ArCH₂CH(O)), 36.0 (ArCH₂CH₂), 36.1 (ArCH₂CH(O)CH₂), 84.6 (CH(O)), 96.6 (aryl *C*-H), 108.8 (aryl *C*-H), 120.4 (aryl *C*), 125.6 (aryl *C*-H), 127.3 (aryl *C*-H), 128.3 (aryl *C*-H), 128.4 (aryl *C*), 161.0 (aryl *C*); ν_{max} (thin film/cm⁻¹) 993 (s), 1114 (vs), 1174 (w), 1220 (w), 1266 (w), 1353 (w), 1438 (s), 1477 (s), 1591 (s), 1607 (s), 2853 (m), 2927 (s), 3924 (w), 3402 (br); MS (APCI) *m/z* 419 (M+H⁺); HRMS C₂₇H₃₁O₂S (M+H⁺) Expected 419.2027, Found 419.2039.

As described in general procedure B, **2s** (50 mg, 0.12 mmol), morpholine (23 μ L, 0.26 mmol), Pd(PPh₃)₄ (13.9 mg, 0.01 mmol) and NaH (11.7 mg, 0.29 mmol, 60% dispersion in mineral oil), after purification by column chromatography (10% EtOAc in hexanes), gave **4e** (40 mg, 0.11 mmol, 92%) as a colourless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.92 (3 H, t, *J* 7.0 Hz, CH₃), 1.30 - 1.48 (4 H, m, CH₂), 1.59 - 1.69 (1 H, m, CH(O)CH₂CH₂), 1.73 - 1.84 (1 H, m, CH(O)CH₂CH₂), 2.65 (1 H, dd, *J* 15.4, 7.7 Hz, ArCH₂CH(O)), 3.08 (1 H, dd, *J* 15.4, 8.9 Hz, ArCH₂CH(O)), 4.42 (2 H, dt, *J* 5.3, 1.5 Hz, OCH₂), 4.73 - 4.83 (1 H, m, CH(O)), 5.25 (1 H, dq, *J* 10.5, 1.5 Hz, CH=CH₂), 5.34 (1 H, dq, *J* 17.3, 1.5 Hz, CH=CH₂) 5.99 (1 H, ddt, *J* 17.3, 10.6, 5.3 Hz, CH=CH₂), 6.30 (2 H, s, aryl H), 7.22 - 7.35 (5 H, m, aryl H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.0 (CH₃), 22.6 (CH₂), 27.4 (CH₂), 34.4 (ArCH₂CH(O)), 35.8 (CH(O)CH₂CH₂), 69.1 (OCH₂), 84.4 (CH(O)), 96.1 (aryl C-H), 131.6 (aryl C), 133.1 (CH=CH₂), 134.6 (aryl C), 159.6 (aryl C), 160.9 (aryl C); v_{max} (thin film/cm⁻¹) 925 (m), 980 (s), 1024 (s), 1114 (s), 1181 (m), 1423 (m), 1477 (s), 1578 (s), 1606 (s), 2859 (w), 2929 (m), 2954 (m); MS (APCI) *m/z* 341 (M+H⁺); HRMS C₂₁H₂₅O₂S (M+H⁺) Expected 341.1570, Found 341.1567.

Pd-catalysed Cross-Coupling

2-Butyl-4-(phenylsulfanyl)-2,3-dihydrobenzofuran-6-yl trifluoromethanesulfonate 5

Sodium *tert*-butoxide (187 mg, 1.95 mmol) was added to a stirred solution of *N*-phenylbis(trifluoromethanesulfonimide) (696 mg, 1.95 mmol) and **4a** (532 mg, 1.77 mmol) in THF (18 mL) at 0 °C. The mixture was stirred for 1 h at 0 °C, then warmed to room temperature and stirred for a further 1 h. The mixture was then quenched with H₂O (20 mL) and the aqueous layer extracted with EtOAc (3 × 30 mL). The combined organic extracts were washed with brine (30 mL), dried with MgSO₄, filtered and the solvent removed *in vacuo*. The crude product was purified by column chromatography on silica gel (10% Et₂O in hexanes) to give **5** (666 mg, 1.54 mmol, 87%) as a colourless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.94 (3 H, t, *J* 7.1 Hz, *CH*₃), 1.31 - 1.51 (4 H, m, *CH*₂), 1.62 - 1.74 (1 H, m, (CH(O)C*H*₂CH₂)), 1.76 - 1.89 (1 H, m, (CH(O)C*H*₂CH₂)), 2.73 (1 H, dd, *J* 16.1, 7.5 Hz, ArC*H*₂CH(O)), 3.17 (1 H, dd, *J* 16.1, 9.2 Hz, ArC*H*₂CH(O)), 4.83 - 4.93 (1 H, m, *CH*(O)), 6.39 (1 H, d, *J* 2.2 Hz, aryl H), 6.51 (1 H, d, *J* 2.2 Hz, aryl H), 7.35 - 7.43 (5 H, m, aryl H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.0 (*C*H₃), 22.5 (*C*H₂), 27.3 (*C*H₂), 34.3 (ArCH₂CH(O)), 35.8 (CH(O)CH₂CH₂), 85.2 (CH(O)), 101.3 (aryl *C*-H), 112.9 (aryl *C*-H), 127.1 (aryl *C*), 128.5 (aryl *C*-H), 129.6 (aryl *C*-H), 131.8 (aryl *C*), 132.5 (aryl *C*-H), 135.0 (aryl C), 149.6 (aryl *C*), 160.6 (aryl C); v_{max} (thin film/cm⁻¹) 983 (s), 1092 (m), 1140 (s), 1209 (vs, C-F stretch?),¹ 1420 (s), 1592 (m), 2861 (w), 2933 (w), 2957 (w); MS (ES⁺) *m/z* 433 (M+H⁺); HRMS C₁₉H₂₀F₃O₄S₂ (M+H⁺) Expected 433.0750, Found 433.0749.

