Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

> Studies towards the synthesis of tedanolide C. Construction of the C13-epi C1–C15 fragment Joana Zambrana, Pedro Romea, and Fèlix Urpí

Studies towards the synthesis of tedanolide C. Construction of the C13-*epi* C1–C15 fragment

Joana Zambrana, Pedro Romea, and Fèlix Urpí

Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, and Institut de Biomedicina (IBUB) Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain

1.	General Experimental Methods	S2
2.	Synthesis of the <i>northern</i> fragment	S2
3.	Synthesis of the <i>southern</i> fragment	S8
4.	Coupling of the northern and the southern fragment	S14
5.	¹ H and ¹³ C NMR spectra of new compounds	S16

1. General Experimental Methods

Unless otherwise noted, reactions were conducted in oven-dried glassware under inert atmosphere of N2 with anhydrous solvents. The solvents and reagents were dried and purified when necessary according to standard procedures. Commercially available reagents were used as received. Analytical thin-layer chromatography (TLC) was carried out on Merck silica gel 60 F₂₅₄ plates and analyzed by UV (254 nm) and stained with phosphomolybdic acid and p-anisaldehyde; R_f values are approximate. Specific rotations ($[\alpha]_D$) were determined at 20 °C on a Perkin-Elmer 241 MC polarimeter. **IR** spectra (Attenuated Total Reflectance, ATR) were recorded on a Nicolet 6700 FT-IR Thermo Scientific spectrometer and only the more representative frequencies (v) are reported in cm⁻¹. ¹H NMR (400 MHz) and ¹³C NMR (100.6 MHz) spectra were recorded on a Varian Mercury 400. ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were recorded on a Bruker DMX 500. Chemical shifts (δ) are quoted in ppm and referenced to internal TMS (δ 0.00 for ¹H NMR) or CDCl₃ (δ 77.0 for ¹³C NMR); coupling constants (/) are quoted in Hz; data are reported as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet (and their corresponding combinations); where necessary, 2D techniques (NOESY, COSY, HSQC) were also used to assist on structure elucidation. High resolution mass spectra (HRMS) were obtained with an Agilent 1100 spectrometer by the Unitat d'Espectrometria de Masses (CCiTUB), Universitat de Barcelona. Column chromatographies were carried under low pressure (flash) conditions and performed on SDS silica gel 60 (35-70 µm). HPLC analyses were carried out with a silica Tracer Spherisorb S3W (N4184) column using isocratic conditions (0.9 mL ·min⁻¹) at room temperature.

2. Synthesis of the northern fragment

(S)-3-Benzyloxy-2,N-dimethyl-N-methoxypropanamide (4).

Neat TMSOTf (0.20 mL, 1.1 mmol) was added dropwise to a solution of methyl (*S*)-3-hydroxy-2methylpropanoate (1.87 g, 15.8 mmol) and benzyl 2,2,2-trichloroacetimidate (3.25 mL, 17.4 mmol) in 2:1 cyclohexane/CH₂Cl₂ (90 mL) at room temperature and the resulting milky suspension was stirred for 15 h at room temperature. It was filtered through a cotton plug eluting with hexane (200 mL) and the organic solution was washed with sat NaHCO₃ (30 mL) and brine (30 mL), dried (MgSO₄), and concentrated. The residue was purified by column chromatography (85:15 hexanes/EtOAc) to afford 3.01 g (14.5 mmol, 91% yield) of methyl (*S*)-3-benzyloxy-2-methylpropanoate as a colourless oil. R_f (85:15 hexanes/EtOAc) 0.30. $[\alpha]_{D}$ +10.6 (c 1.2, CHCl₃) [lit.¹ $[\alpha]_{D}$ +12.1 (c 10, CHCl₃)]. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (5H, br s, Ar<u>H</u>), 4.52 (2H, s, PhC<u>H</u>₂O), 3.69 (3H, s, OC<u>H</u>₃), 3.67 (1H, dd, *J* = 9.1, 7.4 Hz, BnOC<u>H</u>_xH_y), 3.49 (1H, dd, *J* = 9.1, 6.0 Hz, BnOCH_xH_y), 2.90–2.70 (1H, m, C<u>H</u>CH₃), 1.18 (3H, d, *J* = 7.0 Hz, C<u>H</u>CH₃).

A 2 M solution of *i*-PrMgCl in Et₂O (16 mL, 32 mmol) was slowly added for 30 min to a mixture of (*S*)-3benzyloxy-2-methylpropanoate (2.11 g, 10.1 mmol) and MeONH(Me)·HCl (1.60 g, 16 mmol)² in THF (17 mL) at –15 °C and the reacting mixture was stirred for 30 min at –15 °C. Then, it was partitioned with sat NH₄Cl (20 mL) and Et₂O (20 mL). The aqueous layer was extracted with Et₂O (2 × 20 mL) and the combined organic extracts were washed with brine (20 mL), dried (MgSO₄), and concentrated. The residue was filtered through a short pad of silica (Et₂O) to afford 2.18 g (9.2 mmol, 90% yield) of (*S*)-3benzyloxy-2,*N*-dimethyl-*N*-methoxypropanamide (**4**) as a yellowish oil. *R*_f (97:3 CH₂Cl₂/MeOH) 0.60. [α]_D +4.8 (c 1.61, CHCl₃) [lit.¹ [α]_D +5.0 (c 3.9, CHCl₃)]. **IR** (ATR) v 3031, 2937, 2862, 1662, 1454, 1387, 1102. ¹**H NMR** (400 MHz, CDCl₃) δ 7.31 (5H, br s, Ar<u>H</u>), 4.55 (1H, d, *J* = 12.2 Hz, PhC<u>H</u>_xH_y), 4.48 (1H, d, *J* = 12.2 Hz, PhCH_xH_y), 3.72 (1H, dd, *J* = 9.2, 8.8 Hz, BnOC<u>H</u>_xH_y), 3.69 (3H, s, OC<u>H</u>₃), 3.43 (1H, dd, *J* = 9.2, 6.0 Hz, BnOCH_xH_y), 3.32–3.24 (1H, m, C<u>H</u>CH₃), 3.21 (3H, s, NC<u>H</u>₃), 1.11 (3H, d, *J* = 6.8 Hz, CHC<u>H</u>₃). ¹³C **NMR** (100.6 MHz, CDCl₃) δ 175.9, 138.4, 128.3, 127.5, 127.4, 73.2, 72.6, 61.5, 35.8, 32.1, 14.2.

(S)-1-Benzyloxy-2,4-dimethyl-3-pentanone (2).

A 0.7 M solution of *i*-PrLi in pentane (20.5 mL, 14.4 mmol) was slowly added to a solution of **4** (1.70 g, 7.2 mmol) in THF (20 mL) at 0 °C and the reacting mixture was stirred for 1 h at 0 °C. It was quenched with sat NH₄Cl (20 mL) and the aqueous layer was extracted with Et₂O (3 × 50 mL). The combined organic extracts were washed with brine (20 mL), dried (MgSO₄), and concentrated. Purification of the resulting oil by column chromatography (90:10 hexanes/EtOAc) afforded 520 mg (2.4 mmol, 33% yield) of (*S*)-1-benzyloxy-2,4-dimethyl-3-pentanone (**2**) as a colourless oil. *R*_f (90:10 hexanes/EtOAc) 0.45. [α]_D +28.2 (c 1.20, CHCl₃). **IR** (ATR) v 2970, 2933, 2873, 1713, 1454, 1363, 1101, 1027. ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.25 (5H, m, Ar<u>H</u>), 4.49 (1H, d, *J* = 12.0 Hz, PhCH₄Hy), 4.45 (1H, d, *J* = 12.0 Hz, PhCH_xHy), 3.63 (1H, dd, *J* = 8.9, 8.2 Hz, BnOCH_xHy), 3.43 (1H, dd, *J* = 8.9, 5.6 Hz, BnOCH_xHy), 3.12–3.04 (1H, m, C<u>H</u>CH₃), 2.81–2.70 (1H, m, C<u>H</u>(CH₃), 1.09 (3H, d, *J* = 6.9 Hz, BnOCH₂CHC<u>H</u>₃), 1.09 (3H, d, *J* = 7.0 Hz, CHC<u>H</u>₃). ¹³C NMR (100.6 MHz, CDCl₃) δ 217.0 (C), 138.2 (C), 128.3 (CH), 127.5 (2 × CH), 73.2 (CH₂), 72.7 (CH₂), 44.4 (CH), 40.5 (CH), 18.1 (CH₃), 17.9 (CH₃), 14.0 (CH₃).

¹ I. Paterson, R. D. Norcross, R. A. Ward, P. Romea and M. A. Lister, J. Am. Chem. Soc., 1994, 116, 11287.

² This material was kept under vacuum for one day before using.

(25,55)-1-Benzyloxy-7-tert-butyldimethylsilyloxy-5-hydroxy-2,4,4-trimethyl-3-heptanone (5).

