Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Reagents for Diverse Iodosilane-Mediated Transformations

Masatoshi Shibuya,* Masanori Abe, Shoji Fujita and Yoshihiko Yamamoto

Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-0861, Japan

Electronic Supplementary Information

1.	General considerations	S2
2.	Deiodination in the presence of galvinoxyl	S2
3.	Deuterium labeling study	S 3
4.	Reaction of PhSiH ₃ with I ₂ in toluene-d ₈ and CD ₂ Cl ₂	S 4
5.	Analytical data of Iodoethers	S 5
6.	NMR charts	S 6

1. General considerations

Reagents were purchased from commercial suppliers and used without purification. Column Chromatography was performed on silica gel (Cica silica gel 60N) with solvents specified below. ¹H and ¹³C NMR spectra were obtained for samples in CDCl₃ or CD₂Cl₂ or toluene-*d*₈ solution at 25 °C. ¹H NMR chemical shifts are reported in terms of chemical shift (δ , ppm) relative to the singlet at δ 7.26 ppm for chloroform or δ 0.00 ppm for tetramethylsilane as an internal standard. Splitting patterns are designated as follows: s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; sext, sextet; sept, septet; m, multiplet. Coupling constants are reported in Hz. ¹³C NMR spectra were fully decoupled and are reported in terms of chemical shift (δ , ppm) relative to the triplet at δ 77.0 ppm for CDCl₃.

2. Deiodination in the presence of galvinoxyl

Scheme S1 Deiodination of 2a in the presence of galvinoxyl

3. Deuterium labeling study

Scheme S2 Deiodination of 2a using I2 and PhSiD3

Figure S1 ¹H NMR charts of 2b and 2b'

4. Reaction of PhSiH₃ with I₂ in toluene-d₈ and CD₂Cl₂

Figure S2 ¹H NMR charts of the reaction of PhSiH₃ with I₂ in toluene-d₈ and CD₂Cl₂

5. Analytical Data of Iodoethers

2-Iodomethyl-2-phenyltetrahydropyran (2a)

colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.37 (m, 4H), 7.33-7.29 (m, 1H), 3.82-3.76 (m, 1H), 3.50 (td, 1H, J = 11.4, 2.4 Hz), 3.39 (d, 1H, J = 10.4 Hz), 3.35 (d, 1H, J = 10.4 Hz), 2.37-2.29 (m, 1H), 2.02 (ddd, 1H, J = 13.6, 12.0, 3.2 Hz), 1.75-1.60 (m, 2H), 1.55-1.37 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 140.2, 128.6, 127.5, 126.9, 75.8, 63.4, 32.4, 25.4, 21.4, 19.9; IR (neat, cm⁻¹): 2939; HRMS (ESI, m/z) Calcd. for C₁₂H₁₅INaO [M+Na]⁺: 325.0065, found 325.0045.

2-Iodomethyl-2-(4-methylphenyl)tetrahydrofuran (4a)

colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.28 (d, 2H, J = 8.4 Hz), 7.20-7.18 (d, 2H, J = 8.4 Hz), 3.80-3.74 (m, 1H), 3.48 (td, 1H, J = 11.6, 2.4 Hz), 3.37 (d, 1H, J = 10.0 Hz, 3.31 (d, 1H, J = 10.0 Hz), 2.35 (s, 3H), 2.33-2.27 (m, 1H), 2.00 (ddd, 1H, $Ar = 4-Me-C_6H_4$ *J* = 14.0, 12.0, 3.2 Hz), 1.73-1.59 (m, 2H), 1.51-1.44 (m, 1H), 1.39-1.35 (m, 1H); ¹³C

NMR (100 MHz, CDCl₃): δ 137.2, 137.0, 129.3, 126.8, 75.7, 63.4, 32.3, 25.5, 21.8, 21.0, 20.0; IR (neat, cm⁻¹): 2939; HRMS (ESI, m/z) Calcd. for C₁₃H₁₇INaO [M+Na]⁺: 339.0222, found 339.0196.

2-Iodomethyl-2-(4-fluorophenyl)tetrahydrofuran (5a)

colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.36 (m, 2H), 7.01-7.05 (m, 2H), 3.81-3.75 (m, 1H), 3.46 (td, 1H, J = 13.2, 4.4 Hz), 3.36 (d, 1H, J = 11.2 Hz), 3.34 (d, 1H, J = 11.2 Hz), 2.30 (dt, 1H, J = 13.6, 3.8 Hz), 2.00 (ddd, 1H, J = 14.0, 12.0, 4.8 Hz),

Ar = 4-F-C₆H₄ 1.76-1.59 (m, 2H), 1.51-1.38 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 162.1 (d, J = 246.4 Hz), 136.1 (d, J = 3.8 Hz), 128.7 (d, J = 8.6 Hz), 115.4 (d, J = 21.0 Hz), 75.5, 63.4, 32.5, 25.4, 21.1, 20.0; IR (neat, cm⁻¹): 2940; HRMS (DART, m/z) Calcd. for C₁₂H₁₈FINO [M+NH₄]⁺: 338.0417, found 338.0427.

2-Iodomethyl-2-phenyltetrahydrofuran (1a)

colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.38 (m, 2H), 7.36-7.32 (m, 2H), 7.28-7.24 (m, 1H), 4.07 (dt, 1H, J = 8.0, 7.2 Hz), 3.92 (td, 1H, J = 8.0, 6.0 Hz), 3.57 (d, 1H, J = 10.4 Hz), 3.54 (d, 1H, J = 10.4 Hz), 2.39-2.27 (m, 2H), 2.11-2.02 (m, 1H), 1.89-1.78 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 143.9, 128.2, 127.2, 125.3, 84.5, 68.4, 37.6, 26.2, 19.1; IR(neat, cm⁻¹): 2976; HRMS (ESI, m/z) Calcd. for C₁₁H₁₃INaO [M+Na]⁺: 310.9909, found 310.9889.

S11

S27

S36

S37