General Procedure C – Pd-catalysed Suzuki coupling

Pd(PPh₃)₄ (11.6 mg, 0.01 mmol) and boronic acid (0.2 mmol) were added to a microwave vial with Teflon-lined septum pre-flushed with N₂. K_2CO_3 (2 M in H₂O, 1 mL) and **5** (43 mg, 0.1 mmol) in 1,4-dioxane (1 mL) were then added and the resulting mixture was heated to 135 °C and stirred for 5 h. The mixture was then cooled, diluted with H₂O (15 mL) and extracted with CH₂Cl₂ (3 × 15 mL). The combined organic extracts were dried with MgSO₄, filtered and the solvent removed *in vacuo*. The crude product was purified by column chromatography on silica gel.

2-Butyl-4-(phenylsulfanyl)-6-(p-tolyl)-2,3-dihydrobenzofuran 6a

As described in general procedure C, triflate **5** (44.1 mg, 0.1 mmol) and 4-methylphenylboronic acid (27 mg, 0.2 mmol), after purification by column chromatography (2% Et₂O in hexanes), gave **6a** (34.6 mg, 0.09 mmol, 90%) as a white solid; m.p 59.9-61.2 °C; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.95 (3 H, t, *J* 6.8 Hz, CH₃), 1.33 - 1.52 (4 H, m, CH₂), 1.61 - 1.72 (1 H, m, (CH(O)CH₂CH₂)), 1.78 - 1.89 (1 H, m, (CH(O)CH₂CH₂)), 2.39 (3 H, s, ArCH₃), 2.75 (1 H, dd, *J* 16.1, 7.5 Hz, ArCH₂CH(O)), 3.18 (1 H, dd, *J* 16.1, 9.0 Hz, ArCH₂CH(O)), 4.77 - 4.87 (1 H, m, CH(O)), 6.93 (1 H, d, *J* 1.5 Hz, aryl H), 7.03 (1 H, d, *J* 1.5 Hz, aryl H), 7.19 - 7.34 (7 H, m, aryl H), 7.38 - 7.43 (2 H, m, aryl H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.0 (CH₃), 21.1 (ArCH₃), 22.6 (CH₂), 27.4 (CH₂), 34.9 (ArCH₂CH(O)), 35.8 (CH(O)CH₂CH₂), 83.9 (CH(O)), 107.2 (aryl *C*-H), 122.3 (aryl *C*-H), 126.7 (aryl *C*-H), 126.8 (aryl *C*-H), 127.9 (aryl *C*),

129.2 (aryl *C*-H), 129.4 (aryl *C*-H), 130.0 (aryl *C*-H), 131.2 (aryl *C*), 135.0 (aryl *C*), 137.2 (aryl *C*), 137.7 (aryl *C*), 142.4 (aryl *C*), 160.5 (aryl *C*); v_{max} (thin film/cm⁻¹) 814 (vs, oop para-subst. arene), 950 (m), 1206 (m), 1468 (s), 1561 (s), 1578 (s), 2858 (m), 2929 (s), 2954 (s); MS (APCI) *m/z* 375 (M+H⁺); HRMS C₂₅H₂₇OS (M+H⁺) Expected 375.1777, Found 375.1775.