Neat TiCl₄ (0.33 mL, 3.0 mmol) was carefully added to a solution of ketone 2 (661 mg, 3.0 mmol) in CH₂Cl₂ (12 mL) at -78 °C. The orange solution was stirred for 3 min and treated with DIPEA (0.58 mL, 3.3 mmol) and the resulting dark red solution was stirred for 30 min at -78 °C. Then, TiCl₄ (0.33 mL, 3.0 mmol) was dropwise added and, 10 min later, a solution of 3-tert-butyldimethylsilyloxypropanal (675 mg, 3.6 mmol) in CH₂Cl₂ (1.5 & 1.5 mL) was added via cannula. The reaction mixture was stirred for 30 min at -78 °C and was carefully quenched with sat NH₄Cl (15 mL). It was diluted with Et₂O (60 mL) and the organic layer was washed with water (100 mL), sat NaHCO₃ (100 mL) and brine (100 mL). The aqueous layers were extracted with Et₂O (2×100 mL) and the combined organic extracts were dried (MgSO₄), filtered, and concentrated. The residue was purified by column chromatography (70:30 hexanes/EtOAc) to afford 1.030 g (2.52 mmol, 84% yield) of (2S,5S)-1-benzyloxy-7-tertbutyldimethylsilyloxy-5-hydroxy-2,4,4-trimethyl-3-heptanone (5) as a colourless oil. R_f (70:30) hexanes/EtOAc) 0.70. HPLC (97:3 hexanes/EtOAc) t_R 7.5 min. $[\alpha]_D$ -20.4 (c 1.00, CHCl₃). IR (ATR) v 3469, 2954, 2928, 2856, 1708, 1469, 1251, 1082. ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.23 (5H, m, ArH), 4.48 (1H, d, J = 11.9 Hz, PhCH_xH_y), 4.43 (1H, d, J = 11.9 Hz, PhCH_xH_y), 4.05 (1H, ddd, J = 10.5, 4.2, 1.7 Hz, C<u>H</u>OH), 3.75–3.69 (3H, m, BnOC<u>H</u>_xH_v & SiOC<u>H</u>₂), 3.51 (1H, dd, J = 4.2, 1.1 Hz, O<u>H</u>), 3.50–3.39 (1H, m, BnOCH₂C<u>H</u>), 3.36 (1H, dd, J = 8.3, 4.6 Hz, BnOCH_x<u>H</u>_y), 1.68–1.57 (1H, m, SiOCH₂C<u>H</u>_xH_y), 1.52–1.40 (1H, m, SiOCH₂CH_xH_y), 1.12 (3H, s, CCH₃), 1.09 (3H, s, CCH₃), 1.00 (3H, d, J = 6.8 Hz, CHCH₃), 0.91 (9H, s, SiC(CH₃)₃), 0.06 (3H, s, SiCH₃), 0.06 (3H, s, SiCH₃). ¹³C NMR (100.6 MHz, CDCl₃) δ 218.1 (C), 137.3 (C), 128.4 (CH), 127.8 (CH), 127.8 (CH), 73.7 (CH₂), 73.5 (CH₂), 72.7 (CH), 61.1 (CH₂), 53.3 (C), 40.3 (CH), 33.4 (CH₂), 25.9 (CH₃), 21.0 (CH₃), 18.3 (C), 17.4 (CH₃), 15.5 (CH₃), -5.4 (CH₃), -5.4 (CH₃). HRMS (+ESI) *m*/*z* calcd. for C₂₃H₄₁O₄Si [M+H]⁺: 409.2769, found: 409.2766.

(2*S*,5*S*)-1-Benzyloxy-5,7-di-*tert*-butyldimethylsilyloxy-2,4,4-trimethyl-3-heptanone (8).

A solution of aldol **5** (392 mg, 0.96 mmol), TBSOTF (0.45 mL, 2.0 mmol), and 2,6-lutidine (0.57 mL, 4.8 mmol) in CH₂Cl₂ (12 mL) was stirred at 0 °C for 2 h. The reaction was quenched by addition of sat NH₄Cl (15 mL) and stirred vigorously for 5 min. The resulting mixture was partitioned with CH₂Cl₂ (50 mL) and brine (50 mL). The aqueous layer was further extracted with CH₂Cl₂ (50 mL) and the combined organic extracts were dried (MgSO₄), filtered, and concentrated. The resultant oil was purifed by column chromatography (90:10 hexanes/EtOAc) to afford 456 mg (0.87 mmol, 89% yield) of (2*S*,5*S*)-1-benzyloxy-5,7-di-*tert*-butyldimethylsilyloxy-2,4,4-trimethyl-3-heptanone (**8**) as a colourless oil. **R**_f (90:10 hexanes/EtOAc) 0.60. [α]_D +2.4 (c 1.20, CHCl₃). **IR** (ATR) v 2954, 2928, 2855,

1701, 1471, 1360, 1252, 1093. ¹**H** NMR (400 MHz, CDCl₃) δ 7.35–7.26 (5H, m, Ar<u>H</u>), 4.48 (1H, d, *J* = 12.0 Hz, PhCH_xH_y), 4.06 (1H, dd, *J* = 7.9, 2.7 Hz, SiOC<u>H</u>), 3.70–3.55 (3H, m, BnOC<u>H</u>_xH_y & SiOC<u>H</u>₂), 3.40–3.30 (2H, m, BnOCH_xH_yC<u>H</u>), 1.61–1.45 (2H, m, SiOCHC<u>H</u>₂), 1.13 (3H, s, CC<u>H</u>₃), 1.10 (3H, s, CC<u>H</u>₃), 1.04 (3H, d, *J* = 6.6 Hz, CHC<u>H</u>₃), 0.89 (9H, s, SiC(C<u>H</u>₃)₃), 0.88 (9H, s, SiC(C<u>H</u>₃)₃), 0.11 (3H, s, SiC<u>H</u>₃), 0.06 (3H, s, SiC<u>H</u>₃), 0.02 (6H, s, 2 × SiC<u>H</u>₃). ¹³C NMR (100.6 MHz, CDCl₃) δ 217.2 (C), 138.3 (C), 128.3 (CH), 127.5 (CH), 127.5 (CH), 73.3 (CH₂), 73.3 (CH₂), 72.6 (CH), 60.4 (CH₂), 53.9 (C), 41.4 (CH), 37.5 (CH₂), 26.1 (CH₃), 26.0 (CH₃), 22.6 (CH₃), 19.1 (CH₃), 18.4 (C), 18.3 (C), 15.4 (CH₃), -3.7 (CH₃), -4.0 (CH₃), -5.3 (CH₃), -5.3 (CH₃). HRMS (+ESI) *m/z* calcd. for C₂₉H₅₅O₄Si₂ [M+H]+: 523.3633, found: 523.3632.

(25,55)-5,7-Di-tert-butyldimethylsilyloxy-1-hydroxy-2,4,4-trimethyl-3-heptanone (9).

A mixture of protected aldol adduct **8** (357 mg, 0.68 mmol) and Pd(OH)₂/C (235 mg, 50 mol%) in THF (20 mL) was stirred at room temperature under a H₂ atmosphere (balloon) for 50 min. The reaction mixture was filtered through a pad of Celite® and eluted with CH₂Cl₂. The solvent was evaporated and the resulting oil was purified by column chromatography (90:10 hexanes/EtOAc) to afford 259 mg (0.6 mmol, 88% yield) of (2*S*,*SS*)-5,7-di-*tert*-butyldimethylsilyloxy-1-hydroxy-2,4,4-trimethyl-3-heptanone (**9**) as a colourless oil. *R_f* (90:10 hexanes/EtOAc) 0.20. [α]_D –8.3 (*c* 1.85, CHCl₃). **IR** (ATR) v 3446, 2957, 2928, 2900, 2858, 1696, 1471, 1387, 1253, 1079. ¹**H** NMR (400 MHz, CDCl₃) δ 4.02 (1H, dd, *J* = 7.8, 2.5 Hz, SiOC<u>H</u>), 3.79–3.56 (4H, m, HOC<u>H</u>₂ & SiOC<u>H</u>₂), 3.26 (1H, qd, *J* = 7.0, 4.3 Hz, C<u>H</u>CH₃), 2.29 (1H, t, *J* = 5.7 Hz, O<u>H</u>), 1.70–1.56 (1H, m, SiOCH₂C<u>H</u>_xH_y), 1.56–1.43 (1H, m, SiOCH₂C<u>H</u>_xH_y), 1.16 (3H, s CC<u>H</u>₃), 1.13 (3H, s CC<u>H</u>₃), 1.09 (3H, d, *J* = 7.0 Hz, CHC<u>H</u>₃), 0.90 (9H, s, SiC(C<u>H</u>₃)₃), 0.89 (9H, s, SiC(C<u>H</u>₃)₃), 0.12 (3H, s, SiC<u>H</u>₃), 0.08 (3H, s, SiC<u>H</u>₃), 0.04 (3H, s, SiC<u>H</u>₃), 0.03 (3H, s, SiC<u>H</u>₃). ¹³C NMR (100.6 MHz, CDCl₃) δ 219.8 (C), 73.6 (CH), 65.3 (CH₂), 60.2 (CH₂), 53.8 (C), 43.1 (CH), 37.5 (CH₂), 26.1 (CH₃), 25.9 (CH₃), 22.6 (CH₃), 19.8 (CH₃), 18.4 (C), 18.3 (C) 14.8 (CH₃), -3.7 (CH₃), -4.0 (CH₃), -5.3 (CH₃), -5.3 (CH₃). **HRMS** (+ESI) *m/z* calcd for C₂₂H₄₉O₄Si₂ [M+H]⁺: 433.3164, found: 433.3155.