2-Butyl-4-(phenylsulfanyl)-6-(thien-2-yl)-2,3-dihydrobenzofuran 6b

As described in general procedure C, triflate **5** (42.8 mg, 0.1 mmol) and 2-thienylboronic acid (25.6 mg, 0.2 mmol), after purification by column chromatography (2% Et₂O in hexanes), gave **6b** (31.2 mg, 0.09 mmol, 87%) as a colourless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.93 (3 H, t, *J* 7.0 Hz, CH₃), 1.32 - 1.50 (4 H, m, CH₂), 1.60 - 1.70 (1 H, m, (CH(O)CH₂CH₂), 1.75 - 1.87 (1 H, m, (CH(O)CH₂CH₂), 2.71 (1 H, dd, *J* 16.3, 7.5 Hz, ArCH₂CH(O)), 3.14 (1 H, dd, *J* 16.3, 9.0 Hz, ArCH₂CH(O)), 4.81 (1 H, dtd, *J* 8.9, 7.3, 5.9 Hz, CH(O)), 6.96 (1 H, d, *J* 1.5 Hz, aryl H), 7.04 (1 H, dd, *J* 5.1, 3.6 Hz, aryl H), 7.06 (1 H, d, *J* 1.5 Hz, aryl H), 7.20 (1 H, dd, *J* 3.6, 1.1 Hz, aryl H), 7.22 - 7.34 (6 H, m, aryl H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.0 (CH₃), 22.6 (CH₂), 27.3 (CH₂), 34.9 (ArCH₂CH(O)), 35.8 (CH(O)CH₂CH₂), 84.0 (CH(O)), 106.1 (aryl C-H), 121.1 (aryl C-H), 123.2 (aryl C-H), 124.8 (aryl C-H), 126.8 (aryl C-H), 127.8 (aryl C-H), 128.4 (aryl C), 129.2 (aryl C-H), 130.1 (aryl C-H), 131.6 (aryl C), 134.7 (aryl C), 135.3 (aryl C), 143.8 (aryl C), 160.5 (aryl C); v_{max} (thin film/cm⁻¹) 932 (m), 1023 (m), 1224 (s), 1413 (m), 1476 (m), 1569 (s), 1603 (m), 2858 (w), 2930 (m), 2953 (m); MS (APCI) *m/z* 367 (M+H⁺); HRMS C₂₂H₂₃OS₂ (M+H⁺) Expected 367.1185, Found 367.1186.

3-(2-Butyl-4-(phenylsulfanyl)-2,3-dihydrobenzofuran-6-yl)pyridine 6c

As described in general procedure C, **5** (43 mg, 0.1 mmol) and 3-pyridylboronic acid (24.5 mg, 0.2 mmol), after purification by column chromatography (50% Et₂O in hexanes), gave **6c** (25.7 mg, 0.07 mmol, 71%) as a colourless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.93 (3 H, t, *J* 7.0 Hz, CH₃), 1.33 - 1.52 (4 H,

m, CH₂), 1.61 - 1.73 (1 H, m, (CH(O)CH₂CH₂), 1.77 - 1.90 (1 H, m, (CH(O)CH₂CH₂), 2.76 (1 H, dd, *J* 16.3, 7.5 Hz, ArCH₂CH(O)), 3.19 (1 H, dd, *J* 16.3, 9.0 Hz, ArCH₂CH(O)), 4.79 - 4.90 (1 H, m, CH(O)), 6.88 (1 H, d, *J* 1.5 Hz, aryl H), 6.94 (1 H, d, *J* 1.5 Hz, aryl H), 7.21 - 7.40 (6 H, m, aryl H), 7.76 (1 H, dt, *J* 8.0, 2.0 Hz, aryl H), 8.56 (1 H, d, *J* 3.0 Hz, aryl H), 8.73 (1 H, br. s., aryl H); δ_C (100 MHz, CDCl₃) 14.0 (CH₃), 22.5 (CH₂), 27.3 (CH₂), 34.8 (ArCH₂CH(O)), 35.8 (CH(O)CH₂CH₂), 84.1 (CH(O)), 106.9 (aryl *C*-H), 121.6 (aryl *C*-H), 123.5 (aryl *C*-H), 121.2 (aryl *C*-H), 128.6 (aryl *C*), 129.3 (aryl *C*-H), 130.7 (aryl *C*-H), 132.4 (aryl *C*), 134.2 (aryl *C*-H), 136.1 (aryl *C*), 138.9 (aryl *C*), 148.1 (aryl *C*-H), 148.5 (aryl *C*-H), 160.6 (aryl *C*); v_{max} (thin film/cm⁻¹) 946 (s), 1023 (m), 1218 (s), 1293 (w), 1399 (m), 1426 (s), 1463 (m), 1577 (s), 2858 (w), 2929 (m), 2954 (m); MS (ES⁺) *m/z* 362 (M+H⁺); HRMS C₂₃H₂₄ONS (M+H⁺) Expected 362.1573, Found 362.1566.

2-Butyl-6-(phenylethynyl)-4-(phenylsulfanyl)-2,3-dihydrobenzofuran 6d

Et₃N (014 mL, 1.0 mmol) was added to a microwave vial with Teflon-lined septum pre-flushed with N₂ and containing a stirred mixture of PdCl₂(PPh₃)₂ (7.0 mg, 0.01 mmol), phenylacetylene (20 mg, 0.2 mmol) and triflate 5 (43.8 mg, 0.1 mmol) in DMF (0.5 mL). The mixture was heated to 90 °C and stirred for 18 h. The mixture was then cooled to room temperature and diluted with H₂O. The aqueous layer was extracted with Et₂O (3×10 mL) and the combined organic extracts were washed with LiCl (10% in H₂O, 15 mL), dried with MgSO₄, filtered and the solvent removed in vacuo. The crude product was purified by column chromatography on silica gel (10% CHCl₃ in hexanes) to give 6d (36.2 mg, 0.09 mmol, 94%) as a pale yellow oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.93 (3 H, t, J 6.9 Hz, CH₃), 1.32 - 1.47 (4 H, m, CH₂), 1.61 - 1.69 (1 H, m, CH(O)CH₂CH₂), 1.76 - 1.83 (1 H, m, CH(O)CH₂CH₂), 2.73 (1 H, dd, J 16.5, 7.5 Hz, ArCH₂CH(O)), 3.16 (1 H, dd, J 16.4, 9.1 Hz, ArCH₂CH(O)), 4.76 - 4.84 (1 H, m, CH(O)), 6.83 (1 H, d, J 0.9 Hz, aryl H), 6.96 (1 H, d, J 0.9 Hz, aryl H), 7.24 - 7.39 (8 H, m, aryl H), 7.47 - 7.52 (2 H, m, aryl H); δ_C (125 MHz, CDCl₃) 14.0 (CH₃), 22.5 (CH₂), 27.3 (CH₂), 35.0 (ArCH₂CH(O)), 35.7 (CH(O)CH₂CH₂), 83.9 (CH(O)), 89.0 (ArC=CAr), 89.1 (ArC=CAr), 111.2 (aryl C-H), 123.1 (aryl C), 123.6 (aryl C), 126.5 (aryl C-H), 127.1 (aryl C-H), 128.2 (aryl C-H), 128.3 (aryl C-H), 129.3 (aryl C-H), 129.7 (aryl C), 130.6 (aryl C-H), 131.6 (aryl C-H), 131.7 (aryl C), 134.3 (aryl C), 159.8 (aryl C); v_{max} (thin film/cm⁻¹) 755 (vs), 987 (m), 1220 (s), 1410 (m), 1562 (s), 1600 (m), 2858 (w), 2929 (m), 2955 (m); MS (ES^+) m/z 385 $(M+H^{+})$; HRMS C₂₆H₂₅OS $(M+H^{+})$ Expected 385.1621, Found 385.1621.

Raney Ni Desulfurisation

General Procedure D

A solution of the corresponding sulfide (0.1 mmol) in EtOH (1 mL) was added dropwise to a suspension of Raney Nickel in EtOH (1 mL). The reaction was stirred at room temperature for 1 h and then filtered through Celite (Et₂O eluent). The solvent was then removed *in vacuo*, and the crude product was purified by column chromatography.

1-(2-Chlorohexyl)-2,4-dimethoxybenzene 7a

As described in General Procedure D, **2a** (40.1 mg, 0.11 mmol), Raney Nickel (700 mg of slurry), after column chromatography on silica gel (10% CHCl₃ in hexanes), gave **7a** (22.8 mg, 0.09 mmol, 81%) as a colourless oil; $\delta_{\rm H}$ (500 MHz, CDCl₃) 0.91 (3 H, t, *J* 7.2 Hz, CH₃), 1.19 – 1.46 (3 H, m, CH₂), 1.52 – 1.62 (1 H, m, CH₂), 1.63 – 1.72 (1 H, m, ArCH₂CH(Cl)CH₂), 1.73 – 1.82 (1 H, m, ArCH₂CH(Cl)CH₂), 2.93 (1 H, dd, *J* 13.7, 7.6 Hz, ArCH₂), 3.04 (1 H, dd, 13.7, 6.3 Hz, ArCH₂), 3.81 (3 H, s, OCH₃), 3.82 (3 H, s, OCH₃), 4.15 – 4.22 (1 H, m, CHCl), 6.42 – 6.47 (2 H, m, aryl H), 7.08 (1 H, d, *J* 7.8 Hz, aryl H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 14.0 (CH₃), 22.2 (CH₂), 28.6 (CH₂), 37.5 (ArCH₂CH(Cl)CH₂), 39.4 (ArCH₂), 55.2 (OCH₃), 55.3 (OCH₃), 63.4 (CHCl), 98.4 (aryl *C*-H), 103.7 (aryl *C*-H), 119.0 (aryl *C*), 131.6 (aryl *C*-H), 158.4 (aryl *C*), 159.8 (aryl *C*); v_{max} (thin film/cm⁻¹) 935 (w), 1036 (s), 1131 (m), 1155 (s), 1207 (s), 1287 (m), 1437 (w), 1464 (m), 1506 (s), 1587 (m), 1613 (m), 2836 (w), 2858 (w), 2928 (w), 2955 (w); MS (APCI) *m/z* 257 (M+H⁺); HRMS C₁₄H₂₂O₂Cl (M+H⁺) Expected 257.1303, Found 257.1299