(2S,3R,5S)-5,7-Di-tert-butyldimethylsilyloxy-2,4,4-trimethyl-1,3-heptandiol (10).

A mixture of (Me₄N)HB(OAc)₃ (1.79 g, 6.8 mmol) in 1:1 AcOH/CH₃CN (6 mL) was stirred at room temperature until it became a clear solution (*ca* 15 min). It was cooled at 0 °C and a solution of hydroxy ketone **9** (255 mg, 0.6 mmol) in CH₃CN (3 mL) was added dropwise. The resultant mixture was stirred for 10 min at 0 °C, 7 h at room temperature, and cooled again at 0 °C. The reaction was then quenched with a 1 M solution of Rochelle salt (2.5 mL), stirred for 1 h at room temperature and carefully partitioned with EtOAc (15 mL) and sat NaHCO₃ (10 mL). The aqueous layer was extracted

with EtOAc (2 × 35 mL) and the combined organic extracts were washed with NaHCO₃ (35 mL), brine (35 mL), dried (MgSO₄), and concentrated . The resulting oil was purified by column chromatography (from 9:1 to 7:3 hexanes/EtOAc) to afford 237 mg (0.55 mmol, 93% yield) of a 92:8 diastereomeric mixture of (2*S*,3*R*,5*S*)-5,7-di-*tert*-butyldimethylsilyloxy-2,4,4-trimethyl-1,3-heptandiol (**10**) as a colourless oil. R_f (70:30 hexanes/EtOAc) 0.45. [α]_D +1.4 (*c* 1.35, CHCl₃). **IR** (ATR) v 3367, 2954, 2928, 2883, 2856, 1471, 1388, 1253, 1080. ¹H NMR (400 MHz, CDCl₃) δ 3.79–3.62 (5H, m, 5 × CHO), 3.59 (1H, dd, *J* = 10.3, 5.2 Hz, CH_xH_yOH), 2.05–1.95 (1H, m, SiOCH₂CH_xH_y), 1.94–1.85 (1H, m, CHCH₂OH), 1.54 (1H, ddd, *J* = 14.5, 10.0, 4.8 Hz, SiOCH₂CH_xH_y), 1.05 (3H, d, *J* = 6.9 Hz, CHCH₃), 0.95 (3H, s, CCH₃), 0.90 (18H, s, 2 × OSiC(CH₃)₃), 0.81 (3H, s, CCH₃), 0.09 (6H, s, 2 × SiCH₃), 0.07 (6H, s, 2 × SiCH₃). ¹³C NMR (100.6 MHz, CDCl₃) δ 77.7 (CH), 77.3 (CH), 70.0 (CH₂), 61.5 (CH₂), 43.0 (C), 36.6 (CH₂), 35.7 (CH), 26.0 (CH₃), 26.0 (CH₃), 20.0 (CH₃), 18.9 (CH₃), 18.3 (C), 18.3 (C), 11.3 (CH₃), -3.6 (CH₃), -4.3 (CH₃), -5.3 (CH₃), -5.4 (CH₃). HRMS (+ESI) *m*/*z* calcd for C₂₂H₅₁O₄Si₂ [M+H]+: 435.3320, found: 435.3326.

(2*S*,3*R*,5*S*)-5,7-Di-*tert*-butyldimethylsilyloxy-1,3-ditriethylsililoxy-2,4,4-trimethylheptane (11).

A mixture of diol **10** (100 mg, 0.23 mmol), 2,6-lutidine (161 μL, 1.4 mmol), and TESOTf (208 μL, 0.9 mmol) in CH₂Cl₂ (2.5 mL) was stirred at 0 °C for 2 h. The reaction was quenched by the addition of sat NH₄Cl (5 mL) and diluted with CH₂Cl₂ (40 mL). The organic layer was washed with brine (20 mL), dried (MgSO₄), and concentrated. The resulting oil was purified by column chromatography (95:5 hexanes/EtOAc) to afford 136 mg (0.205 mmol, 89% yield) of (2S,3R,5S)-5,7-di-tertbutyldimethylsilyloxy-1,3-ditriethylsilyloxy-2,4,4-trimethylheptane (11) as a cololurless oil. R_f (95:5 hexanes/EtOAc) 0.65. [α]_D -3.9 (c 0.60, CHCl₃). IR (ATR) v 2953, 2929, 2877, 2857, 1471, 1462, 1386, 1252, 1077, 1002. ¹H NMR (400 MHz, CDCl₃) δ 3.81 (1H, s, TESOC<u>H</u>), 3.71 (1H, td, J = 9.1, 4.9 Hz, TBSOC<u>H</u>_xH_y), 3.65–3.54 (2H, m, TBSOC<u>H</u> & TBSOCH<u>x</u>H_y), 3.38 (1H, t, J = 9.1 Hz, C<u>H</u>_xH_yOTES), 3.31 (1H, dd, *J* = 9.1, 7.1 Hz, CH_x<u>H</u>_vOTES), 2.22–2.10 (1H, m, C<u>H</u>CH₃), 1.97–1.86 (1H, m, TBSOCHC<u>H</u>_xH_v), 1.69–1.59 (1H, m, TBSOCHCH_x<u>H</u>_y), 1.00–0.93 (18H, m, 2 × Si(CH₂C<u>H</u>₃)₃), 0.89 (18H, s, 2 × SiC(C<u>H</u>₃)₃), 0.85 (6H, s, $C(CH_3)_2$, 0.81 (3H, d, J = 6.7 Hz, $CHCH_3$), 0.63 (6H, q, J = 8.0 Hz, $Si(CH_2CH_3)_3$), 0.59 (6H, q, J = 7.9 Hz, Si(CH₂CH₃)₃), 0.06 (3H, s, SiCH₃), 0.05 (3H, s, SiCH₃), 0.04 (6H, s, 2 × SiCH₃). ¹³C NMR (100.6 MHz, CDCl₃) δ 75.8 (CH), 75.2 (CH), 67.1 (CH₂), 61.3 (CH₂), 44.2 (C), 37.1 (CH), 36.2 (CH₂), 26.2 (CH₃), 26.0 (CH₃), 24.5 (CH₃), 20.0 (CH₃), 18.4 (C), 18.3 (C), 11.7 (CH₃), 7.2 (CH₃), 6.8 (CH₃), 5.7 (CH₂), 4.5 (CH₂), -3.5 (CH₃), -3.8 (CH₃), -5.3 (2 × CH₃). HRMS (+ESI) m/z calcd for C₂₈H₆₅O₄Si₃ [M-TES]⁺: 549.4185, found: 549.4181.

(2R,3R,5S)-5,7-Di-tert-butyldimethylsilyloxy-2,4,4-trimethyl-3-triethylsilyloxyheptanal (12).

DMSO (30 μ L, 0.42 mmol) was added dopwise to a solution of oxalyl chloride (19 μ L, 0.21 mmol) in CH₂Cl₂ (1 mL) at -78 °C and the resultant mixture was stirred for 30 min at -78 °C. Then, a solution of **11** (32 mg, 48 μ mol) in CH₂Cl₂ (1 mL) was added and stirring continued for 10 min at -78 °C and 2 h at -40 °C. It was cooled again at -78 °C and Et₃N (100 μ L, 0.72 mmol) was added. The reaction mixture was stirred for 5 min at -78 °C and at room temperature for 2 h.

The mixture was partitioned with CH_2Cl_2 (5 mL) and water (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 × 10 mL) and the combined organic extracts were washed with water (2 × 10 mL), dried (MgSO₄), and concentrated. The resulting oil was filtered through a short pad of silica (95:5 hexanes/EtOAc) to afford 22 mg (40 µmol, 83% yield) of (2*R*,3*R*,5*S*)-5,7-di-*tert*-butyldimethylsilyloxy-2,4,4-trimethyl-3-triethylsilyloxyheptanal (**12**) as a colourless oil, which was used without further purification. *R*_f (95:5 hexanes/EtOAc) 0.60. [α]_D –7.4 (*c* 0.60, CHCl₃). **IR** (ATR) v 2954, 2929, 2878, 2857, 1724, 1471, 1462, 1253, 1091, 1070, 1002. ¹H NMR (400 MHz, CDCl₃) δ 9.66 (1H, s, CHO), 4.35 (1H, d, *J* = 1.6 Hz, TESOCH), 3.75–3.56 (3H, m, TBSOCH₂ & TBSOCH), 2.97 (1H, qd, *J* = 7.1, 1.6 Hz, CHCH₃), 2.01–1.88 (1H, m, TBSOCH₂CH_xH_y), 1.56– 1.48 (1H, m, TBSOCH₂CH_xH_y), 1.16 (3H, d, *J* = 7.1 Hz, CHCH₃), 0.94 (9H, t, *J* = 7.9 Hz, OSi(CH₂CH₃)₃), 0.91 (3H, s, CCH₃), 0.89 (12H, s, CCH₃ & SiC(CH₃)₃), 0.88 (9H, s, SiC(CH₃)₃), 0.57 (6H, q, *J* = 7.9 Hz, Si(CH₂CH₃)₃), 0.08 (3H, s, SiCH₃), 0.05 (9H, s, 3 × SiCH₃). HRMS (+ESI) *m/z* calcd for C₂₈H₆₆NO₄Si₃ [M+NH₄]*: 564.4294, found: 564.4284.

Proof of the stereochemistry of diol 10

A mixture of diol **10** (15 mg, 34 µmol), PhCH(OMe)₂ (13 µL, 90 µmol) and PPTS (a crystal) in CH₂Cl₂ (0.7 mL) was stirred for 1 h at room temperature. The reacting mixture was partitioned with CH₂Cl₂ (2 mL) and sat NaHCO₃ (2 mL) and the aqueous layer was extracted with CH₂Cl₂ (2 × 10 mL). The combined organic extracts were washed with water (15 mL) and brine (15 mL), dried (MgSO₄), and concentrated. The residue was purified by column chromatography (from 90:10 to 80:20 hexanes/EtOAc) to afford 15 mg (29 µmol, 83% yield) of (2*R*,4*R*,5*S*)-4-[(3*S*)-3,5-di-*tert*-butyldimethylsilyloxy-2-methyl-2-pentyl]-5-methyl-2-phenyl-1,3-dioxane (**25**) as a colourless oil. *R*_{*f*} (90:10 hexanes/EtOAc) 0.65. **IR** (ATR) v 2954, 2927, 2855, 1471, 1462, 1386, 1251, 1113, 1082, 1005. **¹H NMR** (400 MHz, CDCl₃) δ 7.53–7.47 (2H, m, Ar<u>H</u>), 7.39–7.27 (3H, m, Ar<u>H</u>), 5.52 (1H, s, C<u>H</u>Ph), 4.08 (1H, dd, *J* = 10.9, 2.1 Hz, CHC<u>H</u>_xH_yO), 4.04 (1H, d, *J* = 2.0 Hz, CHC<u>H</u>O), 3.96 (1H, dd, *J* = 10.9, 1.5 Hz, CHCH_xH_yO), 3.68 (1H, ddd, *J* = 10.0, 7.7, 4.8 Hz, TBSOCH_xH_y), 3.62–3.54 (2H, m, TBSOCH_xH_yCH₂CH), 1.98

(1H, dtd, J = 14.5, 7.7, 2.8 Hz, TBSOCH₂C<u>H</u>_xH_y), 1.79–1.66 (1H, m, C<u>H</u>CH₃), 1.63–1.50 (1H, m, TBSOCH₂CH_xH_y), 1.28 (3H, d, J = 6.8 Hz, CHC<u>H₃</u>), 1.01 (3H, s, CC<u>H₃</u>), 0.93 (3H, s, CC<u>H₃</u>), 0.92 (9H, s, SiC(C<u>H₃</u>)₃), 0.87 (9H, s, SiC(C<u>H₃</u>)₃), 0.09 (3H, s, SiC<u>H₃</u>), 0.07 (3H, s, SiC<u>H₃</u>), 0.02 (3H, s, SiC<u>H₃</u>), 0.01 (3H, s, SiC<u>H₃</u>). ¹³C NMR (100.6 MHz, CDCl₃) δ 139.4 (C), 128.4 (CH), 128.1 (CH), 126.0 (CH), 101.8 (CH), 81.5 (CH), 76.3 (2 × CH₂), 61.0 (CH₂), 42.3 (C), 37.0 (CH₂), 31.2 (CH), 26.2 (CH₃), 25.9 (CH₃), 21.5 (CH₃), 21.1 (CH₃), 18.5 (C), 18.2 (C), 14.1 (CH₃), -3.5 (CH₃), -4.0 (CH₃), -5.2 (CH₃), -5.3 (CH₃). ¹H NMR Analyses and NOESY studies indicated the stereochemistry shown below

3. Synthesis of the southern fragment

(S)-4-Benzyloxy-3-methyl-2-butanone (3).

A 1.4 M solution of MeMgCl in toluene/THF (11.2 mL, 15.8 mmol) was slowly added to a solution of **4** (1.864 g, 7.8 mmol)in THF (30 mL) at 0 °C and the resulting mixture was stirred for 2 h at 0 °C. It was quenched with sat NH₄Cl (20 mL) and the mixture was stirred vigorously for 10 min at room temperature. The aqueous layer was extracted with Et₂O (3 × 40 mL) and the combined organic extracts were washed with brine (40 mL), dried (MgSO₄), and concentrated. The residue was purified by column chromatography (90:10 hexanes/EtOAc) to afford 1.298 g (6.75 mmol, 86% yield) of (*S*)-4-benzyloxy-3-methyl-2-butanone (**3**) as a colourless oil. *R_f* (90:10 hexanes/EtOAc) 0.20. [α]_D +22.3 (c 1.25, CHCl₃) [lit.³ [α]_D +16.6 (c 8.70, CHCl₃)]. **IR** (ATR) v 2860, 1715, 1454, 1360, 1179, 1098. ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.25 (5H, m, ArH), 4.50 (1H, d, *J* = 12.1 Hz, PhCH_xH_y), 4.49 (1H, d, *J* = 12.1 Hz, PhCH_xH_y), 3.63 (1H, dd, *J* = 9.2, 7.6 Hz, BnOCH_xH_y), 3.48 (1H, dd, *J* = 9.2, 5.5 Hz, BnOCH_xH_y), 2.90–2.82 (1H, m, CHCH₃), 2.18 (3H, s, COCH₃), 1.10 (3H, d, *J* = 7.1 Hz, CHCH₃). ¹³C NMR (100.6 MHz, CDCl₃) δ 211.0 (C), 138.0 (C), 128.3 (CH), 127.6 (CH), 127.5 (CH), 73.2 (CH₂), 72.0 (CH₂), 47.1 (CH), 28.9 (CH₃), 13.3 (CH₃).

³ I. Paterson, J. M. Goodman and M. Isaka, *Tetrahedron Lett.*, 1989, **30**, 7121.

(2*S*,5*R*,6*S*)-1-Benzyloxy-7-*tert*-butyldiphenylsilyloxy-5-hydroxy-2,6-dimethyl-3-heptanone (14).

Neat TiCl₄ (0.4 mL, 3.6 mmol) was added dropwise to a solution of ketone 3 (688 mg, 3.6 mmol) in CH₂Cl₂ (13 mL) at -78 °C and the resulting yellow mixture was stirred for 3 min. Then, *i*-Pr₂NEt (0.7 mL, 4.0 mmol) was carefully added, and the ensuing dark red solution was stirred for 30 min at -78 °C followed by addition of neat TiCl₄ (0.4 mL, 3.6 mmol). After stirring for 10 min, a solution of (S)-3-tertbutyldiphenylsilyloxy-2-methylpropanal⁴ (1.3 g, 4.0 mmol) in CH₂Cl₂ (2.5 & 2.5 mL) was slowly added, and the reaction mixture was stirred for 30 min at -78 °C. The mixture was quenched by addition of sat NH₄Cl (20 mL), diluted with Et₂O (100 mL), and washed with H₂O (75 mL), sat NaHCO₃ (75 mL), and brine (75 mL). The aqueous layers were extracted with Et₂O (2×100 mL), and the combined organic extracts were dried (MgSO₄), and concentrated. The resulting oil was analyzed by HPLC and NMR and purified by column chromatography (from 95:5 to 70:30 hexanes/EtOAc) to afford 1.474 g (2.84 mmol, 79% vield) of (2*S*,5*R*,6*S*)-1-benzyloxy-7-*tert*-butyldiphenylsilyloxy-5-hydroxy-2,6-dimethyl-3heptanone (14) as a colourless oil. R_f (70:30 hexanes/EtOAc) 0.50. HPLC (hexane/i-PrOH 95:5) t_R 8.7 min. **[α]**_D +24.0 (c 1.3, CHCl₃). **IR** (ATR) v 3497, 3070, 2961, 2931, 2858, 1709, 1472, 1428, 1112. ¹**H** NMR (400 MHz, CDCl₃) δ 7.68-7.65 (4H, m, ArH), 7.44-7.25 (11H, m, ArH), 4.49 (1H, d, *J* = 12.1 Hz, PhCH_xH_y), 4.45 (1H, d, *J* = 12.1 Hz, PhCH_xH_y), 4.17–4.11 (1H, m, CHOH), 3.71 (1H, dd, *J* = 10.2, 5.0 Hz, CH_xH_vOTBDPS), 3.66 (1H, dd, *J* = 10.2, 6.1Hz, CH_xH_vOTBDPS), 3.62 (1H, dd, *J* = 9.0, 8.0Hz, BnOCH_xH_v), 3.51 (1H d, J = 3.3Hz, OH), 3.47 (1H, dd, J = 9.0, 5.3 Hz, BnOCH_xH_y), 2.95–2.87 (1H, m, BnOCH₂CH), 2.73-2.62 (1H, m, COCH₂), 1.85-1.75 (1H, m, CHCH₂OTBDPS), 1.07 (3H, d, J = 7.0 Hz, BnOCH₂CHCH₃), 1.05 (9H, s, SiC(C<u>H</u>₃)₃), 0.88 (3H, d, J = 7.0 Hz, C<u>H</u>₃CHCH₂OTBDPS). ¹³C NMR (100.6 MHz, CDCl₃) δ 213.9 (C), 137.9 (C), 135.6 (C), 133.3 (C), 129.7 (CH), 128.4 (CH), 127.7 (CH), 127.6 (CH), 73.3 (CH₂), 72.1 (CH₂), 70.3 (CH), 66.7 (CH₂), 46.9 (CH), 46.8 (CH₂), 40.2 (CH), 26.9 (CH₃), 19.2 (C), 13.3 (2 × CH₃). **HRMS** (+ESI) *m*/*z* calcd for C₃₂H₄₃O₄Si [M+H]⁺: 519.2925, found 519.2925.