2-Butyl-2,3-dihydrobenzofuran-6-ol 7b

As described by general procedure D, **4a** (53.8 mg, 0.18 mmol), Raney Nickel (700 mg of slurry), after column chromatography on silica gel (10% EtOAc in hexanes), gave **7b** (33.3 mg, 0.18 mmol, 97%) as a colourless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.94 (3 H, t, *J* 7.2 Hz, CH₃), 1.33 – 1.54 (4 H, m, CH₂), 1.61 – 1.73 (1 H, m, ArCH₂CH(O)CH₂), 1.76 – 1.91 (1 H, m, ArCH₂CH(O)CH₂), 2.78 (1 H, dd, *J* 15.1, 7.8 Hz, ArCH₂), 3.19 (1 H, dd, *J* 15.1, 8.8 Hz, ArCH₂), 4.74 – 4.84 (1 H, m, CH(O)), 4.91 (1

H, s, O*H*), 6.27 – 6.33 (2 H, m, aryl H), 6.94 – 7.00 (1 H, m, aryl H); δ_{C} (100 MHz, CDCl₃) 14.0 (*C*H₃), 22.6 (*C*H₂), 27.5 (*C*H₂), 34.7 (ArCH₂CH(O)), 35.7 (CH(O)CH₂CH₂), 84.6 (*C*H(O)), 97.5 (aryl *C*-H), 106.8 (aryl *C*-H) 119.1 (aryl *C*), 125.0 (aryl *C*-H), 155.9 (aryl *C*), 160.8 (aryl *C*); v_{max} (thin film/cm⁻¹) 964 (s), 1096 (s), 1136 (s), 1186 (m), 1214 (m), 1269 (w), 1352 (w), 1458 (s), 1497 (s), 1606 (m), 1622 (m), 2859 (w), 2930 (w), 2956 (w), 3388 (br, w, O-H stretch); MS (APCI) *m/z* 193 (M+H⁺); HRMS C₁₂H₁₇O₂ (M+H⁺) Expected 193.1223, Found 193.1215.

2-Butyl-6-(p-tolyl)-2,3-dihydrobenzofuran 7c

As described by general procedure D, **6a** (37.0 mg, 0.10 mmol), Raney Nickel (700 mg of slurry), after column chromatography on silica gel (10% CHCl₃ in hexanes), gave **7c** (23.5 mg, 0.09 mmol, 89%) as a colourless oil; $\delta_{\rm H}$ (500 MHz, CDCl₃) 0.97 (3 H, t, *J* 7.0 Hz, CH₂CH₃), 1.37 – 1.59 (4 H, m, CH₂), 1.66 – 1.78 (1 H, m, ArCH₂CH(O)CH₂), 1.83 – 1.95 (1 H, m, ArCH₂CH(O)CH₂), 2.41 (3 H, s, ArCH₃), 2.91 (1 H, dd, *J* 15.4, 7.8 Hz, ArCH₂), 3.31 (1 H, dd, *J* 15.4, 8.9 Hz, ArCH₂), 4.78 – 4.88 (1 H, m, CH(O)), 7.00 (1 H, s, aryl H), 7.06 (1 H, d, *J* 7.6 Hz, aryl H), 7.20 (1 H, d, *J* 7.6 Hz, aryl H), 7.24 (2 H, d, *J* 8.1 Hz, aryl H), 7.48 (2 H, d, *J* 8.1 Hz, aryl H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 13.8 (CH₂CH₃), 20.8 (ArCH₃), 22.4 (CH₂), 27.4 (CH₂), 35.0 (ArCH₂), 35.6 (ArCH₂CH(O)CH₂), 83.6 (CH(O)), 107.6 (aryl *C*-H), 118.8 (aryl *C*-H), 124.7 (aryl *C*-H), 125.6 (aryl C), 126.7 (aryl *C*-H), 129.1 (aryl *C*-H), 136.6 (aryl *C*), 138.2 (aryl *C*), 141.3 (aryl *C*), 160.0 (aryl *C*); v_{max} (thin film/cm⁻¹) 971 (s), 1110 (w), 1166 (w), 1204 (m), 1295 (m), 1378 (w), 1431 (m), 1483 (s), 1568 (w), 1588 (w), 1618 (w), 2858 (w), 2928 (w), 2954 (w); MS (APCI) *m*/*z* 267 (M+H⁺); HRMS C₁₉H₂₃O (M+H⁺) Expected 267.1743, Found 267.1740.

Ni-catalysed Kumada-Corriu coupling

General Procedure E

Ni(PPh₃)Cl₂ (6.5 mg, 0.01 mmol) was added to a microwave vial with Teflon-lined septum before evacuating and backfilling with Ar (3 cycles). Sulfide (0.1 mmol), benzene (1.5 mL) and Grignard reagent solution (0.3 mmol) were then added at room temperature and the mixture was heated to 80 °C and stirred for 24 h. The reaction mixture was then cooled to room temperature and quenched with aqueous saturated NH₄Cl (10 mL). The aqueous layer was then extracted with EtOAc (3×10 mL) and the combined organic extracts were dried with MgSO₄, filtered and the solvent removed *in vacuo*. The crude product was purified by column chromatography on silica gel.