(2S,3S,5R,6S)-1-Benzyloxy-7-tert-butyldiphenylsilyloxy-2,6-dimethyl-3,5-heptandiol (15).

A 1 M solution of DIBALH in toluene (5.7 mL, 5.7 mmol) was added to a solution of aldol **14** (1.18 g, 2.3 mmol) in THF (45 mL) at -78 °C. After stirring for 2.5 h, the reaction was carefully quenched with a 1 M solution of Rochelle salt (30 mL) and the resulting mixture was stirred for 30 min at room temperature. The aqueous layer was extracted with EtOAc (3 × 15 mL) and the combined organic extracts were washed with brine (50 mL), dried (MgSO₄), and concentrated. The residue was purified

⁴ This aldehyde was prepared according to R. W. Roush, A. D. Palkowitz and K. Ando, *J. Am. Chem. Soc.*, 1990, **112**, 6348.

by column chromatography (from 90:10 to 70:30 hexanes/EtOAc) to afford 211 mg (0.41 mmol, 17%) of the *anti* 1,3-diol isomer and 942 mg (1.81 mmol, 80% yield) of the desired *syn* 1,3-diol (2*S*,3*S*,5*R*,6*S*)-1-benzyloxy-7-*tert*-butyldiphenylsilyloxy-2,6-dimethyl-3,5-heptandiol (**15**) as a colourless oil. *R*_f (70:30 hexanes/EtOAc) 0.45. [α]_D +6.3 (*c* 0.70, CHCl₃). **IR** (ATR) v 3432, 2959, 2930, 2856, 1454, 1427, 1104. ¹**H NMR** (400 MHz, CDCl₃) δ 7.69–7.64 (4H, m, Ar<u>H</u>), 7.48–7.28 (11H, m, Ar<u>H</u>), 4.54 (1H, d, *J* = 12.0 Hz, PhC<u>H</u>_xH_y), 4.50 (1H, d, *J* = 12.0 Hz, PhCH_xH_y), 4.04 (1H, dt, *J* = 9.5, 2.7 Hz, BnOCH₂CHC<u>H</u>OH), 3.89 (1H, ddd, *J* = 9.6, 6.5, 2.7 Hz, HOC<u>H</u>CHCH₂OTBDPS), 3.74 (1H, dd, *J* = 10.3, 4.6 Hz, C<u>H</u>_xH_yOTBDPS), 3.63 (1H, dd, *J* = 10.3, 7.1 Hz, CH_x<u>H</u>_yOTBDPS), 3.56 (1H, dd, *J* = 9.0, 6.8 Hz, BnOC<u>H</u>_xH_y), 3.47 (1H, dd, *J* = 9.0, 5.3 Hz, BnOCH_x<u>H</u>_y), 1.94–1.84 (1H, m, BnOCH₂C<u>H</u>), 1.83–1.74 (1H, m, C<u>H</u>CH₂OTBDPS), 1.66–1.47 (2H, m, OCHC<u>H</u>₂CHO), 1.05 (9H, s, SiC(C<u>H</u>₃)₃), 0.95 (3H, d, *J* = 7.0 Hz, BnOCH₂CHC<u>H</u>₃), 0.85 (3H, d, *J* = 7.0 Hz, C<u>H</u>₃CHCH₂OTBDPS). ¹³C **NMR** (100.6 MHz, CDCl₃) δ 138.3 (C), 135.6 (CH), 135.6 (CH), 133.0 (C), 133.0 (C), 129.8 (CH), 129.8 (CH), 127.8 (CH), 127.8 (CH), 127.7 (CH), 127.6 (CH), 77.0 (CH), 74.2 (CH), 73.9 (CH₂), 73.4 (CH₂), 68.1 (CH₂), 40.7 (CH), 39.0 (CH), 37.4 (CH₂), 26.8 (CH₃), 19.1 (C), 13.2 (CH₃), 11.3 (CH₃). **HRMS** (+ESI) *m/z* calcd for C₃₂H₄₅O₄Si [M+H]⁺: 521.3082, found: 521.3084.

(2*S*,3*S*,5*R*,6*S*)-1-Benzyloxy-7-*tert*-butyldiphenylsilyloxy-3,5-isopropilidendioxy-2,6-dimethylheptane (16).

A mixture of diol **15** (1.04 g, 2.0 mmol) and a few crystals of PPTS in 1:1 CH₂Cl₂/Me₂C(OMe)₂ (20 mL) was stirred at room temperature for 16 h. The volatiles were removed *in vacuo* and the residue was purified by column chromatography (from 95:5 to 90:10 hexanes/EtOAc) to afford 1.008 g (1.79 mmol, 90% yield) of (2*S*,3*S*,5*R*,6*S*)-1-benzyloxy-7-*tert*-butyldiphenylsilyloxy-3,5-isopropilidendioxy-2,6-dimethylheptane (**16**) as a colourless oil. *R_f* (90:10 hexanes/EtOAc) 0.55. [α]_D +11.8 (*c* 0.90, CHCl₃). **IR** (ATR) v 2930, 2856, 1427, 1378, 1105. ¹**H** NMR (400 MHz, CDCl₃) δ 7.72–7.63 (4H, m, Ar<u>H</u>), 7.47–7.26 (11H, m, Ar<u>H</u>), 4.51 (1H, d, *J* = 12.1 Hz, PhC<u>H</u>_xHy), 4.48 (1H, d, *J* = 12.1 Hz, PhCH_x<u>Hy</u>), 3.95–3.86 (2H, m, OC<u>H</u>CH₂C<u>H</u>O), 3.81 (1H, dd, *J* = 9.7, 4.6 Hz, SiOC<u>H</u>_xHy), 3.54 (1H, dd, *J* = 9.7, 4.0 Hz, SiOCH_x<u>Hy</u>), 3.47 (1H, dd, *J* = 9.0, 6.4 Hz, BnOC<u>H</u>_xHy), 3.34 (1H, dd, *J* = 9.0, 5.9 Hz, BnOCH_x<u>Hy</u>), 1.85–1.75 (1H, m, BnOCH₂C<u>H</u>), 1.73–1.61 (1H, m, SiOCH₂C<u>H</u>), 1.42–1.37 (1H, m, OCHC<u>H</u>_xHyCHO), 1.40 (3H, s, CC<u>H</u>₃), 1.34 (3H, s, CC<u>H</u>₃), 1.29–1.17 (1H, m, OCHCH<u>x</u><u>Hy</u>CHO), 1.04 (9H, s, SiC(C<u>H</u>₃)₃), 0.95 (6H, d, *J* = 6.9 Hz, 2 × CHC<u>H</u>₃). ¹³C NMR (100.6 MHz, CDCl₃) δ 138.7 (C), 135.6 (CH), 135.6 (CH), 134.0 (C), 133.9 (C), 129.5 (CH), 129.4 (CH), 128.3 (CH), 127.6 (CH), 127.5 (CH), 127.5 (CH), 98.3 (C), 73.1 (CH₂), 72.3 (CH₂), 69.6 (CH), 69.5 (CH), 64.6 (CH₂), 41.0 (CH), 38.7 (CH), 31.3 (CH₂), 30.2 (CH₃), 26.8 (CH₃), 19.9 (CH₃), 19.3 (C), 12.7 (CH₃), 12.2 (CH₃). **HRMS** (+ESI) *m/z* calcd for C₃₅H₄₉O₄Si [M+H]⁺: 561.3395, found 561.3386.

(2*S*,3*S*,5*R*,6*S*)-7-*tert*-Butyldiphenylsilyloxy-3,5-isopropilidendioxy-2,6-dimethyl-1-heptanol (17).

A mixture of **16** (700 mg, 1.25 mmol) and Pd(OH)₂/C (449 mg, 50 mol%) in EtOH (35 mL) was stirred for 3 h at room temperature under a H₂ atmosphere (balloon). The resulting suspension was filtered (CH₂Cl₂) through Celite® and concentrated to produce 590 mg of (2*S*,3*S*,5*R*,6*S*)-7-*tert*-Butyldiphenylsilyloxy-3,5-isopropilidendioxy-2,6-dimethyl-1-heptanol (**17**) as a colourless oil, which was used without further purification. *R_f* (70:30 hexanes/EtOAc) 0.35. [α]_D +6.1 (*c* 0.75, CHCl₃). **IR** (ATR) v 3463, 2988, 2967, 2929, 2900, 1380, 1216, 1076. ¹**H NMR** (400 MHz, CDCl₃) δ 7.72–7.64 (4H, m, ArH), 7.45–7.33 (6H, m, ArH), 4.04 (1H, dt, *J* = 8.2, 3.9 Hz, HOCH₂CHCHO), 3.99–3.92 (1H, m, OCHCHCH₂OTBDPS), 3.82 (1H, dd, *J* = 9.8, 4.5 Hz, CH_xH_yOTBDPS), 3.75–3.67 (1H, m, HOCH_xH_y), 3.63– 3.57 (1H, m, HOCH_xH_y), 3.55 (1H, dd, *J* = 9.8, 4.2 Hz, CH_xH_yOTBDPS), 2.75 (1H, s, OH), 1.96–1.85 (1H, m, HOCH₂CH), 1.78–1.63 (1H, m, CHCH₂OTBDPS), 1.42 (3H, s, CCH₃), 1.38–1.37 (2H, m, OCHCH₂), 1.36 (3H, s, CCH₃), 1.05 (9H, s, SiC(CH₃)₃), 0.97 (3H, d, *J* = 7.0 Hz, CH₃CHCH₂OTBDPS), 0.90 (3H, d, *J* = 7.2 Hz, HOCH₂CHCH₃). ¹³C **NMR** (100.6 MHz, CDCl₃) δ 135.6 (CH), 135.6 (CH), 133.9 (C), 133.8 (C), 129.5 (CH), 129.5 (CH), 127.6 (CH), 127.5 (CH), 98.5 (C), 73.0 (CH), 69.4 (CH), 66.0 (CH₂), 64.5 (CH₂), 40.9 (CH), 38.8 (CH), 30.2 (CH₃), 29.1 (CH₂), 26.8 (CH₃), 19.6 (CH₃), 19.3 (C), 12.7 (CH₃), 11.6 (CH₃). **HRMS** (+ESI) *m/z* calcd for C₂₈H₄₃O₄Si [M+H]⁺: 471.2925, found: 471.2925.

(2R,3S,5R,6S)-7-tert-Butyldiphenylsilyloxy-3,5-isopropilidendioxy-2,6-dimethylheptanal (18).

A mixture of alcohol **17** (590 mg, 1.25 mmol) and Dess-Martin periodinane (1.09 g, 2.5 mmol) in CH_2Cl_2 (20 mL) was stirred at room temperature for 1 h. Then, it was treated with sat NaHCO₃ (10 mL) and sat Na₂S₂O₃ (10 mL) and the resultant mixture was stirred vigorously for 15 min. The aqueous layer was extracted with Et_2O (2 × 30 mL) and the combined organic extracts were dried (MgSO₄) and concentrated to provide 570 mg of (2*R*,3*S*,5*R*,6*S*)-7-*tert*-butyldiphenylsilyloxy-3,5-isopropilidendioxy-2,6-dimethylheptanal (**18**) as a yellowish oil, which was used without further purification. *R_f* (90:10 hexanes/EtOAc) 0.35. **1H NMR** (400 MHz, CDCl₃) δ 9.75 (1H, d, *J* = 1.1 Hz, CHO), 7.71–7.65 (4H, m, ArH), 7.47–7.32 (6H, m, ArH), 4.22 (1H, ddd, *J* = 11.8, 4.8, 2.5 Hz, OHCCHCHO), 3.97 (1H, ddd, *J* = 11.0, 7.6, 2.3 Hz, CHCHCH₂OTBDPS), 3.82 (1H, dd, *J* = 9.8, 4.5 Hz, CH_xH_yOTBDPS), 3.53 (1H, dd, *J* = 9.8, 4.3 Hz, CH_xH_yOTBDPS), 2.51–2.36 (1H, m, OHCCH), 1.77–1.62 (1H, m, CHCH₂OTBDPS), 1.51–1.44 (2H, m, OCHCH₂), 1.43 (3H, s, CCH₃), 1.35 (3H, s, CCH₃), 1.10 (3H, d, *J* = 7.1 Hz, OHCCHCH₃), 1.05 (9H, s, SiC(CH₃)₃), 0.95 (3H, d, *J* = 7.0 Hz, CH₃CHCH₂OTBDPS).

(2S,3R,5S,6S)-1-tert-Butyldiphenylsilyloxy-3,5-isopropilidendioxy-2,6-dimethyl-7-octyne (20)

A freshly prepared 3 M solution of MeONa in MeOH (833 μ L, 2.5 mmol) was added to a solution of the Ohira-Bestmann reagent (480 mg, 2.5 mmol) in THF (10 mL) at -78 °C. The solution was stirred for 15 min at -78 °C and a solution of the previously prepared aldehyde 18 (570 mg) in THF (8 mL) was dropwise added. After 5 min at -78 °C, the resultant mixture was stirred for 1 h at -40 °C. The reaction was quenched by addition of sat NH₄Cl (2 mL) and further diluted with water (20 mL). The aqueous layer was extracted with Et₂O (2 \times 20 mL) and the combined organic extracts were washed with brine (20 mL), dried (MgSO₄), and concentrated. The residue was purified by column chromatography (97:3 hexanes/EtOAc) to afford 400 mg (0.86 mmol, 69% yield over three steps) of (2S,3R,5S,6S)-1-tertbutyldiphenylsilyloxy-3,5-isopropilidendioxy-2,6-dimethyl-7-octyne (20) as a colourless oil. R_f (90:10) hexanes/EtOAc) 0.60. [α]_D -3.6 (*c* 1.9, CHCl₃). **IR** (ATR) v 3308, 2961, 2931, 2857, 1428, 1215, 1105. ¹**H NMR** (400 MHz, CDCl₃) δ 7.72–7.63 (4H, m, Ar<u>H</u>), 7.46–7.33 (6H, m, Ar<u>H</u>), 3.95 (1H, ddd, *J* = 11.5, 7.6, 2.3 Hz, CHCHCH₂OTBDPS), 3.83 (1H, dd, *J* = 9.7, 4.5 Hz, CH_xH_vOTBDPS), 3.64 (1H, ddd, *J* = 11.5, 7.9, 2.3 Hz, HCCCHCHO), 3.56 (1H, dd, J = 9.7, 4.2 Hz, CH_xH_vOTBDPS), 2.49–2.42 (1H, m, CCCH), 2.09 (1H, d, *J* = 2.4 Hz, HCC), 1.87 (1H, dt, *J* = 12.7, 2.4 Hz, OCHC<u>H</u>_xH_v), 1.76–1.67 (1H, m, C<u>H</u>CH₂OTBDPS), 1.41 (3H, s, CCH₃), 1.37 (3H, s, CCH₃), 1.23–1.16 (1H, m, OCHCH_xH_y), 1.22 (3H, d, J = 6.9 Hz, CCCHCH₃), 1.04 (9H, s, SiC(C<u>H</u>₃)₃), 0.98 (3H, d, J = 7.0 Hz, C<u>H</u>₃CHCH₂OTBDPS). ¹³C NMR (100.6 MHz, CDCl₃) δ 135.6 (CH), 135.6 (CH), 134.0 (C), 133.9 (C), 129.5 (CH), 129.5 (CH), 127.6 (CH), 127.5 (CH), 98.6 (C), 85.7 (C), 72.2 (CH), 70.2 (CH), 69.4 (CH), 64.5 (CH₂), 40.9 (CH), 32.3 (CH), 31.9 (CH₂), 30.1 (CH₃), 26.8 (CH₃), 19.8 (CH₃), 19.3 (C), 17.1 (CH₃), 12.6 (CH₃). **HRMS** (+ESI) *m/z* calcd for C₂₉H₄₁O₃Si [M+H]⁺: 465.2819, found: 465.2812.

(2S,3R,5S,6S)-1-tert-Butyldiphenylsilyloxy-3,5-isopropilidendioxy-2,6-dimethyl-7-nonyne (21).

A mixture of alkyne **20** (80 mg, 0.18 mmol) and a 1.6 M solution of *n*-BuLi in hexanes (131 µL, 0.21 mmol) in THF (10 mL) was stirred for 30 min at –78 °C. Then, MeI (55 µL, 0.88 mmol) was added and the resulting solution was stirred for 4 h at room temperature. The reaction was quenched by addition of sat NH₄Cl (5 mL). The aqueous layer was extracted with Et₂O (2 × 20 mL) and the combined extracts were washed with water (20 mL) and brine (20 mL), dried (MgSO₄), and concentrated. The resiude was purified by column chromatography (from 95:5 to 90:10 hexanes/EtOAc) to afford 72 mg (0.15 mmol, 87% yield) of (2*S*,3*R*,5*S*,6*S*)-1-*tert*-butyldiphenylsilyloxy-3,5-isopropilidendioxy-2,6-dimethyl-7-nonyne (**21**) as a colourless oil. **R**_f(90:10 hexanes/EtOAc) 0.60. [α]_D –5.8 (*c* 1.10, CHCl₃). **IR** (ATR) v

2992, 1960, 2930, 2856, 1427, 1379, 1200, 1110. ¹**H NMR** (400 MHz, CDCl₃) δ 7.70–7.64 (4H, m, Ar<u>H</u>), 7.46–7.30 (6H, m, Ar<u>H</u>), 3.94 (1H, ddd, *J* = 11.4, 7.8, 2.5 Hz, C<u>H</u>CHCH₂OTBDPS), 3.83 (1H, dd, *J* = 9.7, 4.4 Hz, C<u>H</u>_xH_yOTBDPS), 3.62–3.52 (1H, m, CCCHC<u>H</u>), 3.56 (1H, dd, *J* = 9.7, 4.6 Hz, CH_x<u>H</u>_yOTBDPS), 2.42–2.32 (1H, m, CCC<u>H</u>), 1.87 (1H, dt, *J* = 12.8, 2.4 Hz, OCHC<u>H</u>_xH_y), 1.79 (3H, d, *J* = 1.2 Hz, C<u>H</u>₃CC), 1.74–1.66 (1H, m, C<u>H</u>CH₂OTBDPS), 1.40 (3H, s, CC<u>H</u>₃), 1.37 (3H, s, CC<u>H</u>₃), 1.21–1.13 (1H, m, OCHCH_x<u>H</u>_y), 1.17 (3H, d, *J* = 7.1 Hz, CCCHC<u>H</u>₃), 1.05 (9H, s, SiC(C<u>H</u>₃)₃), 0.99 (3H, d, *J* = 6.9 Hz, C<u>H</u>₃CHCH2OTBDPS). ¹³C **NMR** (100.6 MHz, CDCl₃) δ 135.6 (CH), 135.6 (CH), 134.0 (C), 133.9 (C), 129.5 (CH), 129.5 (CH), 127.6 (CH), 127.5 (CH), 98.5 (C), 80.4 (C), 77.6 (C), 72.7 (CH), 69.4 (CH), 64.6 (CH₂), 40.9 (CH), 32.6 (CH), 32.1 (CH₂), 30.2 (CH₃), 26.8 (CH₃), 19.8 (CH₃), 19.3 (C), 17.6 (CH₃), 12.7 (CH₃), 3.6 (CH₃). **HRMS** (+ESI) *m/z* calcd for C₃₀H₄₃O₃Si [M+H]⁺: 479.2976, found: 479.2972.