As described in general procedure E, **6b** (33.0 mg, 0.09 mmol), benzylmagnesium chloride (1.82 M in THF, 0.15 mL, 0.3 mmol) and Ni(PPh₃)₂Cl₂ (6.5 mg, 0.01 mmol), after column chromatography on silica gel (15% toluene in hexanes), gave **8a** (27.4 mg, 0.08 mmol, 88%) as a white solid; m.p. 35.3-36.8 °C; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.93 (3 H, t, *J* 7.3 Hz, *CH*₃), 1.32 - 1.52 (4 H, m, *CH*₂), 1.59 - 1.72 (1 H, m, CH(O)*CH*₂CH₂), 1.75 - 1.88 (1 H, m, CH(O)*CH*₂CH₂), 2.66 (1 H, dd, *J* 15.7, 7.7 Hz, ArC*H*₂CH(O)), 3.10 (1 H, dd, *J* 15.7, 8.9 Hz, ArC*H*₂CH(O)), 3.94 (2 H, s, ArC*H*₂Ar), 4.78 (1 H, dtd, *J* 8.9, 7.7, 6.0 Hz, *CH*(O)), 6.93 (1 H, d, *J* 1.5 Hz, aryl H), 6.97 (1 H, d, *J* 1.5 Hz, aryl H), 7.05 (1 H, dd, *J* 5.1, 3.6 Hz, aryl H), 7.17 - 7.26 (5 H, m, aryl H), 7.28 - 7.33 (2 H, m, aryl H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.0 (*C*H₃), 22.6 (*C*H₂), 27.5 (*C*H₂), 34.2 (ArCH₂CH(O)), 35.9 (CH(O)*C*H₂CH₂), 39.7 (ArCH₂Ar), 83.8 (*C*H(O)), 105.0 (aryl *C*-H), 119.3 (aryl *C*-H), 128.7 (aryl *C*-H), 134.6 (aryl *C*), 137.7 (aryl *C*), 139.6 (aryl *C*), 144.7 (aryl *C*), 160.3 (aryl *C*); v_{max} (thin film/cm⁻¹) 841 (m), 971 (w), 1030 (w), 1222 (s), 1434 (s), 1590 (s), 1614 (w), 2858 (w), 2929 (m), 2954 (m), 3026 (w), 3061 (w); MS (APCI) *m/z* 349 (M+H⁺); HRMS C₂₃H₂₅OS (M+H⁺) Expected 349.1621, Found 349.1605.

2-Butyl-4-cyclopropyl-6-(thiophen-2-yl)-2,3-dihydrobenzofuran 8b

As described in general procedure E, **6b** (33.0 mg, 0.09 mmol), cyclopropylmagnesium bromide (0.5 M in THF, 0.6 mL, 0.3 mmol) and Ni(PPh₃)₂Cl₂ (6.5 mg, 0.01 mmol), after column chromatography on silica gel (10% toluene in hexanes) gave **8b** (19.2 mg, 0.07 mmol, 72%) as a colourless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.73 - 0.79 (2 H, m, CH(CH₂)₂), 0.92 - 1.00 (5 H, m, CH₃ + CH(CH₂)₂), 1.36 - 1.55 (4 H, m, CH₂), 1.66 - 1.96 (3 H, m, CH(O)CH₂CH₂ + CH(CH₂)₂), 2.90 (1 H, dd, *J* 15.6, 7.5 Hz, ArCH₂CH(O)), 3.35 (1 H, dd, *J* 15.6, 8.8 Hz, ArCH₂CH(O)), 4.84 (1 H, dtd, *J* 8.8, 7.5, 6.1 Hz, CH(O)), 6.63 (1 H, d, *J* 1.5 Hz, aryl H), 6.85 (1 H, d, *J* 1.5 Hz, aryl H), 7.02 - 7.07 (1 H, m, aryl H), 7.20 - 7.24 (2 H, m, aryl H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 7.80 (CH(CH₂)₂), 13.1 (CH(CH₂)₂), 14.0 (CH₃), 22.6 (CH₂), 27.6 (CH₂), 34.2 ((ArCH₂CH(O))), 36.0 (CH(O)CH₂CH₂), 83.8 (CH(O)), 104.3 (aryl C-

H), 113.9 (aryl *C*-H), 122.8 (aryl *C*-H), 124.2 (aryl *C*-H), 125.9 (aryl *C*), 127.8 (aryl *C*-H), 134.6 (aryl *C*), 140.6 (aryl *C*), 145.0 (aryl *C*), 159.7 (aryl *C*); v_{max} (thin film/cm⁻¹) 823 (s), 905 (m), 992 (m), 1023 (s), 1223 (s), 1425 (s), 1432 (s), 1483 (w), 1589 (s), 1613 (m), 2858 (m), 2930 (s), 2953 (s), 3003 (w), 3081 (w); MS (APCI) *m*/*z* 299 (M+H⁺); HRMS C₁₉H₂₃OS (M+H⁺) Expected 299.1464, Found 299.1451.