(2*S*,3*R*,5*S*,6*S*,7*E*)-1-*tert*-Butyldiphenylsilyloxy-8-iodo-3,5-isopropilidendioxy-2,6-dimethyl-7nonene (22).

A mixture of **21** (71 mg, 0.15 mmol) and Cp₂ZrHCl (101 mg, 0.40 mmol) in THF (3 mL) was heated for 30 min at 40 °C protected from light. It was cooled at room temperature and a iodine solution (76 mg, 0.30 mmol) en THF (1.5 mL) was added. The resulting mixture was stirred for 30 min at room temperature and cooled to 0 °C. Then, the reaction was quenched by addition of sat $Na_2S_2O_3$ (3 mL) and was partitioned between water (20 mL) and CH₂Cl₂ (20 mL). The aqueous layer was extracted with CH_2Cl_2 (2 × 20 mL). The combined organic extracts were washed with 1 M HCl (20 mL), sat NaHCO₃ (20 mL) and brine (20 mL), dried (MgSO₄), and concentrated. The resultant oil was purified by column chromatography (90:10 hexanes/EtOAc) to afford 80 mg (0.13 mmol, 89% yield) of (2S,3R,5S,6S,7E)-1-tert-butyldiphenylsilyloxy-8-iodo-3,5-isopropilidendioxy-2,6-dimethyl-7-nonene (22) as a yellowish oil. **R**_f (90:10 hexanes/EtOAc) 0.60. [α]_D -14.8 (c 0.80, CHCl₃). **IR** (ATR) v 2954, 2929, 3071, 3050, 2993, 2959, 2930, 2857, 1472, 1427, 1378, 1215, 1110. ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.64 (4H, m, Ar<u>H</u>), 7.48–7.32 (6H, m, Ar<u>H</u>), 5.97 (1H, dq, J = 10.1, 1.5 Hz, C=CH), 3.89 (1H, ddd, J = 11.5, 7.4, 2.3 Hz, OCHCHCH2OTBDPS), 3.81 (1H, dd, / = 9.8, 4.6 Hz, CH_xH_vOTBDPS), 3.54 (1H, dd, / = 9.8, 4.4 Hz, CH_x<u>H</u>_vOTBDPS), 3.51 (1H, ddd, J = 11.5, 7.5, 2.6 Hz, =CHCHC<u>H</u>), 2.38 (3H, d, J = 1.5 Hz, C<u>H</u>₃C(I)=), 2.43– 2.33 (1H, m, =CHC<u>H</u>), 1.74–1.63 (1H, m, C<u>H</u>CH₂OTBDPS), 1.49 (1H, dt, *J* = 12.7, 2.4 Hz, OCHC<u>H</u>_xH_y), 1.39 (3H, s, CCH₃), 1.36 (3H, s, CCH₃), 1.05 (9H, s, SiC(CH₃)₃), 1.07–1.04 (1H, m, OCHCH_xH_y) 0.99 (3H, d, *J* = 6.7 Hz, C=CHCHCH₃), 0.95 (3H, d, J = 7.0 Hz, CH₃CHCH₂OTBDPS). ¹³C NMR (100.6 MHz, CDCl₃) δ 142.9 (CH), 135.6 (CH), 135.6 (CH), 134.0 (C), 133.8 (C), 129.5 (CH), 129.5 (CH), 127.6 (CH), 127.5 (CH), 98.4 (C), 94.5 (C), 72.2 (CH), 69.4 (CH), 64.5 (CH₂), 41.5 (CH), 40.9 (CH), 31.9 (CH₂), 30.3 (CH₃), 30.2 (CH₃), 28.1 (CH₃), 26.8 (CH₃), 19.8 (CH₃), 19.3 (C), 16.1 (CH₃), 12.7 (CH₃). HRMS (+ESI) m/z calcd for C₃₀H₄₄IO₃Si [M+H]⁺: 607.2099, found: 607.2104.

4. Coupling of the northern and the southern fragment

Via transmetallation with ZnMe2

A mixture of **22** (25 mg, 40 µmol) and a 1.7 M solution of *tert*-BuLi in pentane (46 µL, 80 µmol) in Et₂O (0.7 mL) was stirred at -78 °C for 1 h. A 2 M solution of ZnMe₂ in toluene (33 µL, 40 µmol) was added and the resultant mixture was stirred for 15 min. Finally, a solution of aldehyde **12** (20 mg, 36.5 µmol) in Et₂O (2 × 0.4 mL) was carefully added and the resultant mixture was further stirred for 2 h at -78 °C. The reaction was quenched with water (1 mL) and the mixture was partitioned with Et₂O (10 mL) and water (10 mL). The aqueous layer was extracted with Et₂O (3 × 10 mL) and the combined organic extracts were washed with brine (20 mL), dried (MgSO₄), and concentrated. The residue was purified by column chromatography (from 80:20 hexanes/CH₂Cl₂ to CH₂Cl₂) to afford 26 mg (25 µmol, 70% yield) of a 60:40 mixture of (3*S*,5*R*,6*R*,7*S*,8*E*,10*S*,11*S*,13*R*,14*S*)-1,3-bis-*tert*-butyldimethylsilyloxy-5-trietylsilyloxy-11,13-isopropilidendioxy-4,4,6,8,10,14-hexamethyl-8-pentadecen-7-ol (**24**) and the C-7 epimer (*epi-24*).

<u>Via alkenyl lithium</u>

A mixture of **22** (38 mg, 60 µmol) and a 1.7 M solution of *n*-BuLi in pentane (67 µL, 0.11 mmol) in Et₂O (1 mL) was stirred at -78 °C for 1 h. Then, a solution of aldehyde **12** (17 mg, 30 µmol) in Et₂O (2 × 0.5 mL) was carefully added and the resultant mixture was further stirred for 2 h at -78 °C. The reaction was quenched with methanol (1 mL) and sat NaHCO₃ (1 mL) and the mixture was partitioned with Et₂O (10 mL) and water (10 mL). The aqueous layer was extracted with Et₂O (10 mL) and the combined organic extracts were washed with brine (10 mL), dried (MgSO₄), and concentrated. The residue was purified by column chromatography (from 75:25 hexanes/CH₂Cl₂ to CH₂Cl₂) to afford 24 mg (23 µmol, 76% yield) of a 60:40 mixture of (3*S*,5*R*,6*R*,7*S*,8*E*,10*S*,11*S*,13*R*,14*S*)-15-*tert*-butyldiphenylsilyloxy-1,3-bis-*tert*-butyldimethylsilyloxy-5-trietylsilyloxy-11,13-isopropilidendioxy-4,4,6,8,10,14-hexamethyl-8-pentadecen-7-ol (**24**) and the C-7 epimer (*epi-24*).

Further purification permitted to isolate 10 mg of pure **24** as a colourless oil. R_f (CH₂Cl₂) 0.80. [α]_D +6.6 (*c* 0.50, CHCl₃). **IR** (ATR) v 2955, 2928, 2856, 1461, 1379, 1361, 1253, 1087, 1002. ¹H NMR (500 MHz, CDCl₃) δ 7.72–7.62 (4H, m, Ar<u>H</u>), 7.46–7.32 (6H, m, Ar<u>H</u>), 5.25 (1H, d, *J* = 9.7 Hz, C=C<u>H</u>), 3.91 (1H, d, *J* = 3.1 Hz, TESOC<u>H</u>), 3.86 (1H, ddd, *J* = 11.5, 7.7, 2.2 Hz, OC<u>H</u>CHCH₂OTBDPS), 3.81 (1H, dd, *J* = 9.7, 4.6 Hz, C<u>H</u>_xH_yOTBDPS), 3.77–3.71 (2H, m, TBSOC<u>H</u>_xH_y & C<u>H</u>OH), 3.74 (1H, s, O<u>H</u>), 3.69 (1H, dd, *J* = 8.7, 1.9 Hz, TBSOC<u>H</u>), 3.66–3.60 (1H, m, C=CHCHC<u>H</u>), 3.58–3.52 (1H, m, TBSOCH_xH_y), 3.55 (1H, dd, *J* = 9.7, 4.0 Hz, CH_xH_yOTBDPS), 2.47–2.35 (1H, m, C=CHC<u>H</u>), 2.23–2.12 (1H, m, TESOCHC<u>H</u>), 2.05–1.95 (1H, m, TBSOCH₂C<u>H</u>_xH_y), 1.68–1.61 (1H, m, C<u>H</u>CH₂OTBDPS), 1.58 (3H, d, *J* = 0.9 Hz, C(C<u>H</u>₃)=CH), 1.56–1.50 (1H, m, C=CHCHCHC<u>H</u>_xH_y), 1.40 (3H, s, O₂CC<u>H</u>₃), 1.37 (3H, s, O₂CC<u>H</u>₃), 1.33–1.27 (1H, m, TBSOCH₂CH_xH_y),

1.04 (9H, s, SiPh₂C(C<u>H</u>₃)₃), 1.05–1.00 (4H, m, C=CHCH(C<u>H</u>₃)CHCH_x<u>H</u>_y), 1.00 (9H, t, J = 8.0 Hz, Si(CH₂C<u>H</u>₃)₃), 0.95 (3H, d, J = 6.9 Hz, C<u>H</u>₃CHCH₂OTBDPS), 0.89 (9H, s, SiMe₂C(C<u>H</u>₃)₃), 0.89 (9H, s, SiMe₂C(C<u>H</u>₃)₃), 0.85 (3H, s, CC<u>H</u>₃), 0.84 (3H, s, CC<u>H</u>₃), 0.77 (3H, d, J = 7.0 Hz, TESOCHCHC<u>H</u>₃), 0.73–0.67 (6H, m, Si(C<u>H</u>₂CH₃)₃), 0.07 (3H, s, SiC<u>H</u>₃), 0.05 (3H, s, SiC<u>H</u>₃), 0.04 (3H, s, SiC<u>H</u>₃), 0.04 (3H, s, SiC<u>H</u>₃). ¹³C NMR (125.0 MHz, CDCl₃) δ 136.7 (C), 135.6 (CH), 135.6 (CH), 134.0 (C), 133.9 (C), 129.5 (CH), 129.4 (CH), 127.6 (CH), 127.5 (CH), 127.1 (CH), 98.3 (C), 80.7 (CH), 80.3 (CH), 74.5 (CH), 73.2 (CH), 69.5 (CH), 64.6 (CH₂), 61.3 (CH₂), 45.0 (C), 41.1 (CH), 38.4 (CH), 36.0 (CH), 32.7 (CH₂), 31.9 (CH₂), 30.2 (CH₃), 29.7 (CH₃), 26.8 (CH₃), 26.2 (CH₃), 26.0 (CH₃), 19.8 (CH₃), 19.5 (CH₃), 19.3 (CH₃), 18.5 (C), 18.3 (C), 16.9 (CH₃), 14.2 (CH₃), 14.1 (C), 12.9 (CH₃), 8.1 (CH₃), 7.3 (CH₃), 5.8 (CH₂), -3.4 (CH₃), -3.6 (CH₃), -5.3 (CH₃), -5.3 (CH₃). HRMS (+ESI) *m/z* calcd for C₅₈H₁₁₀NO₇Si₄ [M+NH₄]⁺: 1044.7354, found: 1044.7351.

Proof of the stereochemistry of 24

A mixture of 24 (13 mg, 13 µmol), 2,2-dimethoxypropane (10 µL, 80 µmol) and a crystal of CSA in DMF (0.2 mL) was stirred at room temperature for 3 h. The reaction mixture was partitioned with sat NaHCO₃ (10 mL) and hexane (10 mL). The aqueous layer was extracted with hexane (4×10 mL) and the combined organic extracts were dried (MgSO₄) and concentrated. The residue was purified by column chromatography (from 95:5 to 70:30 hexanes/EtOAc) to afford 4 mg (4.2 µmol, 32% yield) of a highly sensitive (3*S*,5*R*,6*R*,7*S*,8*E*,10*S*,11*S*,13*R*,14*S*)-1-*tert*-butyldimethylsilyloxy-5,7,11,13-bis(isopropilidendioxy)-15-tert-butyldiphenylsilyloxy-4,4,6,8,10,14-hexamethyl-8-pentadecen-3-ol (26) as a colourless oil. *R*_f(hexanes/EtOAc) 0.35. ¹**H NMR** (500 MHz, CDCl₃) δ 7.77–7.59 (4H, m, Ar<u>H</u>), 7.52–7.30 (6H, m, Ar<u>H</u>), 5.20 (1H, broad d, J = 10.0 Hz, C=C<u>H</u>), 4.18 (1H, m, CH=CC<u>H</u>), 4.08 (1H, d, J = 1.7 Hz, CH=CCHCHCH), 3.87 (1H, ddd, J = 11.5, 7.5, 2.2 Hz, CHCHCH₂OTBDPS), 3.80 (1H, dd, J = 9.7, 4.7 Hz, C<u>H</u>_xH_vOTBDPS), 3.75 (1H, ddd, *J* = 10.3, 7.4, 5.0 Hz, TBSOC<u>H</u>_xH_v), 3.70–3.60 (1H, m, TBSOCH_x<u>H_v</u>), 3.55 (1H, dd, / = 9.7, 4.1 Hz, CH_xH_vOTBDPS), 3.52 (1H, d, / = 2.5 Hz, C=CHCHCH), 3.49 (1H, dd, / = 7.3, 2.9 Hz, CHOH), 2.47–2.31 (1H, m, C=CHCH), 2.10–1.92 (2H, m, TBSOCH₂CH_xH_y & C=CHCHCHCHCH_xH_y), 1.78–1.61 (3H, m, TBSOCH₂CH_xH_y, CH=CCHC<u>H</u> & C<u>H</u>CH₂OTBDPS), 1.52 (3H, d, J = 1.6 Hz, CH=CC<u>H</u>₃), 1.41 (3H, s, 0₂CC<u>H</u>₃), 1.41 (3H, s, 0₂CC<u>H</u>₃), 1.40 (3H, s, 0₂CC<u>H</u>₃), 1.38 (3H, s, 0₂CC<u>H</u>₃), 1.36–1.28 (1H, m, C=CHCHCHCH_x<u>H</u>_y), 1.04 (9H, s, SiC(C<u>H</u>₃)₃), 0.99 (3H, d, J = 6.6 Hz, C=CHCHC<u>H</u>₃), 0.94 (3H, d, J = 7.0 Hz, CH₃CHCH₂OTBDPS), 0.93 (9H, s, SiC(CH₃)₃), 0.89 (3H, s, CCH₃), 0.87 (3H, s, CCH₃), 0.76 (3H, d, J = 6.7 Hz, CH=CCHCHCH₃), 0.11 (3H, s, SiCH₃), 0.09 (3H, s, SiCH₃). ¹³C NMR (125.0 MHz, CDCl₃) δ 135.6 (CH), 135.6 (CH), 134.0 (C), 133.9 (C), 130.0 (C), 129.5 (CH), 129.4 (CH), 127.6 (CH), 127.5 (CH), 126.2 (CH), 98.7 (C), 98.3 (C), 77.4 (CH), 77.4 (CH), 74.1 (CH), 73.4 (CH), 69.6 (CH), 64.6 (CH₂), 61.1 (CH₂), 42.0 (C), 41.0 (CH), 38.5 (CH), 36.9 (CH₂), 32.6 (CH), 30.3 (CH₃), 30.0 (CH₃), 27.2 (CH₂), 26.8 (CH₃), 26.2 (CH₃), 22.3 (CH₃), 20.9 (CH₃), 19.9 (CH₃), 19.6 (CH₃), 19.3 (C), 18.5 (C), 17.3 (CH₃), 13.9 (CH₃), 12.7 (CH₃), 7.3 (CH₃), -3.5 (CH₃), -3.9 (CH₃). **HRMS** (+ESI) *m/z* calcd for C₄₉H₈₆NO₇Si₂ [M+NH₄]⁺: 856.5937, found: 856.5936.

The configuration of the C7 stereocentre has been assigned according to diagnostic peaks in ¹³C NMR. Indeed, $O_2\underline{C}Me_2$ quaternary carbon atoms at 98.7 and 98.3 ppm indicate that both acetonides come from 1,3-*syn* diols.⁵

11. ¹H and ¹³C Spectra of new compounds

⁵ For a full account of such an analysis, see: (*a*) S. D. Rychnovsky and D. J. Skalitzky, *Tetrahedron Lett.*, 1990, **31**, 945; (*b*) D. A. Evans, D. L. Rieger and J. R. Gage, *Tetrahedron Lett.*, 1990, **31**, 7099; (*c*) S. D. Rychnovsky, B. Rogers and G. Yang, *J. Org. Chem.*, 1993, **58**, 3511.

<u></u>⊢90.2

7.5

8.0

ۍ ۵

66

- 10 10

Q

Studies towards the synthesis of tedanolide C. Construction of the C13-epi C1-C15 fragment Joana Zambrana, Pedro Romea, and Fèlix Urpí

44

Studies towards the synthesis of tedanolide C. Construction of the C13-epi C1–C15 fragment Joana Zambrana, Pedro Romea, and Fèlix Urpí