2-Butyl-4-methyl-6-(p-tolyl)-2,3-dihydrobenzofuran 8c

As described in general procedure E, **6b** (37.5 mg, 0.1 mmol), methylmagnesium chloride (3 M in THF, 0.1 mL, 0.3 mmol) and Ni(PPh₃)₂Cl₂ (6.5 mg, 0.01 mmol), after column chromatography on silica gel (10% toluene in hexanes), gave **8c** (20.9 mg, 0.08 mmol, 75%) as a white solid; m.p. 44.1-45.2 °C; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.96 (3 H, t, *J* 7.0 Hz, C*H*₃), 1.36 - 1.59 (4 H, m, C*H*₂), 1.66 - 1.77 (1 H, m, CH(O)C*H*₂CH₂), 1.83 - 1.95 (1 H, m, CH(O)C*H*₂CH₂), 2.29 (3 H, s, ArC*H*₃), 2.40 (3 H, s, ArC*H*₃), 2.80 (1 H, dd, *J* 15.4, 7.9 Hz, ArC*H*₂CH(O)), 3.23 (1 H, dd, *J* 15.4, 8.9 Hz, ArC*H*₂CH(O)), 4.79 - 4.89 (1 H, m, C*H*(O)), 6.83 (1 H, s, aryl H), 6.89 (1 H, s, aryl H), 7.20 - 7.25 (2 H, m, aryl H), 7.44 - 7.48 (2 H, m, aryl H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.0 (CH₃), 19.1 (ArCH₃), 21.1 (ArCH₃), 22.6 (CH₂), 27.6 (CH₂), 34.3 (ArCH₂CH(O)), 36.0 (CH(O)CH₂CH₂), 83.6 (CH(O)), 105.2 (aryl *C*-H), 120.2 (aryl *C*-H), 124.9 (aryl *C*), 126.9 (aryl *C*-H), 129.3 (aryl *C*-H), 134.7 (aryl *C*), 136.8 (aryl *C*), 138.6 (aryl *C*), 141.5 (aryl *C*), 159.9 (aryl *C*); v_{max} (thin film/cm⁻¹) 814 (vs), 975 (s), 1204 (m), 1479 (s), 1598 (s), 2858 (m), 2929 (s), 2954 (s), 3024 (w); MS (APCI) *m/z* 281 (M+H⁺); HRMS C₂₀H₂₅O (M+H⁺) Expected 281.1900, Found 281.1893.

2-Butyl-4-(thien-2-yl)-6-(p-tolyl)-2,3-dihydrobenzofuran 8d

As described in general procedure E, **6a** (37.2 mg, 0.1 mmol), 2-thienylmagnesium bromide (1 M in THF, 0.3 mL, 0.3 mmol) and Ni(PPh₃)₂Cl₂ (6.5 mg, 0.01 mmol), after column chromatography on silica gel (20% CHCl₃ in hexanes), gave **8d** (24.3 mg, 0.07 mmol, 74%) as a colourless oil; $\delta_{\rm H}$ (500 MHz, CDCl₃) 0.97 (3 H, t, *J* 6.9 Hz, CH₃), 1.37 - 1.59 (4 H, m, CH₂), 1.70 - 1.80 (1 H, m,

CH(O)C H_2 CH₂), 1.84 - 1.96 (1 H, m, CH(O)C H_2 CH₂), 2.41 (3 H, s, ArC H_3), 3.09 (1 H, dd, *J* 15.6, 7.6 Hz, ArC H_2 CH(O)), 3.53 (1 H, dd, *J* 15.6, 9.0 Hz, ArC H_2 CH(O)), 4.84 - 4.92 (1 H, m, CH(O)), 6.95 (1 H, d, *J* 1.3 Hz, aryl H), 7.13 (1 H, dd, *J* 5.0, 3.5 Hz, aryl H), 7.24 - 7.28 (2 H, m, aryl H), 7.30 - 7.34 (2 H, m, aryl H), 7.36 (1 H, dd, *J* 5.2, 1.1 Hz, aryl H), 7.51 (2 H, d, *J* 7.9 Hz, aryl H); δ_C (125 MHz, CDCl₃) 14.0 (CH₃), 21.1 (ArCH₃), 22.6 (CH₂), 27.6 (CH₂), 36.0 (CH(O)CH₂CH₂), 36.2 (ArCH₂CH(O)), 83.7 (CH(O)), 107.0 (aryl C-H), 118.3 (aryl C-H), 122.7 (aryl C), 124.9 (aryl C-H), 125.1 (aryl C-H), 127.0 (aryl C-H), 127.6 (aryl C-H), 129.4 (aryl C-H), 131.5 (aryl C), 137.2 (aryl C), 138.2 (aryl C), 142.1 (aryl C), 143.0 (aryl C), 160.9 (aryl C); v_{max} (thin film/cm⁻¹) 977 (s), 1045 (w), 1102 (w), 1171 (w), 1201 (s), 1218 (w), 1254 (m), 1297 (m), 1363 (w), 1400 (m), 1420 (s), 1436 (m), 1473 (m), 1516 (w), 1584 (s), 1611 (m), 2858 (w), 2928 (m), 2953 (m), 3023 (w); MS (APCI) *m*/z 349 (M+H⁺); HRMS C₂₃H₂₅OS (M+H⁺) Expected 349.1621, Found 349.1606.

2-Butyl-4-(4-methoxyphenyl)-6-(p-tolyl)-2,3-dihydrobenzofuran 8e

As described in general procedure E, **6a** (35.5 mg, 0.1 mmol), 4-methoxyphenylmagnesium bromide (0.5 M in THF, 0.6 mL, 0.3 mmol) and Ni(PPh₃)₂Cl₂ (6.5 mg, 0.01 mmol), after column chromatography on silica gel (5% Et₂O in hexanes), gave **8e** (22.6 mg, 0.06 mmol, 64%) as a white solid; m.p. 69.8-70.7 °C; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.95 (3 H, t, *J* 7.2 Hz, *CH*₃), 1.34 - 1.57 (4 H, m, *CH*₂), 1.66 - 1.77 (1 H, m, CH(O)*CH*₂CH₂), 1.85 - 1.96 (1 H, m, CH(O)*CH*₂CH₂), 2.41 (3 H, s, ArC*H*₃), 2.98 (1 H, dd, *J* 15.7, 8.0 Hz, ArC*H*₂CH(O)), 3.38 (1 H, dd, *J* 15.7, 8.7 Hz, ArC*H*₂CH(O)), 3.88 (3 H, s, OC*H*₃), 4.78 - 4.88 (1 H, m, *CH*(O)), 6.95 - 7.03 (3 H, m, aryl H), 7.12 (1 H, d, *J* 1.5 Hz, aryl H), 7.25 (2 H, d, *J* 8.0 Hz, aryl H), 7.43 - 7.49 (2 H, m, aryl H), 7.52 (2 H, d, *J* 8.0 Hz, aryl H), 7.43 - 7.49 (2 H, m, aryl H), 7.52 (2 H, d, *J* 8.0 Hz, aryl H), 106.5 (aryl *C*-H), 113.8 (aryl *C*-H), 119.4 (aryl *C*-H), 123.5 (aryl *C*), 127.0 (aryl *C*-H), 129.2 (aryl *C*-H), 129.4 (aryl *C*-H), 133.0 (aryl *C*), 137.0 (aryl *C*), 138.4 (aryl *C*), 138.5 (aryl *C*), 141.9 (aryl *C*), 158.8 (aryl *C*), 160.5 (aryl *C*); v_{max} (thin film/cm⁻¹) 814 (vs), 938 (m), 1034 (m), 1108 (m), 1176 (m), 1246 (s), 1290 (m), 1466 (m), 1513 (s), 1609 (m), 2835 (w), 2858 (w), 2929 (w), 2935 (w), 2996 (w), 3029 (w); MS (APCI) *m/z* 373 (M+H⁺); HRMS C₂₆H₂₉O₂ (M+H⁺) Expected 373.2162, Found 373.2144.

Spectra

2013-10-27-djp-10.011.001.1r.esp

S28

20160219-1426-B400_B.11-47.011.001.1r.esp

88 80 72 Chemical Shift (ppm) 160 112 104 96 64 56 152 144 136 128 120 48 40 32 24 16 0 די 8

 $2016210.1549.B400_B.11.18.011.00.1tresp$ 100 MHz, CDCl_3 $= \int_{C} \int_{C$

20151103-1704-B400_B.11-29.020.001.1r.esp

20160127-1359-B400_B.11-14.010.001.1r.esp

S37

400 MHz, CDCl₃

20160128-1732-B500_B.14-27.010.001.1r.esp

500 MHz, CDCl₃

4e

160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 Chemical Shift (ppm)

20151110-1126-B400_B.11-12.010.001.1r.esp

S41

20151103-1704-B400_B.11-29.031.001.1r.esp

100 MHz, CDCl₃ N_

20151109-1156-B500_B.14-7.010.001.1r.esp

20151109-1156-B500_B.14-7.011.001.1r.esp

20151209-2032-B400_B.11-4.011.001.1r.esp

88 80 72 Chemical Shift (ppm)

40 32

152 144 136

S49

2015-11-25-djp-44.011.001.1r.esp

20151202-1602-B500_B.11-30.011.001.1r.esp

